mirror of
https://github.com/open-telemetry/opentelemetry-go.git
synced 2025-01-26 03:52:03 +02:00
81b2a33e1b
Resolve https://github.com/open-telemetry/opentelemetry-go/issues/5249 ### Spec > exemplar_reservoir: A functional type that generates an exemplar reservoir a MeterProvider will use when storing exemplars. This functional type needs to be a factory or callback similar to aggregation selection functionality which allows different reservoirs to be chosen by the aggregation. > Users can provide an exemplar_reservoir, but it is up to their discretion. Therefore, the stream configuration parameter needs to be structured to accept an exemplar_reservoir, but MUST NOT obligate a user to provide one. If the user does not provide an exemplar_reservoir value, the MeterProvider MUST apply a [default exemplar reservoir](https://github.com/open-telemetry/opentelemetry-specification/blob/main/specification/metrics/sdk.md#exemplar-defaults). Also, > the reservoir MUST be given the Attributes associated with its timeseries point either at construction so that additional sampling performed by the reservoir has access to all attributes from a measurement in the "offer" method. ### Changes In sdk/metric/exemplar, add: * `exemplar.ReservoirProvider` * `exemplar.HistogramReservoirProvider` * `exemplar.FixedSizeReservoirProvider` In sdk/metric, add: * `metric.ExemplarReservoirProviderSelector` (func Aggregation -> ReservoirProvider) * `metric.DefaultExemplarReservoirProviderSelector` (our default implementation) * `ExemplarReservoirProviderSelector` added to `metric.Stream` Note: the only required public types are `metric.ExemplarReservoirProviderSelector` and `ExemplarReservoirProviderSelector` in `metric.Stream`. Others are for convenience and readability. ### Alternatives considered #### Add ExemplarReservoirProvider directly to metric.Stream, instead of ExemplarReservoirProviderSelector This would mean users can configure a `func() exemplar.Reservoir` instead of a `func(Aggregation) func() exemplar.Reservoir`. I don't think this complies with the statement: `This functional type needs to be a factory or callback similar to aggregation selection functionality which allows different reservoirs to be chosen by the aggregation.`. I'm interpreting "allows different reservoirs to be chosen by the aggregation" as meaning "allows different reservoirs to be chosen **based on the** aggregation", rather than meaning that the aggregation is somehow choosing the reservoir. ### Future work There is some refactoring I plan to do after this to simplify the interaction between the internal/aggregate and exemplar package. I've omitted that from this PR to keep the diff smaller. --------- Co-authored-by: Tyler Yahn <MrAlias@users.noreply.github.com> Co-authored-by: Robert Pająk <pellared@hotmail.com>
444 lines
12 KiB
Go
444 lines
12 KiB
Go
// Copyright The OpenTelemetry Authors
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"math"
|
|
"sync"
|
|
"time"
|
|
|
|
"go.opentelemetry.io/otel"
|
|
"go.opentelemetry.io/otel/attribute"
|
|
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
|
)
|
|
|
|
const (
|
|
expoMaxScale = 20
|
|
expoMinScale = -10
|
|
|
|
smallestNonZeroNormalFloat64 = 0x1p-1022
|
|
|
|
// These redefine the Math constants with a type, so the compiler won't coerce
|
|
// them into an int on 32 bit platforms.
|
|
maxInt64 int64 = math.MaxInt64
|
|
minInt64 int64 = math.MinInt64
|
|
)
|
|
|
|
// expoHistogramDataPoint is a single data point in an exponential histogram.
