1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-11-25 22:41:46 +02:00
Files
opentelemetry-go/sdk/metric/internal/aggregate/sum_test.go
Sam Xie 3429e15b9a Revert Cleanup interaction of exemplar and aggregation (#5913)
Topic: #5249

This reverts commit 8041156518 (PR: #5899)
due to the performance degradation found by Benchmarks CI
https://github.com/open-telemetry/opentelemetry-go/actions/runs/11447364022/job/31848519243

Here is the benchmark test on my machine:

```
goos: darwin
goarch: arm64
pkg: go.opentelemetry.io/otel/sdk/metric
                                       │   old.txt   │                new.txt                 │
                                       │   sec/op    │    sec/op     vs base                  │
Instrument/instrumentImpl/aggregate-10   3.378µ ± 3%   49.366µ ± 1%  +1361.40% (p=0.000 n=10)
Instrument/observable/observe-10         2.288µ ± 2%   37.791µ ± 1%  +1551.73% (p=0.000 n=10)
geomean                                  2.780µ         43.19µ       +1453.65%

                                       │   old.txt    │                 new.txt                 │
                                       │     B/op     │     B/op       vs base                  │
Instrument/instrumentImpl/aggregate-10   1.245Ki ± 1%   22.363Ki ± 0%  +1696.08% (p=0.000 n=10)
Instrument/observable/observe-10           823.0 ± 1%    17432.5 ± 0%  +2018.17% (p=0.000 n=10)
geomean                                  1.000Ki         19.51Ki       +1850.48%

                                       │  old.txt   │                new.txt                │
                                       │ allocs/op  │  allocs/op   vs base                  │
Instrument/instrumentImpl/aggregate-10   1.000 ± 0%   21.000 ± 0%  +2000.00% (p=0.000 n=10)
Instrument/observable/observe-10         1.000 ± 0%   16.000 ± 0%  +1500.00% (p=0.000 n=10)
```
2024-10-23 10:48:07 -07:00

