1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-24 03:47:19 +02:00
Chen Yixiao f0855b7d08
Move Number to api/metric package (#706)
Co-authored-by: Joshua MacDonald <jmacd@users.noreply.github.com>
2020-05-10 23:44:42 -07:00

345 lines
9.9 KiB
Go

// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package transform provides translations for opentelemetry-go concepts and
// structures to otlp structures.
package transform
import (
"context"
"errors"
"fmt"
"strings"
"sync"
commonpb "github.com/open-telemetry/opentelemetry-proto/gen/go/common/v1"
metricpb "github.com/open-telemetry/opentelemetry-proto/gen/go/metrics/v1"
resourcepb "github.com/open-telemetry/opentelemetry-proto/gen/go/resource/v1"
"go.opentelemetry.io/otel/api/label"
"go.opentelemetry.io/otel/api/metric"
export "go.opentelemetry.io/otel/sdk/export/metric"
"go.opentelemetry.io/otel/sdk/export/metric/aggregator"
"go.opentelemetry.io/otel/sdk/resource"
)
var (
// ErrUnimplementedAgg is returned when a transformation of an unimplemented
// aggregator is attempted.
ErrUnimplementedAgg = errors.New("unimplemented aggregator")
// ErrUnknownValueType is returned when a transformation of an unknown value
// is attempted.
ErrUnknownValueType = errors.New("invalid value type")
// ErrContextCanceled is returned when a context cancellation halts a
// transformation.
ErrContextCanceled = errors.New("context canceled")
// ErrTransforming is returned when an unexected error is encoutered transforming.
ErrTransforming = errors.New("transforming failed")
)
// result is the product of transforming Records into OTLP Metrics.
type result struct {
Resource *resource.Resource
Library string
Metric *metricpb.Metric
Err error
}
// CheckpointSet transforms all records contained in a checkpoint into
// batched OTLP ResourceMetrics.
func CheckpointSet(ctx context.Context, resource *resource.Resource, cps export.CheckpointSet, numWorkers uint) ([]*metricpb.ResourceMetrics, error) {
records, errc := source(ctx, cps)
// Start a fixed number of goroutines to transform records.
transformed := make(chan result)
var wg sync.WaitGroup
wg.Add(int(numWorkers))
for i := uint(0); i < numWorkers; i++ {
go func() {
defer wg.Done()
transformer(ctx, resource, records, transformed)
}()
}
go func() {
wg.Wait()
close(transformed)
}()
// Synchronously collect the transformed records and transmit.
rms, err := sink(ctx, transformed)
if err != nil {
return nil, err
}
// source is complete, check for any errors.
if err := <-errc; err != nil {
return nil, err
}
return rms, nil
}
// source starts a goroutine that sends each one of the Records yielded by
// the CheckpointSet on the returned chan. Any error encoutered will be sent
// on the returned error chan after seeding is complete.
func source(ctx context.Context, cps export.CheckpointSet) (<-chan export.Record, <-chan error) {
errc := make(chan error, 1)
out := make(chan export.Record)
// Seed records into process.
go func() {
defer close(out)
// No select is needed since errc is buffered.
errc <- cps.ForEach(func(r export.Record) error {
select {
case <-ctx.Done():
return ErrContextCanceled
case out <- r:
}
return nil
})
}()
return out, errc
}
// transformer transforms records read from the passed in chan into
// OTLP Metrics which are sent on the out chan.
func transformer(ctx context.Context, resource *resource.Resource, in <-chan export.Record, out chan<- result) {
for r := range in {
m, err := Record(r)
// Propagate errors, but do not send empty results.
if err == nil && m == nil {
continue
}
res := result{
Resource: resource,
Library: r.Descriptor().LibraryName(),
Metric: m,
Err: err,
}
select {
case <-ctx.Done():
return
case out <- res:
}
}
}
// sink collects transformed Records and batches them.
//
// Any errors encoutered transforming input will be reported with an
// ErrTransforming as well as the completed ResourceMetrics. It is up to the
// caller to handle any incorrect data in these ResourceMetrics.
func sink(ctx context.Context, in <-chan result) ([]*metricpb.ResourceMetrics, error) {
var errStrings []string
type resourceBatch struct {
Resource *resourcepb.Resource
// Group by instrumentation library name and then the MetricDescriptor.
InstrumentationLibraryBatches map[string]map[string]*metricpb.Metric
}
// group by unique Resource string.
grouped := make(map[label.Distinct]resourceBatch)
for res := range in {
if res.Err != nil {
errStrings = append(errStrings, res.Err.Error())
continue
}
rID := res.Resource.Equivalent()
rb, ok := grouped[rID]
if !ok {
rb = resourceBatch{
Resource: Resource(res.Resource),
InstrumentationLibraryBatches: make(map[string]map[string]*metricpb.Metric),
}
grouped[rID] = rb
}
mb, ok := rb.InstrumentationLibraryBatches[res.Library]
if !ok {
mb = make(map[string]*metricpb.Metric)
rb.InstrumentationLibraryBatches[res.Library] = mb
}
mID := res.Metric.GetMetricDescriptor().String()
m, ok := mb[mID]
if !ok {
mb[mID] = res.Metric
continue
}
if len(res.Metric.Int64DataPoints) > 0 {
m.Int64DataPoints = append(m.Int64DataPoints, res.Metric.Int64DataPoints...)