|
|
type expoHistogramDataPoint[N int64 | float64] struct {
|
|
attrs attribute.Set
|
|
res FilteredExemplarReservoir[N]
|
|
|
|
count uint64
|
|
min N
|
|
max N
|
|
sum N
|
|
|
|
maxSize int
|
|
noMinMax bool
|
|
noSum bool
|
|
|
|
scale int32
|
|
|
|
posBuckets expoBuckets
|
|
negBuckets expoBuckets
|
|
zeroCount uint64
|
|
}
|
|
|
|
func newExpoHistogramDataPoint[N int64 | float64](attrs attribute.Set, maxSize int, maxScale int32, noMinMax, noSum bool) *expoHistogramDataPoint[N] {
|
|
f := math.MaxFloat64
|
|
max := N(f) // if N is int64, max will overflow to -9223372036854775808
|
|
min := N(-f)
|
|
if N(maxInt64) > N(f) {
|
|
max = N(maxInt64)
|
|
min = N(minInt64)
|
|
}
|
|
return &expoHistogramDataPoint[N]{
|
|
attrs: attrs,
|
|
min: max,
|
|
max: min,
|
|
maxSize: maxSize,
|
|
noMinMax: noMinMax,
|
|
noSum: noSum,
|
|
scale: maxScale,
|
|
}
|
|
}
|
|
|
|
// record adds a new measurement to the histogram. It will rescale the buckets if needed.
|
|
func (p *expoHistogramDataPoint[N]) record(v N) {
|
|
p.count++
|
|
|
|
if !p.noMinMax {
|
|
if v < p.min {
|
|
p.min = v
|
|
}
|
|
if v > p.max {
|
|
p.max = v
|
|
}
|
|
}
|
|
if !p.noSum {
|
|
p.sum += v
|
|
}
|
|
|
|
absV := math.Abs(float64(v))
|
|
|
|
if float64(absV) == 0.0 {
|
|
p.zeroCount++
|
|
return
|
|
}
|
|
|
|
bin := p.getBin(absV)
|
|
|
|
bucket := &p.posBuckets
|
|
if v < 0 {
|
|
bucket = &p.negBuckets
|
|
}
|
|
|
|
// If the new bin would make the counts larger than maxScale, we need to
|
|
// downscale current measurements.
|
|
if scaleDelta := p.scaleChange(bin, bucket.startBin, len(bucket.counts)); scaleDelta > 0 {
|
|
if p.scale-scaleDelta < expoMinScale {
|
|
// With a scale of -10 there is only two buckets for the whole range of float64 values.
|
|
// This can only happen if there is a max size of 1.
|
|
otel.Handle(errors.New("exponential histogram scale underflow"))
|
|
return
|
|
}
|
|
// Downscale
|
|
p.scale -= scaleDelta
|
|
p.posBuckets.downscale(scaleDelta)
|
|
p.negBuckets.downscale(scaleDelta)
|
|
|
|
bin = p.getBin(absV)
|
|
}
|
|
|
|
bucket.record(bin)
|
|
}
|
|
|
|
// getBin returns the bin v should be recorded into.
|
|
func (p *expoHistogramDataPoint[N]) getBin(v float64) int32 {
|
|
frac, expInt := math.Frexp(v)
|
|
// 11-bit exponential.
|
|
exp := int32(expInt) // nolint: gosec
|
|
if p.scale <= 0 {
|
|
// Because of the choice of fraction is always 1 power of two higher than we want.
|
|
var correction int32 = 1
|
|
if frac == .5 {
|
|
// If v is an exact power of two the frac will be .5 and the exp
|
|
// will be one higher than we want.
|
|
correction = 2
|
|
}
|
|
return (exp - correction) >> (-p.scale)
|
|
}
|
|
return exp<<p.scale + int32(math.Log(frac)*scaleFactors[p.scale]) - 1
|
|
}
|
|
|
|
// scaleFactors are constants used in calculating the logarithm index. They are
|
|
// equivalent to 2^index/log(2).
