mirror of
https://github.com/open-telemetry/opentelemetry-go.git
synced 2025-01-26 03:52:03 +02:00
0485de287e
Part of addressing https://github.com/open-telemetry/opentelemetry-go/issues/5542. ### Motivation This removes the `time.Now()` call from filtered-out Exemplars by only invoking `time.Now()` after the filtering decision is made. This improvement is especially noticeable for measurements without any attributes. ``` goos: linux goarch: amd64 pkg: go.opentelemetry.io/otel/sdk/metric cpu: AMD EPYC 7B12 │ old.txt │ new.txt │ │ sec/op │ sec/op vs base │ SyncMeasure/NoView/Int64Counter/Attributes/0-24 158.20n ± 4% 99.83n ± 1% -36.90% (p=0.000 n=10) SyncMeasure/NoView/Int64Counter/Attributes/1-24 333.3n ± 4% 274.8n ± 1% -17.55% (p=0.000 n=10) SyncMeasure/NoView/Int64Counter/Attributes/10-24 1.640µ ± 1% 1.600µ ± 1% -2.41% (p=0.000 n=10) SyncMeasure/NoView/Float64Counter/Attributes/0-24 159.0n ± 3% 101.3n ± 0% -36.27% (p=0.000 n=10) SyncMeasure/NoView/Float64Counter/Attributes/1-24 340.0n ± 2% 272.0n ± 1% -20.00% (p=0.000 n=10) SyncMeasure/NoView/Float64Counter/Attributes/10-24 1.661µ ± 1% 1.597µ ± 0% -3.85% (p=0.000 n=10) SyncMeasure/NoView/Int64UpDownCounter/Attributes/0-24 159.8n ± 1% 103.1n ± 0% -35.50% (p=0.000 n=10) SyncMeasure/NoView/Int64UpDownCounter/Attributes/1-24 339.5n ± 1% 273.1n ± 0% -19.57% (p=0.000 n=10) SyncMeasure/NoView/Int64UpDownCounter/Attributes/10-24 1.656µ ± 0% 1.589µ ± 0% -4.05% (p=0.000 n=10) SyncMeasure/NoView/Float64UpDownCounter/Attributes/0-24 159.3n ± 2% 100.8n ± 0% -36.74% (p=0.000 n=10) SyncMeasure/NoView/Float64UpDownCounter/Attributes/1-24 337.9n ± 2% 271.8n ± 1% -19.55% (p=0.000 n=10) SyncMeasure/NoView/Float64UpDownCounter/Attributes/10-24 1.657µ ± 0% 1.593µ ± 1% -3.83% (p=0.000 n=10) SyncMeasure/NoView/Int64Histogram/Attributes/0-24 144.65n ± 4% 89.38n ± 0% -38.21% (p=0.000 n=10) SyncMeasure/NoView/Int64Histogram/Attributes/1-24 235.7n ± 2% 183.5n ± 0% -22.15% (p=0.000 n=10) SyncMeasure/NoView/Int64Histogram/Attributes/10-24 900.8n ± 1% 836.8n ± 0% -7.10% (p=0.000 n=10) SyncMeasure/NoView/Float64Histogram/Attributes/0-24 145.60n ± 5% 93.48n ± 1% -35.80% (p=0.000 n=10) SyncMeasure/NoView/Float64Histogram/Attributes/1-24 240.9n ± 1% 183.0n ± 0% -24.06% (p=0.000 n=10) SyncMeasure/NoView/Float64Histogram/Attributes/10-24 905.6n ± 1% 826.3n ± 0% -8.76% (p=0.000 n=10) SyncMeasure/DropView/Int64Counter/Attributes/0-24 20.33n ± 0% 20.35n ± 0% ~ (p=0.302 n=10) SyncMeasure/DropView/Int64Counter/Attributes/1-24 26.46n ± 0% 26.45n ± 1% ~ (p=0.868 n=10) SyncMeasure/DropView/Int64Counter/Attributes/10-24 26.50n ± 0% 26.47n ± 0% ~ (p=0.208 n=10) SyncMeasure/DropView/Float64Counter/Attributes/0-24 20.34n ± 1% 20.27n ± 0% -0.34% (p=0.009 n=10) SyncMeasure/DropView/Float64Counter/Attributes/1-24 26.55n ± 0% 26.60n ± 1% ~ (p=0.109 n=10) SyncMeasure/DropView/Float64Counter/Attributes/10-24 26.59n ± 1% 26.57n ± 1% ~ (p=0.926 n=10) SyncMeasure/DropView/Int64UpDownCounter/Attributes/0-24 20.38n ± 1% 20.38n ± 0% ~ (p=0.725 n=10) SyncMeasure/DropView/Int64UpDownCounter/Attributes/1-24 26.39n ± 0% 26.44n ± 0% ~ (p=0.238 n=10) SyncMeasure/DropView/Int64UpDownCounter/Attributes/10-24 26.52n ± 0% 26.42n ± 0% -0.36% (p=0.049 n=10) SyncMeasure/DropView/Float64UpDownCounter/Attributes/0-24 20.30n ± 0% 20.25n ± 0% ~ (p=0.196 n=10) SyncMeasure/DropView/Float64UpDownCounter/Attributes/1-24 26.57n ± 0% 26.54n ± 1% ~ (p=0.540 n=10) SyncMeasure/DropView/Float64UpDownCounter/Attributes/10-24 26.57n ± 0% 26.51n ± 1% ~ (p=0.643 n=10) SyncMeasure/DropView/Int64Histogram/Attributes/0-24 