}
if len(res.Metric.DoubleDataPoints) > 0 {
m.DoubleDataPoints = append(m.DoubleDataPoints, res.Metric.DoubleDataPoints...)
}
if len(res.Metric.HistogramDataPoints) > 0 {
m.HistogramDataPoints = append(m.HistogramDataPoints, res.Metric.HistogramDataPoints...)
}
if len(res.Metric.SummaryDataPoints) > 0 {
m.SummaryDataPoints = append(m.SummaryDataPoints, res.Metric.SummaryDataPoints...)
}
}
if len(grouped) == 0 {
return nil, nil
}
var rms []*metricpb.ResourceMetrics
for _, rb := range grouped {
rm := &metricpb.ResourceMetrics{Resource: rb.Resource}
for ilName, mb := range rb.InstrumentationLibraryBatches {
ilm := &metricpb.InstrumentationLibraryMetrics{
Metrics: make([]*metricpb.Metric, 0, len(mb)),
}
if ilName != "" {
ilm.InstrumentationLibrary = &commonpb.InstrumentationLibrary{Name: ilName}
}
for _, m := range mb {
ilm.Metrics = append(ilm.Metrics, m)
}
rm.InstrumentationLibraryMetrics = append(rm.InstrumentationLibraryMetrics, ilm)
}
rms = append(rms, rm)
}
// Report any transform errors.
if len(errStrings) > 0 {
return rms, fmt.Errorf("%w:\n -%s", ErrTransforming, strings.Join(errStrings, "\n -"))
}
return rms, nil
}
// Record transforms a Record into an OTLP Metric. An ErrUnimplementedAgg
// error is returned if the Record Aggregator is not supported.
func Record(r export.Record) (*metricpb.Metric, error) {
d := r.Descriptor()
l := r.Labels()
switch a := r.Aggregator().(type) {
case aggregator.MinMaxSumCount:
return minMaxSumCount(d, l, a)
case aggregator.Sum:
return sum(d, l, a)
default:
return nil, fmt.Errorf("%w: %v", ErrUnimplementedAgg, a)
}
}
// sum transforms a Sum Aggregator into an OTLP Metric.
func sum(desc *metric.Descriptor, labels *label.Set, a aggregator.Sum) (*metricpb.Metric, error) {
sum, err := a.Sum()
if err != nil {
return nil, err
}
m := &metricpb.Metric{
MetricDescriptor: &metricpb.MetricDescriptor{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
Labels: stringKeyValues(labels.Iter()),
},
}
switch n := desc.NumberKind(); n {
case metric.Int64NumberKind, metric.Uint64NumberKind:
m.MetricDescriptor.Type = metricpb.MetricDescriptor_COUNTER_INT64
m.Int64DataPoints = []*metricpb.Int64DataPoint{
{Value: sum.CoerceToInt64(n)},
}
case metric.Float64NumberKind:
m.MetricDescriptor.Type = metricpb.MetricDescriptor_COUNTER_DOUBLE
m.DoubleDataPoints = []*metricpb.DoubleDataPoint{
{Value: sum.CoerceToFloat64(n)},
}
default:
return nil, fmt.Errorf("%w: %v", ErrUnknownValueType, n)
}
return m, nil
}
// minMaxSumCountValue returns the values of the MinMaxSumCount Aggregator
// as discret values.
func minMaxSumCountValues(a aggregator.MinMaxSumCount) (min, max, sum metric.Number, count int64, err error) {
if min, err = a.Min(); err != nil {
return
}
if max, err = a.Max(); err != nil {
return
}
if sum, err = a.Sum(); err != nil {
return
}
if count, err = a.Count(); err != nil {
return
}
return
}
// minMaxSumCount transforms a MinMaxSumCount Aggregator into an OTLP Metric.
func minMaxSumCount(desc *metric.Descriptor, labels *label.Set, a aggregator.MinMaxSumCount) (*metricpb.Metric, error) {
min, max, sum, count, err := minMaxSumCountValues(a)
if err != nil {
return nil, err
}
numKind := desc.NumberKind()
return &metricpb.Metric{
MetricDescriptor: &metricpb.MetricDescriptor{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
Type: metricpb.MetricDescriptor_SUMMARY,
Labels: stringKeyValues(labels.Iter()),
},
SummaryDataPoints: []*metricpb.SummaryDataPoint{
{
Count: uint64(count),
Sum: sum.CoerceToFloat64(numKind),
PercentileValues: []*metricpb.SummaryDataPoint_ValueAtPercentile{
{
Percentile: 0.0,
Value: min.CoerceToFloat64(numKind),
},
{
Percentile: 100.0,
Value: max.CoerceToFloat64(numKind),
},
},
},
},
}, nil
}
// stringKeyValues transforms a label iterator into an OTLP StringKeyValues.
func stringKeyValues(iter label.Iterator) []*commonpb.StringKeyValue {
l := iter.Len()
if l == 0 {
return nil
}
result := make([]*commonpb.StringKeyValue, 0, l)
for iter.Next() {
kv := iter.Label()
result = append(result, &commonpb.StringKeyValue{
Key: string(kv.Key),
Value: kv.Value.Emit(),
})
}
return result
}