|
|
var scaleFactors = [21]float64{
|
|
math.Ldexp(math.Log2E, 0),
|
|
math.Ldexp(math.Log2E, 1),
|
|
math.Ldexp(math.Log2E, 2),
|
|
math.Ldexp(math.Log2E, 3),
|
|
math.Ldexp(math.Log2E, 4),
|
|
math.Ldexp(math.Log2E, 5),
|
|
math.Ldexp(math.Log2E, 6),
|
|
math.Ldexp(math.Log2E, 7),
|
|
math.Ldexp(math.Log2E, 8),
|
|
math.Ldexp(math.Log2E, 9),
|
|
math.Ldexp(math.Log2E, 10),
|
|
math.Ldexp(math.Log2E, 11),
|
|
math.Ldexp(math.Log2E, 12),
|
|
math.Ldexp(math.Log2E, 13),
|
|
math.Ldexp(math.Log2E, 14),
|
|
math.Ldexp(math.Log2E, 15),
|
|
math.Ldexp(math.Log2E, 16),
|
|
math.Ldexp(math.Log2E, 17),
|
|
math.Ldexp(math.Log2E, 18),
|
|
math.Ldexp(math.Log2E, 19),
|
|
math.Ldexp(math.Log2E, 20),
|
|
}
|
|
|
|
// scaleChange returns the magnitude of the scale change needed to fit bin in
|
|
// the bucket. If no scale change is needed 0 is returned.
|
|
func (p *expoHistogramDataPoint[N]) scaleChange(bin, startBin int32, length int) int32 {
|
|
if length == 0 {
|
|
// No need to rescale if there are no buckets.
|
|
return 0
|
|
}
|
|
|
|
low := int(startBin)
|
|
high := int(bin)
|
|
if startBin >= bin {
|
|
low = int(bin)
|
|
high = int(startBin) + length - 1
|
|
}
|
|
|
|
var count int32
|
|
for high-low >= p.maxSize {
|
|
low = low >> 1
|
|
high = high >> 1
|
|
count++
|
|
if count > expoMaxScale-expoMinScale {
|
|
return count
|
|
}
|
|
}
|
|
return count
|
|
}
|
|
|
|
// expoBuckets is a set of buckets in an exponential histogram.
|
|
type expoBuckets struct {
|
|
startBin int32
|
|
counts []uint64
|
|
}
|
|
|
|
// record increments the count for the given bin, and expands the buckets if needed.
|
|
// Size changes must be done before calling this function.
|
|
func (b *expoBuckets) record(bin int32) {
|
|
if len(b.counts) == 0 {
|
|
b.counts = []uint64{1}
|
|
b.startBin = bin
|
|
return
|
|
}
|
|
|
|
endBin := int(b.startBin) + len(b.counts) - 1
|
|
|
|
// if the new bin is inside the current range
|
|
if bin >= b.startBin && int(bin) <= endBin {
|
|
b.counts[bin-b.startBin]++
|
|
return
|
|
}
|
|
// if the new bin is before the current start add spaces to the counts
|
|
if bin < b.startBin {
|
|
origLen := len(b.counts)
|
|
newLength := endBin - int(bin) + 1
|
|
shift := b.startBin - bin
|
|
|
|
if newLength > cap(b.counts) {
|
|
b.counts = append(b.counts, make([]uint64, newLength-len(b.counts))...)
|
|
}
|
|
|
|
copy(b.counts[shift:origLen+int(shift)], b.counts[:])
|
|
b.counts = b.counts[:newLength]
|
|
for i := 1; i < int(shift); i++ {
|
|
b.counts[i] = 0
|
|
}
|
|
b.startBin = bin
|
|
b.counts[0] = 1
|
|
return
|
|
}
|
|
// if the new is after the end add spaces to the end
|
|
if int(bin) > endBin {
|
|
if int(bin-b.startBin) < cap(b.counts) {
|
|
b.counts = b.counts[:bin-b.startBin+1]
|
|
for i := endBin + 1 - int(b.startBin); i < len(b.counts); i++ {
|
|
b.counts[i] = 0
|
|
}
|
|
b.counts[bin-b.startBin] = 1
|
|
return
|
|
}
|
|
|
|
end := make([]uint64, int(bin-b.startBin)-len(b.counts)+1)
|
|
b.counts = append(b.counts, end...)
|
|
b.counts[bin-b.startBin] = 1
|
|
}
|
|
}
|
|
|
|
// downscale shrinks a bucket by a factor of 2*s. It will sum counts into the
|
|
// correct lower resolution bucket.
