1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-16 02:47:20 +02:00
opentelemetry-go/exporters/otlp/otlpmetric/internal/metrictransform/metric.go
Pablo Baeyens 19294aab4c
Add vanity imports to internal packages (#2280)
* `porto -w --include-internal .`

* Bump `porto` to 0.4.0 and include internal files

Co-authored-by: Tyler Yahn <MrAlias@users.noreply.github.com>
2021-10-29 09:34:37 -07:00

566 lines
16 KiB
Go

// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package transform provides translations for opentelemetry-go concepts and
// structures to otlp structures.
package metrictransform // import "go.opentelemetry.io/otel/exporters/otlp/otlpmetric/internal/metrictransform"
import (
"context"
"errors"
"fmt"
"strings"
"sync"
"time"
commonpb "go.opentelemetry.io/proto/otlp/common/v1"
metricpb "go.opentelemetry.io/proto/otlp/metrics/v1"
"go.opentelemetry.io/otel/metric/number"
export "go.opentelemetry.io/otel/sdk/export/metric"
"go.opentelemetry.io/otel/sdk/export/metric/aggregation"
"go.opentelemetry.io/otel/sdk/instrumentation"
"go.opentelemetry.io/otel/sdk/resource"
)
var (
// ErrUnimplementedAgg is returned when a transformation of an unimplemented
// aggregator is attempted.
ErrUnimplementedAgg = errors.New("unimplemented aggregator")
// ErrIncompatibleAgg is returned when
// aggregation.Kind implies an interface conversion that has
// failed
ErrIncompatibleAgg = errors.New("incompatible aggregation type")
// ErrUnknownValueType is returned when a transformation of an unknown value
// is attempted.
ErrUnknownValueType = errors.New("invalid value type")
// ErrContextCanceled is returned when a context cancellation halts a
// transformation.
ErrContextCanceled = errors.New("context canceled")
// ErrTransforming is returned when an unexected error is encountered transforming.
ErrTransforming = errors.New("transforming failed")
)
// result is the product of transforming Records into OTLP Metrics.
type result struct {
Metric *metricpb.Metric
Err error
}
// toNanos returns the number of nanoseconds since the UNIX epoch.
func toNanos(t time.Time) uint64 {
if t.IsZero() {
return 0
}
return uint64(t.UnixNano())
}
// InstrumentationLibraryReader transforms all records contained in a checkpoint into
// batched OTLP ResourceMetrics.
func InstrumentationLibraryReader(ctx context.Context, temporalitySelector aggregation.TemporalitySelector, res *resource.Resource, ilmr export.InstrumentationLibraryReader, numWorkers uint) (*metricpb.ResourceMetrics, error) {
var ilms []*metricpb.InstrumentationLibraryMetrics
err := ilmr.ForEach(func(lib instrumentation.Library, mr export.Reader) error {
records, errc := source(ctx, temporalitySelector, mr)
// Start a fixed number of goroutines to transform records.
transformed := make(chan result)
var wg sync.WaitGroup
wg.Add(int(numWorkers))
for i := uint(0); i < numWorkers; i++ {
go func() {
defer wg.Done()
transformer(ctx, temporalitySelector, records, transformed)
}()
}
go func() {
wg.Wait()
close(transformed)
}()
// Synchronously collect the transformed records and transmit.
ms, err := sink(ctx, transformed)
if err != nil {
return nil
}
// source is complete, check for any errors.
if err := <-errc; err != nil {
return err
}
if len(ms) == 0 {
return nil
}
ilms = append(ilms, &metricpb.InstrumentationLibraryMetrics{
Metrics: ms,
SchemaUrl: lib.SchemaURL,
InstrumentationLibrary: &commonpb.InstrumentationLibrary{
Name: lib.Name,
Version: lib.Version,
},
})
return nil
})
if len(ilms) == 0 {
return nil, err
}
rms := &metricpb.ResourceMetrics{
Resource: Resource(res),
SchemaUrl: res.SchemaURL(),
InstrumentationLibraryMetrics: ilms,
}
return rms, err
}
// source starts a goroutine that sends each one of the Records yielded by
// the Reader on the returned chan. Any error encountered will be sent
// on the returned error chan after seeding is complete.
func source(ctx context.Context, temporalitySelector aggregation.TemporalitySelector, mr export.Reader) (<-chan export.Record, <-chan error) {
errc := make(chan error, 1)
out := make(chan export.Record)
// Seed records into process.