20.37n ± 0% 20.36n ± 1% ~ (p=1.000 n=10) SyncMeasure/DropView/Int64Histogram/Attributes/1-24 26.41n ± 0% 26.50n ± 0% +0.32% (p=0.007 n=10) SyncMeasure/DropView/Int64Histogram/Attributes/10-24 26.44n ± 0% 26.55n ± 1% +0.42% (p=0.012 n=10) SyncMeasure/DropView/Float64Histogram/Attributes/0-24 20.30n ± 0% 20.45n ± 0% +0.74% (p=0.000 n=10) SyncMeasure/DropView/Float64Histogram/Attributes/1-24 26.52n ± 0% 26.48n ± 0% ~ (p=0.127 n=10) SyncMeasure/DropView/Float64Histogram/Attributes/10-24 26.55n ± 0% 26.48n ± 0% -0.26% (p=0.002 n=10) SyncMeasure/AttrFilterView/Int64Counter/Attributes/0-24 170.5n ± 2% 110.8n ± 0% -35.03% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64Counter/Attributes/1-24 402.5n ± 1% 331.5n ± 1% -17.64% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64Counter/Attributes/10-24 1.363µ ± 1% 1.281µ ± 1% -6.02% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64Counter/Attributes/0-24 170.6n ± 1% 111.5n ± 1% -34.64% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64Counter/Attributes/1-24 397.1n ± 1% 335.9n ± 0% -15.41% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64Counter/Attributes/10-24 1.371µ ± 1% 1.279µ ± 1% -6.71% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64UpDownCounter/Attributes/0-24 170.1n ± 1% 112.2n ± 0% -34.09% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64UpDownCounter/Attributes/1-24 397.5n ± 1% 330.2n ± 0% -16.93% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64UpDownCounter/Attributes/10-24 1.371µ ± 1% 1.289µ ± 1% -5.95% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64UpDownCounter/Attributes/0-24 171.4n ± 2% 112.9n ± 0% -34.13% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64UpDownCounter/Attributes/1-24 397.0n ± 3% 336.4n ± 0% -15.24% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64UpDownCounter/Attributes/10-24 1.383µ ± 1% 1.305µ ± 1% -5.61% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64Histogram/Attributes/0-24 157.30n ± 2% 98.58n ± 1% -37.33% (p=0.000 n=6+10) ``` ### Changes * Introduce `exemplar.Filter`, which is a filter function based on the context. It will not be user-facing, so we can always add other parameters later if needed. * Introduce `exemplar.FilteredReservoir`, which is similar to a reservoir, except it does not receive a timestamp. It gets the current time after the filter decision has been made. It uses generics to avoid the call to exemplar.NewValue(), since it is internal-only. * The `exemplar.Reservoir` is left as-is, so that it can be made public when exemplars are stable. It still includes a timestamp argument. * Unit tests are updated to expect a much lower number of calls to time.Now * `exemplar.Drop` is now an `exemplar.FilteredReservoir` instead of a `Reservoir`, since we don't need a Reservoir to store things in if the measurement is always dropped. Co-authored-by: Sam Xie <sam@samxie.me> Co-authored-by: Tyler Yahn <MrAlias@users.noreply.github.com>
234 lines
6.1 KiB
Go
234 lines
6.1 KiB
Go
// Copyright The OpenTelemetry Authors
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
|
|
|
import (
|
|
"context"
|
|
"slices"
|
|
"sort"
|
|
"sync"
|
|
"time"
|
|
|
|
"go.opentelemetry.io/otel/attribute"
|
|
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
|
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
|
)
|
|
|
|
type buckets[N int64 | float64] struct {
|
|
attrs attribute.Set
|
|
res exemplar.FilteredReservoir[N]
|
|
|
|
counts []uint64
|
|
count uint64
|
|
total N
|
|
min, max N
|
|
}
|
|
|
|
// newBuckets returns buckets with n bins.