|
|
func (b *expoBuckets) downscale(delta int32) {
|
|
// Example
|
|
// delta = 2
|
|
// Original offset: -6
|
|
// Counts: [ 3, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
|
|
// bins: -6 -5, -4, -3, -2, -1, 0, 1, 2, 3, 4
|
|
// new bins:-2, -2, -1, -1, -1, -1, 0, 0, 0, 0, 1
|
|
// new Offset: -2
|
|
// new Counts: [4, 14, 30, 10]
|
|
|
|
if len(b.counts) <= 1 || delta < 1 {
|
|
b.startBin = b.startBin >> delta
|
|
return
|
|
}
|
|
|
|
steps := int32(1) << delta
|
|
offset := b.startBin % steps
|
|
offset = (offset + steps) % steps // to make offset positive
|
|
for i := 1; i < len(b.counts); i++ {
|
|
idx := i + int(offset)
|
|
if idx%int(steps) == 0 {
|
|
b.counts[idx/int(steps)] = b.counts[i]
|
|
continue
|
|
}
|
|
b.counts[idx/int(steps)] += b.counts[i]
|
|
}
|
|
|
|
lastIdx := (len(b.counts) - 1 + int(offset)) / int(steps)
|
|
b.counts = b.counts[:lastIdx+1]
|
|
b.startBin = b.startBin >> delta
|
|
}
|
|
|
|
// newExponentialHistogram returns an Aggregator that summarizes a set of
|
|
// measurements as an exponential histogram. Each histogram is scoped by attributes
|
|
// and the aggregation cycle the measurements were made in.
|
|
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *expoHistogram[N] {
|
|
return &expoHistogram[N]{
|
|
noSum: noSum,
|
|
noMinMax: noMinMax,
|
|
maxSize: int(maxSize),
|
|
maxScale: maxScale,
|
|
|
|
newRes: r,
|
|
limit: newLimiter[*expoHistogramDataPoint[N]](limit),
|
|
values: make(map[attribute.Distinct]*expoHistogramDataPoint[N]),
|
|
|
|
start: now(),
|
|
}
|
|
}
|
|
|
|
// expoHistogram summarizes a set of measurements as an histogram with exponentially
|
|
// defined buckets.
|
|
type expoHistogram[N int64 | float64] struct {
|
|
noSum bool
|
|
noMinMax bool
|
|
maxSize int
|
|
maxScale int32
|
|
|
|
newRes func(attribute.Set) FilteredExemplarReservoir[N]
|
|
limit limiter[*expoHistogramDataPoint[N]]
|
|
values map[attribute.Distinct]*expoHistogramDataPoint[N]
|
|
valuesMu sync.Mutex
|
|
|
|
start time.Time
|
|
}
|
|
|
|
func (e *expoHistogram[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
|
|
// Ignore NaN and infinity.
|
|
if math.IsInf(float64(value), 0) || math.IsNaN(float64(value)) {
|
|
return
|
|
}
|
|
|
|
e.valuesMu.Lock()
|
|
defer e.valuesMu.Unlock()
|
|
|
|
attr := e.limit.Attributes(fltrAttr, e.values)
|
|
v, ok := e.values[attr.Equivalent()]
|
|
if !ok {
|
|
v = newExpoHistogramDataPoint[N](attr, e.maxSize, e.maxScale, e.noMinMax, e.noSum)
|
|
v.res = e.newRes(attr)
|
|
|
|
e.values[attr.Equivalent()] = v
|
|
}
|
|
v.record(value)
|
|
v.res.Offer(ctx, value, droppedAttr)
|
|
}
|
|
|
|
func (e *expoHistogram[N]) delta(dest *metricdata.Aggregation) int {
|
|
t := now()
|
|
|
|
// If *dest is not a metricdata.ExponentialHistogram, memory reuse is missed.
|
|
// In that case, use the zero-value h and hope for better alignment next cycle.