go func() {
defer close(out)
// No select is needed since errc is buffered.
errc <- mr.ForEach(temporalitySelector, func(r export.Record) error {
select {
case <-ctx.Done():
return ErrContextCanceled
case out <- r:
}
return nil
})
}()
return out, errc
}
// transformer transforms records read from the passed in chan into
// OTLP Metrics which are sent on the out chan.
func transformer(ctx context.Context, temporalitySelector aggregation.TemporalitySelector, in <-chan export.Record, out chan<- result) {
for r := range in {
m, err := Record(temporalitySelector, r)
// Propagate errors, but do not send empty results.
if err == nil && m == nil {
continue
}
res := result{
Metric: m,
Err: err,
}
select {
case <-ctx.Done():
return
case out <- res:
}
}
}
// sink collects transformed Records and batches them.
//
// Any errors encountered transforming input will be reported with an
// ErrTransforming as well as the completed ResourceMetrics. It is up to the
// caller to handle any incorrect data in these ResourceMetric.
func sink(ctx context.Context, in <-chan result) ([]*metricpb.Metric, error) {
var errStrings []string
// Group by the MetricDescriptor.
grouped := map[string]*metricpb.Metric{}
for res := range in {
if res.Err != nil {
errStrings = append(errStrings, res.Err.Error())
continue
}
mID := res.Metric.GetName()
m, ok := grouped[mID]
if !ok {
grouped[mID] = res.Metric
continue
}
// Note: There is extra work happening in this code
// that can be improved when the work described in
// #2119 is completed. The SDK has a guarantee that
// no more than one point per period per label set is
// produced, so this fallthrough should never happen.
// The final step of #2119 is to remove all the
// grouping logic here.
switch res.Metric.Data.(type) {
case *metricpb.Metric_Gauge:
m.GetGauge().DataPoints = append(m.GetGauge().DataPoints, res.Metric.GetGauge().DataPoints...)
case *metricpb.Metric_Sum:
m.GetSum().DataPoints = append(m.GetSum().DataPoints, res.Metric.GetSum().DataPoints...)
case *metricpb.Metric_Histogram:
m.GetHistogram().DataPoints = append(m.GetHistogram().DataPoints, res.Metric.GetHistogram().DataPoints...)
case *metricpb.Metric_Summary:
m.GetSummary().DataPoints = append(m.GetSummary().DataPoints, res.Metric.GetSummary().DataPoints...)
default:
err := fmt.Sprintf("unsupported metric type: %T", res.Metric.Data)
errStrings = append(errStrings, err)
}
}
if len(grouped) == 0 {
return nil, nil
}
ms := make([]*metricpb.Metric, 0, len(grouped))
for _, m := range grouped {
ms = append(ms, m)
}
// Report any transform errors.
if len(errStrings) > 0 {
return ms, fmt.Errorf("%w:\n -%s", ErrTransforming, strings.Join(errStrings, "\n -"))
}
return ms, nil
}
// Record transforms a Record into an OTLP Metric. An ErrIncompatibleAgg
// error is returned if the Record Aggregator is not supported.
