1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-03-29 21:47:00 +02:00
Tyler Yahn 42fd8fe325
Move global random number generator to randRes field (#5819)
Instead of using a global random number generator for all `randRes`,
have each value use its own. This removes the need for locking and
managing concurrent safe access to the global. Also, the field, given
the `Reservoir` type is not concurrent safe and the metric pipeline
guards this, does not need a `sync.Mutex` to guard it.

Supersedes https://github.com/open-telemetry/opentelemetry-go/pull/5815 
Fix #5814

### Performance Analysis

This change has approximately equivalent performance as the existing
code based on existing benchmarks.

```terminal
goos: linux
goarch: amd64
pkg: go.opentelemetry.io/otel/sdk/metric
cpu: Intel(R) Core(TM) i7-8550U CPU @ 1.80GHz
                           │   old.txt   │              new.txt               │
                           │   sec/op    │   sec/op     vs base               │
Exemplars/Int64Counter/8-8   14.00µ ± 3%   13.44µ ± 4%  -3.98% (p=0.001 n=10)

                           │   old.txt    │             new.txt              │
                           │     B/op     │     B/op      vs base            │
Exemplars/Int64Counter/8-8   3.791Ki ± 0%   3.791Ki ± 0%  ~ (p=1.000 n=10) ¹
¹ all samples are equal

                           │  old.txt   │            new.txt             │
                           │ allocs/op  │ allocs/op   vs base            │
Exemplars/Int64Counter/8-8   84.00 ± 0%   84.00 ± 0%  ~ (p=1.000 n=10) ¹
¹ all samples are equal
```
2024-09-16 07:31:15 -07:00

56 lines
1.2 KiB
Go

// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package exemplar
import (
"context"
"math"
"math/rand"
"slices"
"testing"
"time"
"github.com/stretchr/testify/assert"
)
func TestFixedSize(t *testing.T) {
t.Run("Int64", ReservoirTest[int64](func(n int) (Reservoir, int) {
return FixedSize(n), n
}))
t.Run("Float64", ReservoirTest[float64](func(n int) (Reservoir, int) {
return FixedSize(n), n
}))
}
func TestFixedSizeSamplingCorrectness(t *testing.T) {
intensity := 0.1
sampleSize := 1000
rng := rand.New(rand.NewSource(time.Now().UnixNano()))
data := make([]float64, sampleSize*1000)
for i := range data {
// Generate exponentially distributed data.
data[i] = (-1.0 / intensity) * math.Log(rng.Float64())
}
// Sort to test position bias.
slices.Sort(data)
r := FixedSize(sampleSize)
for _, value := range data {
r.Offer(context.Background(), staticTime, NewValue(value), nil)
}
var sum float64
for _, m := range r.(*randRes).store {
sum += m.Value.Float64()
}
mean := sum / float64(sampleSize)
// Check the intensity/rate of the sampled distribution is preserved
// ensuring no bias in our random sampling algorithm.
assert.InDelta(t, 1/mean, intensity, 0.02) // Within 5σ.
}