|
|
func newBuckets[N int64 | float64](attrs attribute.Set, n int) *buckets[N] {
|
|
return &buckets[N]{attrs: attrs, counts: make([]uint64, n)}
|
|
}
|
|
|
|
func (b *buckets[N]) sum(value N) { b.total += value }
|
|
|
|
func (b *buckets[N]) bin(idx int, value N) {
|
|
b.counts[idx]++
|
|
b.count++
|
|
if value < b.min {
|
|
b.min = value
|
|
} else if value > b.max {
|
|
b.max = value
|
|
}
|
|
}
|
|
|
|
// histValues summarizes a set of measurements as an histValues with
|
|
// explicitly defined buckets.
|
|
type histValues[N int64 | float64] struct {
|
|
noSum bool
|
|
bounds []float64
|
|
|
|
newRes func() exemplar.FilteredReservoir[N]
|
|
limit limiter[*buckets[N]]
|
|
values map[attribute.Distinct]*buckets[N]
|
|
valuesMu sync.Mutex
|
|
}
|
|
|
|
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histValues[N] {
|
|
// The responsibility of keeping all buckets correctly associated with the
|
|
// passed boundaries is ultimately this type's responsibility. Make a copy
|
|
// here so we can always guarantee this. Or, in the case of failure, have
|
|
// complete control over the fix.
|
|
b := slices.Clone(bounds)
|
|
slices.Sort(b)
|
|
return &histValues[N]{
|
|
noSum: noSum,
|
|
bounds: b,
|
|
newRes: r,
|
|
limit: newLimiter[*buckets[N]](limit),
|
|
values: make(map[attribute.Distinct]*buckets[N]),
|
|
}
|
|
}
|
|
|
|
// Aggregate records the measurement value, scoped by attr, and aggregates it
|
|
// into a histogram.
|
|
func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
|
|
// This search will return an index in the range [0, len(s.bounds)], where
|
|
// it will return len(s.bounds) if value is greater than the last element
|
|
// of s.bounds. This aligns with the buckets in that the length of buckets
|
|
// is len(s.bounds)+1, with the last bucket representing:
|
|
// (s.bounds[len(s.bounds)-1], +∞).
|
|
idx := sort.SearchFloat64s(s.bounds, float64(value))
|
|
|
|
s.valuesMu.Lock()
|
|
defer s.valuesMu.Unlock()
|
|
|
|
attr := s.limit.Attributes(fltrAttr, s.values)
|
|
b, ok := s.values[attr.Equivalent()]
|
|
if !ok {
|
|
// N+1 buckets. For example:
|
|
//
|
|
// bounds = [0, 5, 10]
|
|
//
|
|
// Then,
|
|
//
|
|
// buckets = (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, +∞)
|
|
b = newBuckets[N](attr, len(s.bounds)+1)
|
|
b.res = s.newRes()
|
|
|
|
// Ensure min and max are recorded values (not zero), for new buckets.
|
|
b.min, b.max = value, value
|
|
s.values[attr.Equivalent()] = b
|
|
}
|
|
b.bin(idx, value)
|
|
if !s.noSum {
|
|
b.sum(value)
|
|
}
|
|
b.res.Offer(ctx, value, droppedAttr)
|
|
}
|
|
|
|
// newHistogram returns an Aggregator that summarizes a set of measurements as
|
|
// an histogram.