587 lines
13 KiB
Go

// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"testing"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
func TestSum(t *testing.T) {
c := new(clock)
t.Cleanup(c.Register())
t.Run("Int64/DeltaSum", testDeltaSum[int64]())
c.Reset()
t.Run("Float64/DeltaSum", testDeltaSum[float64]())
c.Reset()
t.Run("Int64/CumulativeSum", testCumulativeSum[int64]())
c.Reset()
t.Run("Float64/CumulativeSum", testCumulativeSum[float64]())
c.Reset()
t.Run("Int64/DeltaPrecomputedSum", testDeltaPrecomputedSum[int64]())
c.Reset()
t.Run("Float64/DeltaPrecomputedSum", testDeltaPrecomputedSum[float64]())
c.Reset()
t.Run("Int64/CumulativePrecomputedSum", testCumulativePrecomputedSum[int64]())
c.Reset()
t.Run("Float64/CumulativePrecomputedSum", testCumulativePrecomputedSum[float64]())
}
func testDeltaSum[N int64 | float64]() func(t *testing.T) {
mono := false
in, out := Builder[N]{
Temporality: metricdata.DeltaTemporality,
Filter: attrFltr,
AggregationLimit: 3,
}.Sum(mono)
ctx := context.Background()
return test[N](in, out, []teststep[N]{
{
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, -1, bob},
{ctx, 1, alice},
{ctx, 2, alice},
{ctx, -10, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(1),
Time: y2kPlus(2),
Value: 4,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(1),
Time: y2kPlus(2),
Value: -11,
},
},
},
},
},
{
input: []arg[N]{
{ctx, 10, alice},
{ctx, 3, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(2),
Time: y2kPlus(3),
Value: 10,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(2),
Time: y2kPlus(3),
Value: 3,
},
},
},
},
},
{
input: []arg[N]{},
// Delta sums are expected to reset.
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, 1, bob},
// These will exceed cardinality limit.
{ctx, 1, carol},
{ctx, 1, dave},
},
expect: output{
n: 3,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(4),
Time: y2kPlus(5),
Value: 1,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(4),
Time: y2kPlus(5),
Value: 1,
},
{
Attributes: overflowSet,
StartTime: y2kPlus(4),
Time: y2kPlus(5),
Value: 2,
},
},
},
},
},
})
}
func testCumulativeSum[N int64 | float64]() func(t *testing.T) {
mono := false
in, out := Builder[N]{
Temporality: metricdata.CumulativeTemporality,
Filter: attrFltr,
AggregationLimit: 3,
}.Sum(mono)
ctx := context.Background()
return test[N](in, out, []teststep[N]{
{
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, -1, bob},
{ctx, 1, alice},
{ctx, 2, alice},
{ctx, -10, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(0),
Time: y2kPlus(2),
Value: 4,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(0),
Time: y2kPlus(2),
Value: -11,
},
},
},
},
},
{
input: []arg[N]{
{ctx, 10, alice},
{ctx, 3, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(0),
Time: y2kPlus(3),
Value: 14,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(0),
Time: y2kPlus(3),
Value: -8,
},
},
},
},
},
{
input: []arg[N]{
// These will exceed cardinality limit.
{ctx, 1, carol},
{ctx, 1, dave},
},
expect: output{
n: 3,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(0),
Time: y2kPlus(4),
Value: 14,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(0),
Time: y2kPlus(4),
Value: -8,
},
{
Attributes: overflowSet,
StartTime: y2kPlus(0),
Time: y2kPlus(4),
Value: 2,
},
},
},
},
},
})
}
func testDeltaPrecomputedSum[N int64 | float64]() func(t *testing.T) {
mono := false
in, out := Builder[N]{
Temporality: metricdata.DeltaTemporality,
Filter: attrFltr,
AggregationLimit: 3,
}.PrecomputedSum(mono)
ctx := context.Background()
return test[N](in, out, []teststep[N]{
{
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, -1, bob},
{ctx, 1, fltrAlice},
{ctx, 2, alice},
{ctx, -10, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(1),
Time: y2kPlus(2),
Value: 4,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(1),
Time: y2kPlus(2),
Value: -11,
},
},
},
},
},
{
input: []arg[N]{
{ctx, 1, fltrAlice},
{ctx, 10, alice},
{ctx, 3, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(2),
Time: y2kPlus(3),
Value: 7,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(2),
Time: y2kPlus(3),
Value: 14,
},
},
},
},
},
{
input: []arg[N]{},
// Precomputed sums are expected to reset.
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, 1, bob},
// These will exceed cardinality limit.
{ctx, 1, carol},
{ctx, 1, dave},
},
expect: output{
n: 3,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.DeltaTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(4),
Time: y2kPlus(5),
Value: 1,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(4),
Time: y2kPlus(5),
Value: 1,
},
{
Attributes: overflowSet,
StartTime: y2kPlus(4),
Time: y2kPlus(5),
Value: 2,
},
},
},
},
},
})
}
func testCumulativePrecomputedSum[N int64 | float64]() func(t *testing.T) {
mono := false
in, out := Builder[N]{
Temporality: metricdata.CumulativeTemporality,
Filter: attrFltr,
AggregationLimit: 3,
}.PrecomputedSum(mono)
ctx := context.Background()
return test[N](in, out, []teststep[N]{
{
input: []arg[N]{},
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, -1, bob},
{ctx, 1, fltrAlice},
{ctx, 2, alice},
{ctx, -10, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(0),
Time: y2kPlus(2),
Value: 4,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(0),
Time: y2kPlus(2),
Value: -11,
},
},
},
},
},
{
input: []arg[N]{
{ctx, 1, fltrAlice},
{ctx, 10, alice},
{ctx, 3, bob},
},
expect: output{
n: 2,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(0),
Time: y2kPlus(3),
Value: 11,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(0),
Time: y2kPlus(3),
Value: 3,
},
},
},
},
},
{
input: []arg[N]{},
// Precomputed sums are expected to reset.
expect: output{
n: 0,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{},
},
},
},
{
input: []arg[N]{
{ctx, 1, alice},
{ctx, 1, bob},
// These will exceed cardinality limit.
{ctx, 1, carol},
{ctx, 1, dave},
},
expect: output{
n: 3,
agg: metricdata.Sum[N]{
IsMonotonic: mono,
Temporality: metricdata.CumulativeTemporality,
DataPoints: []metricdata.DataPoint[N]{
{
Attributes: fltrAlice,
StartTime: y2kPlus(0),
Time: y2kPlus(5),
Value: 1,
},
{
Attributes: fltrBob,
StartTime: y2kPlus(0),
Time: y2kPlus(5),
Value: 1,
},
{
Attributes: overflowSet,
StartTime: y2kPlus(0),
Time: y2kPlus(5),
Value: 2,
},
},
},
},
},
})
}
func BenchmarkSum(b *testing.B) {
// The monotonic argument is only used to annotate the Sum returned from
// the Aggregation method. It should not have an effect on operational
// performance, therefore, only monotonic=false is benchmarked here.
b.Run("Int64/Cumulative", benchmarkAggregate(func() (Measure[int64], ComputeAggregation) {
return Builder[int64]{
Temporality: metricdata.CumulativeTemporality,
}.Sum(false)
}))
b.Run("Int64/Delta", benchmarkAggregate(func() (Measure[int64], ComputeAggregation) {
return Builder[int64]{
Temporality: metricdata.DeltaTemporality,
}.Sum(false)
}))
b.Run("Float64/Cumulative", benchmarkAggregate(func() (Measure[float64], ComputeAggregation) {
return Builder[float64]{
Temporality: metricdata.CumulativeTemporality,
}.Sum(false)
}))
b.Run("Float64/Delta", benchmarkAggregate(func() (Measure[float64], ComputeAggregation) {
return Builder[float64]{
Temporality: metricdata.DeltaTemporality,
}.Sum(false)
}))
b.Run("Precomputed/Int64/Cumulative", benchmarkAggregate(func() (Measure[int64], ComputeAggregation) {
return Builder[int64]{
Temporality: metricdata.CumulativeTemporality,
}.PrecomputedSum(false)
}))
b.Run("Precomputed/Int64/Delta", benchmarkAggregate(func() (Measure[int64], ComputeAggregation) {
return Builder[int64]{
Temporality: metricdata.DeltaTemporality,
}.PrecomputedSum(false)
}))
b.Run("Precomputed/Float64/Cumulative", benchmarkAggregate(func() (Measure[float64], ComputeAggregation) {
return Builder[float64]{
Temporality: metricdata.CumulativeTemporality,
}.PrecomputedSum(false)
}))
b.Run("Precomputed/Float64/Delta", benchmarkAggregate(func() (Measure[float64], ComputeAggregation) {
return Builder[float64]{
Temporality: metricdata.DeltaTemporality,
}.PrecomputedSum(false)
}))
}