1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-26 03:52:03 +02:00
David Ashpole 0485de287e
Move time.Now call into exemplar reservoir to improve performance (#5545)
Part of addressing
https://github.com/open-telemetry/opentelemetry-go/issues/5542.

### Motivation

This removes the `time.Now()` call from filtered-out Exemplars by only
invoking `time.Now()` after the filtering decision is made. This
improvement is especially noticeable for measurements without any
attributes.

```
goos: linux
goarch: amd64
pkg: go.opentelemetry.io/otel/sdk/metric
cpu: AMD EPYC 7B12
                                                                 │   old.txt    │                new.txt                │
                                                                 │    sec/op    │   sec/op     vs base                  │
SyncMeasure/NoView/Int64Counter/Attributes/0-24                    158.20n ± 4%   99.83n ± 1%  -36.90% (p=0.000 n=10)
SyncMeasure/NoView/Int64Counter/Attributes/1-24                     333.3n ± 4%   274.8n ± 1%  -17.55% (p=0.000 n=10)
SyncMeasure/NoView/Int64Counter/Attributes/10-24                    1.640µ ± 1%   1.600µ ± 1%   -2.41% (p=0.000 n=10)
SyncMeasure/NoView/Float64Counter/Attributes/0-24                   159.0n ± 3%   101.3n ± 0%  -36.27% (p=0.000 n=10)
SyncMeasure/NoView/Float64Counter/Attributes/1-24                   340.0n ± 2%   272.0n ± 1%  -20.00% (p=0.000 n=10)
SyncMeasure/NoView/Float64Counter/Attributes/10-24                  1.661µ ± 1%   1.597µ ± 0%   -3.85% (p=0.000 n=10)
SyncMeasure/NoView/Int64UpDownCounter/Attributes/0-24               159.8n ± 1%   103.1n ± 0%  -35.50% (p=0.000 n=10)
SyncMeasure/NoView/Int64UpDownCounter/Attributes/1-24               339.5n ± 1%   273.1n ± 0%  -19.57% (p=0.000 n=10)
SyncMeasure/NoView/Int64UpDownCounter/Attributes/10-24              1.656µ ± 0%   1.589µ ± 0%   -4.05% (p=0.000 n=10)
SyncMeasure/NoView/Float64UpDownCounter/Attributes/0-24             159.3n ± 2%   100.8n ± 0%  -36.74% (p=0.000 n=10)
SyncMeasure/NoView/Float64UpDownCounter/Attributes/1-24             337.9n ± 2%   271.8n ± 1%  -19.55% (p=0.000 n=10)
SyncMeasure/NoView/Float64UpDownCounter/Attributes/10-24            1.657µ ± 0%   1.593µ ± 1%   -3.83% (p=0.000 n=10)
SyncMeasure/NoView/Int64Histogram/Attributes/0-24                  144.65n ± 4%   89.38n ± 0%  -38.21% (p=0.000 n=10)
SyncMeasure/NoView/Int64Histogram/Attributes/1-24                   235.7n ± 2%   183.5n ± 0%  -22.15% (p=0.000 n=10)
SyncMeasure/NoView/Int64Histogram/Attributes/10-24                  900.8n ± 1%   836.8n ± 0%   -7.10% (p=0.000 n=10)
SyncMeasure/NoView/Float64Histogram/Attributes/0-24                145.60n ± 5%   93.48n ± 1%  -35.80% (p=0.000 n=10)
SyncMeasure/NoView/Float64Histogram/Attributes/1-24                 240.9n ± 1%   183.0n ± 0%  -24.06% (p=0.000 n=10)
SyncMeasure/NoView/Float64Histogram/Attributes/10-24                905.6n ± 1%   826.3n ± 0%   -8.76% (p=0.000 n=10)
SyncMeasure/DropView/Int64Counter/Attributes/0-24                   20.33n ± 0%   20.35n ± 0%        ~ (p=0.302 n=10)
SyncMeasure/DropView/Int64Counter/Attributes/1-24                   26.46n ± 0%   26.45n ± 1%        ~ (p=0.868 n=10)
SyncMeasure/DropView/Int64Counter/Attributes/10-24                  26.50n ± 0%   26.47n ± 0%        ~ (p=0.208 n=10)
SyncMeasure/DropView/Float64Counter/Attributes/0-24                 20.34n ± 1%   20.27n ± 0%   -0.34% (p=0.009 n=10)