func Record(temporalitySelector aggregation.TemporalitySelector, r export.Record) (*metricpb.Metric, error) {
agg := r.Aggregation()
switch agg.Kind() {
case aggregation.MinMaxSumCountKind:
mmsc, ok := agg.(aggregation.MinMaxSumCount)
if !ok {
return nil, fmt.Errorf("%w: %T", ErrIncompatibleAgg, agg)
}
return minMaxSumCount(r, mmsc)
case aggregation.HistogramKind:
h, ok := agg.(aggregation.Histogram)
if !ok {
return nil, fmt.Errorf("%w: %T", ErrIncompatibleAgg, agg)
}
return histogramPoint(r, temporalitySelector.TemporalityFor(r.Descriptor(), aggregation.HistogramKind), h)
case aggregation.SumKind:
s, ok := agg.(aggregation.Sum)
if !ok {
return nil, fmt.Errorf("%w: %T", ErrIncompatibleAgg, agg)
}
sum, err := s.Sum()
if err != nil {
return nil, err
}
return sumPoint(r, sum, r.StartTime(), r.EndTime(), temporalitySelector.TemporalityFor(r.Descriptor(), aggregation.SumKind), r.Descriptor().InstrumentKind().Monotonic())
case aggregation.LastValueKind:
lv, ok := agg.(aggregation.LastValue)
if !ok {
return nil, fmt.Errorf("%w: %T", ErrIncompatibleAgg, agg)
}
value, tm, err := lv.LastValue()
if err != nil {
return nil, err
}
return gaugePoint(r, value, time.Time{}, tm)
case aggregation.ExactKind:
e, ok := agg.(aggregation.Points)
if !ok {
return nil, fmt.Errorf("%w: %T", ErrIncompatibleAgg, agg)
}
pts, err := e.Points()
if err != nil {
return nil, err
}
return gaugeArray(r, pts)
default:
return nil, fmt.Errorf("%w: %T", ErrUnimplementedAgg, agg)
}
}
func gaugeArray(record export.Record, points []aggregation.Point) (*metricpb.Metric, error) {
desc := record.Descriptor()
labels := record.Labels()
m := &metricpb.Metric{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
}
pbAttrs := Iterator(labels.Iter())
ndp := make([]*metricpb.NumberDataPoint, 0, len(points))
switch nk := desc.NumberKind(); nk {
case number.Int64Kind:
for _, p := range points {
ndp = append(ndp, &metricpb.NumberDataPoint{
Attributes: pbAttrs,
StartTimeUnixNano: toNanos(record.StartTime()),
TimeUnixNano: toNanos(record.EndTime()),
Value: &metricpb.NumberDataPoint_AsInt{
AsInt: p.Number.CoerceToInt64(nk),
},
})
}
case number.Float64Kind:
for _, p := range points {
ndp = append(ndp, &metricpb.NumberDataPoint{
Attributes: pbAttrs,
StartTimeUnixNano: toNanos(record.StartTime()),
TimeUnixNano: toNanos(record.EndTime()),
Value: &metricpb.NumberDataPoint_AsDouble{
AsDouble: p.Number.CoerceToFloat64(nk),
},
})
}
default:
return nil, fmt.Errorf("%w: %v", ErrUnknownValueType, nk)
}
m.Data = &metricpb.Metric_Gauge{
Gauge: &metricpb.Gauge{
DataPoints: ndp,
},
}
return m, nil
}
func gaugePoint(record export.Record, num number.Number, start, end time.Time) (*metricpb.Metric, error) {
desc := record.Descriptor()
labels := record.Labels()
m := &metricpb.Metric{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
}
switch n := desc.NumberKind(); n {
case number.Int64Kind:
m.Data = &metricpb.Metric_Gauge{
Gauge: &metricpb.Gauge{
DataPoints: []*metricpb.NumberDataPoint{
{
Value: &metricpb.NumberDataPoint_AsInt{
AsInt: num.CoerceToInt64(n),
},
Attributes: Iterator(labels.Iter()),
StartTimeUnixNano: toNanos(start),
TimeUnixNano: toNanos(end),
},
},
},
}
case number.Float64Kind:
m.Data = &metricpb.Metric_Gauge{
Gauge: &metricpb.Gauge{
DataPoints: []*metricpb.NumberDataPoint{
{
Value: &metricpb.NumberDataPoint_AsDouble{
AsDouble: num.CoerceToFloat64(n),
},
Attributes: Iterator(labels.Iter()),
StartTimeUnixNano: toNanos(start),
TimeUnixNano: toNanos(end),
},
},
},
}
default:
return nil, fmt.Errorf("%w: %v", ErrUnknownValueType, n)
}
return m, nil
}
func sdkTemporalityToTemporality(temporality aggregation.Temporality) metricpb.AggregationTemporality {
switch temporality {
case aggregation.DeltaTemporality:
return metricpb.AggregationTemporality_AGGREGATION_TEMPORALITY_DELTA
case aggregation.CumulativeTemporality:
return metricpb.AggregationTemporality_AGGREGATION_TEMPORALITY_CUMULATIVE
}
return metricpb.AggregationTemporality_AGGREGATION_TEMPORALITY_UNSPECIFIED
}
func sumPoint(record export.Record, num number.Number, start, end time.Time, temporality aggregation.Temporality, monotonic bool) (*metricpb.Metric, error) {
desc := record.Descriptor()
labels := record.Labels()
m := &metricpb.Metric{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
}
switch n := desc.NumberKind(); n {
case number.Int64Kind:
m.Data = &metricpb.Metric_Sum{
Sum: &metricpb.Sum{
IsMonotonic: monotonic,
AggregationTemporality: sdkTemporalityToTemporality(temporality),
DataPoints: []*metricpb.NumberDataPoint{
{
Value: &metricpb.NumberDataPoint_AsInt{
AsInt: num.CoerceToInt64(n),
},
Attributes: Iterator(labels.Iter()),
StartTimeUnixNano: toNanos(start),
TimeUnixNano: toNanos(end),
},
},
},
}
case number.Float64Kind:
m.Data = &metricpb.Metric_Sum{
Sum: &metricpb.Sum{
IsMonotonic: monotonic,
AggregationTemporality: sdkTemporalityToTemporality(temporality),
DataPoints: []*metricpb.NumberDataPoint{
{
Value: &metricpb.NumberDataPoint_AsDouble{
AsDouble: num.CoerceToFloat64(n),
},
Attributes: Iterator(labels.Iter()),
StartTimeUnixNano: toNanos(start),
TimeUnixNano: toNanos(end),
},
},
},
}
default:
return nil, fmt.Errorf("%w: %v", ErrUnknownValueType, n)
}
return m, nil
}
// minMaxSumCountValue returns the values of the MinMaxSumCount Aggregator
// as discrete values.