|
|
h, _ := (*dest).(metricdata.ExponentialHistogram[N])
|
|
h.Temporality = metricdata.DeltaTemporality
|
|
|
|
e.valuesMu.Lock()
|
|
defer e.valuesMu.Unlock()
|
|
|
|
n := len(e.values)
|
|
hDPts := reset(h.DataPoints, n, n)
|
|
|
|
var i int
|
|
for _, val := range e.values {
|
|
hDPts[i].Attributes = val.attrs
|
|
hDPts[i].StartTime = e.start
|
|
hDPts[i].Time = t
|
|
hDPts[i].Count = val.count
|
|
hDPts[i].Scale = val.scale
|
|
hDPts[i].ZeroCount = val.zeroCount
|
|
hDPts[i].ZeroThreshold = 0.0
|
|
|
|
hDPts[i].PositiveBucket.Offset = val.posBuckets.startBin
|
|
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(val.posBuckets.counts), len(val.posBuckets.counts))
|
|
copy(hDPts[i].PositiveBucket.Counts, val.posBuckets.counts)
|
|
|
|
hDPts[i].NegativeBucket.Offset = val.negBuckets.startBin
|
|
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(val.negBuckets.counts), len(val.negBuckets.counts))
|
|
copy(hDPts[i].NegativeBucket.Counts, val.negBuckets.counts)
|
|
|
|
if !e.noSum {
|
|
hDPts[i].Sum = val.sum
|
|
}
|
|
if !e.noMinMax {
|
|
hDPts[i].Min = metricdata.NewExtrema(val.min)
|
|
hDPts[i].Max = metricdata.NewExtrema(val.max)
|
|
}
|
|
|
|
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
|
|
|
|
i++
|
|
}
|
|
// Unused attribute sets do not report.
|
|
clear(e.values)
|
|
|
|
e.start = t
|
|
h.DataPoints = hDPts
|
|
*dest = h
|
|
return n
|
|
}
|
|
|
|
func (e *expoHistogram[N]) cumulative(dest *metricdata.Aggregation) int {
|
|
t := now()
|
|
|
|
// If *dest is not a metricdata.ExponentialHistogram, memory reuse is missed.
|
|
// In that case, use the zero-value h and hope for better alignment next cycle.
|
|
h, _ := (*dest).(metricdata.ExponentialHistogram[N])
|
|
h.Temporality = metricdata.CumulativeTemporality
|
|
|
|
e.valuesMu.Lock()
|
|
defer e.valuesMu.Unlock()
|
|
|
|
n := len(e.values)
|
|
hDPts := reset(h.DataPoints, n, n)
|
|
|
|
var i int
|
|
for _, val := range e.values {
|
|
hDPts[i].Attributes = val.attrs
|
|
hDPts[i].StartTime = e.start
|
|
hDPts[i].Time = t
|
|
hDPts[i].Count = val.count
|
|
hDPts[i].Scale = val.scale
|
|
hDPts[i].ZeroCount = val.zeroCount
|
|
hDPts[i].ZeroThreshold = 0.0
|
|
|
|
hDPts[i].PositiveBucket.Offset = val.posBuckets.startBin
|
|
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(val.posBuckets.counts), len(val.posBuckets.counts))
|
|
copy(hDPts[i].PositiveBucket.Counts, val.posBuckets.counts)
|
|
|
|
hDPts[i].NegativeBucket.Offset = val.negBuckets.startBin
|
|
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(val.negBuckets.counts), len(val.negBuckets.counts))
|
|
copy(hDPts[i].NegativeBucket.Counts, val.negBuckets.counts)
|
|
|
|
if !e.noSum {
|
|
hDPts[i].Sum = val.sum
|
|
}
|
|
if !e.noMinMax {
|
|
hDPts[i].Min = metricdata.NewExtrema(val.min)
|
|
hDPts[i].Max = metricdata.NewExtrema(val.max)
|
|
}
|
|
|
|
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
|
|
|
|
i++
|
|
// TODO (#3006): This will use an unbounded amount of memory if there
|
|
// are unbounded number of attribute sets being aggregated. Attribute
|
|
// sets that become "stale" need to be forgotten so this will not
|
|
// overload the system.
|
|
}
|
|
|
|
h.DataPoints = hDPts
|
|
*dest = h
|
|
return n
|
|
}
|