SyncMeasure/DropView/Float64Counter/Attributes/1-24                 26.55n ± 0%   26.60n ± 1%        ~ (p=0.109 n=10)
SyncMeasure/DropView/Float64Counter/Attributes/10-24                26.59n ± 1%   26.57n ± 1%        ~ (p=0.926 n=10)
SyncMeasure/DropView/Int64UpDownCounter/Attributes/0-24             20.38n ± 1%   20.38n ± 0%        ~ (p=0.725 n=10)
SyncMeasure/DropView/Int64UpDownCounter/Attributes/1-24             26.39n ± 0%   26.44n ± 0%        ~ (p=0.238 n=10)
SyncMeasure/DropView/Int64UpDownCounter/Attributes/10-24            26.52n ± 0%   26.42n ± 0%   -0.36% (p=0.049 n=10)
SyncMeasure/DropView/Float64UpDownCounter/Attributes/0-24           20.30n ± 0%   20.25n ± 0%        ~ (p=0.196 n=10)
SyncMeasure/DropView/Float64UpDownCounter/Attributes/1-24           26.57n ± 0%   26.54n ± 1%        ~ (p=0.540 n=10)
SyncMeasure/DropView/Float64UpDownCounter/Attributes/10-24          26.57n ± 0%   26.51n ± 1%        ~ (p=0.643 n=10)
SyncMeasure/DropView/Int64Histogram/Attributes/0-24                 20.37n ± 0%   20.36n ± 1%        ~ (p=1.000 n=10)
SyncMeasure/DropView/Int64Histogram/Attributes/1-24                 26.41n ± 0%   26.50n ± 0%   +0.32% (p=0.007 n=10)
SyncMeasure/DropView/Int64Histogram/Attributes/10-24                26.44n ± 0%   26.55n ± 1%   +0.42% (p=0.012 n=10)
SyncMeasure/DropView/Float64Histogram/Attributes/0-24               20.30n ± 0%   20.45n ± 0%   +0.74% (p=0.000 n=10)
SyncMeasure/DropView/Float64Histogram/Attributes/1-24               26.52n ± 0%   26.48n ± 0%        ~ (p=0.127 n=10)
SyncMeasure/DropView/Float64Histogram/Attributes/10-24              26.55n ± 0%   26.48n ± 0%   -0.26% (p=0.002 n=10)
SyncMeasure/AttrFilterView/Int64Counter/Attributes/0-24             170.5n ± 2%   110.8n ± 0%  -35.03% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Int64Counter/Attributes/1-24             402.5n ± 1%   331.5n ± 1%  -17.64% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Int64Counter/Attributes/10-24            1.363µ ± 1%   1.281µ ± 1%   -6.02% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Float64Counter/Attributes/0-24           170.6n ± 1%   111.5n ± 1%  -34.64% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Float64Counter/Attributes/1-24           397.1n ± 1%   335.9n ± 0%  -15.41% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Float64Counter/Attributes/10-24          1.371µ ± 1%   1.279µ ± 1%   -6.71% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Int64UpDownCounter/Attributes/0-24       170.1n ± 1%   112.2n ± 0%  -34.09% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Int64UpDownCounter/Attributes/1-24       397.5n ± 1%   330.2n ± 0%  -16.93% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Int64UpDownCounter/Attributes/10-24      1.371µ ± 1%   1.289µ ± 1%   -5.95% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Float64UpDownCounter/Attributes/0-24     171.4n ± 2%   112.9n ± 0%  -34.13% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Float64UpDownCounter/Attributes/1-24     397.0n ± 3%   336.4n ± 0%  -15.24% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Float64UpDownCounter/Attributes/10-24    1.383µ ± 1%   1.305µ ± 1%   -5.61% (p=0.000 n=10)
SyncMeasure/AttrFilterView/Int64Histogram/Attributes/0-24          157.30n ± 2%   98.58n ± 1%  -37.33% (p=0.000 n=6+10)
```