|
|
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histogram[N] {
|
|
return &histogram[N]{
|
|
histValues: newHistValues[N](boundaries, noSum, limit, r),
|
|
noMinMax: noMinMax,
|
|
start: now(),
|
|
}
|
|
}
|
|
|
|
// histogram summarizes a set of measurements as an histogram with explicitly
|
|
// defined buckets.
|
|
type histogram[N int64 | float64] struct {
|
|
*histValues[N]
|
|
|
|
noMinMax bool
|
|
start time.Time
|
|
}
|
|
|
|
func (s *histogram[N]) delta(dest *metricdata.Aggregation) int {
|
|
t := now()
|
|
|
|
// If *dest is not a metricdata.Histogram, memory reuse is missed. In that
|
|
// case, use the zero-value h and hope for better alignment next cycle.
|
|
h, _ := (*dest).(metricdata.Histogram[N])
|
|
h.Temporality = metricdata.DeltaTemporality
|
|
|
|
s.valuesMu.Lock()
|
|
defer s.valuesMu.Unlock()
|
|
|
|
// Do not allow modification of our copy of bounds.
|
|
bounds := slices.Clone(s.bounds)
|
|
|
|
n := len(s.values)
|
|
hDPts := reset(h.DataPoints, n, n)
|
|
|
|
var i int
|
|
for _, val := range s.values {
|
|
hDPts[i].Attributes = val.attrs
|
|
hDPts[i].StartTime = s.start
|
|
hDPts[i].Time = t
|
|
hDPts[i].Count = val.count
|
|
hDPts[i].Bounds = bounds
|
|
hDPts[i].BucketCounts = val.counts
|
|
|
|
if !s.noSum {
|
|
hDPts[i].Sum = val.total
|
|
}
|
|
|
|
if !s.noMinMax {
|
|
hDPts[i].Min = metricdata.NewExtrema(val.min)
|
|
hDPts[i].Max = metricdata.NewExtrema(val.max)
|
|
}
|
|
|
|
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
|
|
|
|
i++
|
|
}
|
|
// Unused attribute sets do not report.
|
|
clear(s.values)
|
|
// The delta collection cycle resets.
|
|
s.start = t
|
|
|
|
h.DataPoints = hDPts
|
|
*dest = h
|
|
|
|
return n
|
|
}
|
|
|
|
func (s *histogram[N]) cumulative(dest *metricdata.Aggregation) int {
|
|
t := now()
|
|
|
|
// If *dest is not a metricdata.Histogram, memory reuse is missed. In that
|
|
// case, use the zero-value h and hope for better alignment next cycle.
|
|
h, _ := (*dest).(metricdata.Histogram[N])
|
|
h.Temporality = metricdata.CumulativeTemporality
|
|
|
|
s.valuesMu.Lock()
|
|
defer s.valuesMu.Unlock()
|
|
|
|
// Do not allow modification of our copy of bounds.
|
|
bounds := slices.Clone(s.bounds)
|
|
|
|
n := len(s.values)
|
|
hDPts := reset(h.DataPoints, n, n)
|
|
|
|
var i int
|
|
for _, val := range s.values {
|
|
hDPts[i].Attributes = val.attrs
|
|
hDPts[i].StartTime = s.start
|
|
hDPts[i].Time = t
|
|
hDPts[i].Count = val.count
|
|
hDPts[i].Bounds = bounds
|
|
|
|
// The HistogramDataPoint field values returned need to be copies of
|
|
// the buckets value as we will keep updating them.
|
|
//
|
|
// TODO (#3047): Making copies for bounds and counts incurs a large
|
|
// memory allocation footprint. Alternatives should be explored.
|
|
hDPts[i].BucketCounts = slices.Clone(val.counts)
|
|
|
|
if !s.noSum {
|
|
hDPts[i].Sum = val.total
|
|
}
|
|
|
|
if !s.noMinMax {
|
|
hDPts[i].Min = metricdata.NewExtrema(val.min)
|
|
hDPts[i].Max = metricdata.NewExtrema(val.max)
|
|
}
|
|
|
|
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
|
|
|
|
i++
|
|
// TODO (#3006): This will use an unbounded amount of memory if there
|
|
// are unbounded number of attribute sets being aggregated. Attribute
|
|
// sets that become "stale" need to be forgotten so this will not
|
|
// overload the system.
|
|
}
|
|
|
|
h.DataPoints = hDPts
|
|
*dest = h
|
|
|
|
return n
|
|
}
|