You've already forked opentelemetry-go
mirror of
https://github.com/open-telemetry/opentelemetry-go.git
synced 2025-11-06 09:09:44 +02:00
Part of https://github.com/open-telemetry/opentelemetry-go/issues/5249 This makes all existing types designed to implement the public Exemplar API public by moving most of `internal/exemplar` to `exemplar`. The only types that are not being made public are `exemplar.Drop`, and `exemplar.FilteredReservoir`. Those types are moved to `internal/aggregate`, and are renamed to `DropReservoir` and `FilteredExemplarReservoir`. The following types are made public: * `exemplar.Exemplar` * `exemplar.Filter` * `exemplar.SampledFilter` * `exemplar.AlwaysOnFilter` * `exemplar.HistogramReservoir` * `exemplar.FixedSizeReservoir` * `exemplar.Reservoir` * `exemplar.Value` * `exemplar.ValueType`
56 lines
1.3 KiB
Go
56 lines
1.3 KiB
Go
// Copyright The OpenTelemetry Authors
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
package exemplar
|
|
|
|
import (
|
|
"context"
|
|
"math"
|
|
"math/rand"
|
|
"slices"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/stretchr/testify/assert"
|
|
)
|
|
|
|
func TestNewFixedSizeReservoir(t *testing.T) {
|
|
t.Run("Int64", ReservoirTest[int64](func(n int) (Reservoir, int) {
|
|
return NewFixedSizeReservoir(n), n
|
|
}))
|
|
|
|
t.Run("Float64", ReservoirTest[float64](func(n int) (Reservoir, int) {
|
|
return NewFixedSizeReservoir(n), n
|
|
}))
|
|
}
|
|
|
|
func TestNewFixedSizeReservoirSamplingCorrectness(t *testing.T) {
|
|
intensity := 0.1
|
|
sampleSize := 1000
|
|
|
|
rng := rand.New(rand.NewSource(time.Now().UnixNano()))
|
|
|
|
data := make([]float64, sampleSize*1000)
|
|
for i := range data {
|
|
// Generate exponentially distributed data.
|
|
data[i] = (-1.0 / intensity) * math.Log(rng.Float64())
|
|
}
|
|
// Sort to test position bias.
|
|
slices.Sort(data)
|
|
|
|
r := NewFixedSizeReservoir(sampleSize)
|
|
for _, value := range data {
|
|
r.Offer(context.Background(), staticTime, NewValue(value), nil)
|
|
}
|
|
|
|
var sum float64
|
|
for _, m := range r.store {
|
|
sum += m.Value.Float64()
|
|
}
|
|
mean := sum / float64(sampleSize)
|
|
|
|
// Check the intensity/rate of the sampled distribution is preserved
|
|
// ensuring no bias in our random sampling algorithm.
|
|
assert.InDelta(t, 1/mean, intensity, 0.02) // Within 5σ.
|
|
}
|