### Changes

* Introduce `exemplar.Filter`, which is a filter function based on the
context. It will not be user-facing, so we can always add other
parameters later if needed.
* Introduce `exemplar.FilteredReservoir`, which is similar to a
reservoir, except it does not receive a timestamp. It gets the current
time after the filter decision has been made. It uses generics to avoid
the call to exemplar.NewValue(), since it is internal-only.
* The `exemplar.Reservoir` is left as-is, so that it can be made public
when exemplars are stable. It still includes a timestamp argument.
* Unit tests are updated to expect a much lower number of calls to
time.Now
* `exemplar.Drop` is now an `exemplar.FilteredReservoir` instead of a
`Reservoir`, since we don't need a Reservoir to store things in if the
measurement is always dropped.

Co-authored-by: Sam Xie <sam@samxie.me>
Co-authored-by: Tyler Yahn <MrAlias@users.noreply.github.com>
2024-07-01 09:36:11 -07:00

234 lines
6.1 KiB
Go

// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"slices"
"sort"
"sync"
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type buckets[N int64 | float64] struct {
attrs attribute.Set
res exemplar.FilteredReservoir[N]
counts []uint64
count uint64
total N
min, max N
}
// newBuckets returns buckets with n bins.
func newBuckets[N int64 | float64](attrs attribute.Set, n int) *buckets[N] {
return &buckets[N]{attrs: attrs, counts: make([]uint64, n)}
}
func (b *buckets[N]) sum(value N) { b.total += value }
func (b *buckets[N]) bin(idx int, value N) {
b.counts[idx]++
b.count++
if value < b.min {
b.min = value
} else if value > b.max {
b.max = value
}
}
// histValues summarizes a set of measurements as an histValues with
// explicitly defined buckets.
type histValues[N int64 | float64] struct {
noSum bool
bounds []float64
newRes func() exemplar.FilteredReservoir[N]
limit limiter[*buckets[N]]
values map[attribute.Distinct]*buckets[N]
valuesMu sync.Mutex
}
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histValues[N] {
// The responsibility of keeping all buckets correctly associated with the
// passed boundaries is ultimately this type's responsibility. Make a copy
// here so we can always guarantee this. Or, in the case of failure, have
// complete control over the fix.
b := slices.Clone(bounds)
slices.Sort(b)
return &histValues[N]{
noSum: noSum,
bounds: b,
newRes: r,
limit: newLimiter[*buckets[N]](limit),
values: make(map[attribute.Distinct]*buckets[N]),
}
}
// Aggregate records the measurement value, scoped by attr, and aggregates it
// into a histogram.
func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
// This search will return an index in the range [0, len(s.bounds)], where
// it will return len(s.bounds) if value is greater than the last element
// of s.bounds. This aligns with the buckets in that the length of buckets
// is len(s.bounds)+1, with the last bucket representing:
// (s.bounds[len(s.bounds)-1], +∞).
idx := sort.SearchFloat64s(s.bounds, float64(value))
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
attr := s.limit.Attributes(fltrAttr, s.values)
b, ok := s.values[attr.Equivalent()]
if !ok {
// N+1 buckets. For example:
//
// bounds = [0, 5, 10]
//
// Then,
//
// buckets = (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, +∞)
b = newBuckets[N](attr, len(s.bounds)+1)
b.res = s.newRes()
// Ensure min and max are recorded values (not zero), for new buckets.
b.min, b.max = value, value
s.values[attr.Equivalent()] = b
}
b.bin(idx, value)
if !s.noSum {
b.sum(value)
}
b.res.Offer(ctx, value, droppedAttr)
}
// newHistogram returns an Aggregator that summarizes a set of measurements as
// an histogram.
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histogram[N] {
return &histogram[N]{
histValues: newHistValues[N](boundaries, noSum, limit, r),
noMinMax: noMinMax,
start: now(),
}
}
// histogram summarizes a set of measurements as an histogram with explicitly
// defined buckets.
type histogram[N int64 | float64] struct {
*histValues[N]
noMinMax bool
start time.Time
}
func (s *histogram[N]) delta(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Histogram, memory reuse is missed. In that
// case, use the zero-value h and hope for better alignment next cycle.
h, _ := (*dest).(metricdata.Histogram[N])
h.Temporality = metricdata.DeltaTemporality
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
// Do not allow modification of our copy of bounds.
bounds := slices.Clone(s.bounds)
n := len(s.values)
hDPts := reset(h.DataPoints, n, n)
var i int
for _, val := range s.values {
hDPts[i].Attributes = val.attrs
hDPts[i].StartTime = s.start
hDPts[i].Time = t
hDPts[i].Count = val.count
hDPts[i].Bounds = bounds
hDPts[i].BucketCounts = val.counts
if !s.noSum {
hDPts[i].Sum = val.total
}
if !s.noMinMax {
hDPts[i].Min = metricdata.NewExtrema(val.min)
hDPts[i].Max = metricdata.NewExtrema(val.max)
}
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
i++
}
// Unused attribute sets do not report.
clear(s.values)
// The delta collection cycle resets.
s.start = t
h.DataPoints = hDPts
*dest = h
return n
}
func (s *histogram[N]) cumulative(dest *metricdata.Aggregation) int {
t := now()
// If *dest is not a metricdata.Histogram, memory reuse is missed. In that
// case, use the zero-value h and hope for better alignment next cycle.
h, _ := (*dest).(metricdata.Histogram[N])
h.Temporality = metricdata.CumulativeTemporality
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
// Do not allow modification of our copy of bounds.
bounds := slices.Clone(s.bounds)
n := len(s.values)
hDPts := reset(h.DataPoints, n, n)
var i int
for _, val := range s.values {
hDPts[i].Attributes = val.attrs
hDPts[i].StartTime = s.start
hDPts[i].Time = t
hDPts[i].Count = val.count
hDPts[i].Bounds = bounds
// The HistogramDataPoint field values returned need to be copies of
// the buckets value as we will keep updating them.
//
// TODO (#3047): Making copies for bounds and counts incurs a large
// memory allocation footprint. Alternatives should be explored.
hDPts[i].BucketCounts = slices.Clone(val.counts)
if !s.noSum {
hDPts[i].Sum = val.total
}
if !s.noMinMax {
hDPts[i].Min = metricdata.NewExtrema(val.min)
hDPts[i].Max = metricdata.NewExtrema(val.max)
}
collectExemplars(&hDPts[i].Exemplars, val.res.Collect)
i++
// TODO (#3006): This will use an unbounded amount of memory if there
// are unbounded number of attribute sets being aggregated. Attribute
// sets that become "stale" need to be forgotten so this will not
// overload the system.
}
h.DataPoints = hDPts
*dest = h
return n
}