func minMaxSumCountValues(a aggregation.MinMaxSumCount) (min, max, sum number.Number, count uint64, err error) {
if min, err = a.Min(); err != nil {
return
}
if max, err = a.Max(); err != nil {
return
}
if sum, err = a.Sum(); err != nil {
return
}
if count, err = a.Count(); err != nil {
return
}
return
}
// minMaxSumCount transforms a MinMaxSumCount Aggregator into an OTLP Metric.
func minMaxSumCount(record export.Record, a aggregation.MinMaxSumCount) (*metricpb.Metric, error) {
desc := record.Descriptor()
labels := record.Labels()
min, max, sum, count, err := minMaxSumCountValues(a)
if err != nil {
return nil, err
}
m := &metricpb.Metric{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
Data: &metricpb.Metric_Summary{
Summary: &metricpb.Summary{
DataPoints: []*metricpb.SummaryDataPoint{
{
Sum: sum.CoerceToFloat64(desc.NumberKind()),
Attributes: Iterator(labels.Iter()),
StartTimeUnixNano: toNanos(record.StartTime()),
TimeUnixNano: toNanos(record.EndTime()),
Count: uint64(count),
QuantileValues: []*metricpb.SummaryDataPoint_ValueAtQuantile{
{
Quantile: 0.0,
Value: min.CoerceToFloat64(desc.NumberKind()),
},
{
Quantile: 1.0,
Value: max.CoerceToFloat64(desc.NumberKind()),
},
},
},
},
},
},
}
return m, nil
}
func histogramValues(a aggregation.Histogram) (boundaries []float64, counts []uint64, err error) {
var buckets aggregation.Buckets
if buckets, err = a.Histogram(); err != nil {
return
}
boundaries, counts = buckets.Boundaries, buckets.Counts
if len(counts) != len(boundaries)+1 {
err = ErrTransforming
return
}
return
}
// histogram transforms a Histogram Aggregator into an OTLP Metric.
func histogramPoint(record export.Record, temporality aggregation.Temporality, a aggregation.Histogram) (*metricpb.Metric, error) {
desc := record.Descriptor()
labels := record.Labels()
boundaries, counts, err := histogramValues(a)
if err != nil {
return nil, err
}
count, err := a.Count()
if err != nil {
return nil, err
}
sum, err := a.Sum()
if err != nil {
return nil, err
}
m := &metricpb.Metric{
Name: desc.Name(),
Description: desc.Description(),
Unit: string(desc.Unit()),
Data: &metricpb.Metric_Histogram{
Histogram: &metricpb.Histogram{
AggregationTemporality: sdkTemporalityToTemporality(temporality),
DataPoints: []*metricpb.HistogramDataPoint{
{
Sum: sum.CoerceToFloat64(desc.NumberKind()),
Attributes: Iterator(labels.Iter()),
StartTimeUnixNano: toNanos(record.StartTime()),
TimeUnixNano: toNanos(record.EndTime()),
Count: uint64(count),
BucketCounts: counts,
ExplicitBounds: boundaries,
},
},
},
},
}
return m, nil
}