1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-26 03:52:03 +02:00
Tyler Yahn d091ba88e4
Do not export aggregations without any data points (#3436)
* Return empty nil aggs if no meas

* Update tests with new expected behavior

* Add change to changelog

* Set PR number in changelog

* Run lint

* Fix pipeline_test

* Scope change in changelog to pkg

* Clean up init of agg types
2022-11-11 07:22:27 -08:00

243 lines
6.9 KiB
Go

// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package internal // import "go.opentelemetry.io/otel/sdk/metric/internal"
import (
"sort"
"sync"
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/aggregation"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type buckets struct {
counts []uint64
count uint64
sum float64
min, max float64
}
// newBuckets returns buckets with n bins.
func newBuckets(n int) *buckets {
return &buckets{counts: make([]uint64, n)}
}
func (b *buckets) bin(idx int, value float64) {
b.counts[idx]++
b.count++
b.sum += value
if value < b.min {
b.min = value
} else if value > b.max {
b.max = value
}
}
// histValues summarizes a set of measurements as an histValues with
// explicitly defined buckets.
type histValues[N int64 | float64] struct {
bounds []float64
values map[attribute.Set]*buckets
valuesMu sync.Mutex
}
func newHistValues[N int64 | float64](bounds []float64) *histValues[N] {
// The responsibility of keeping all buckets correctly associated with the
// passed boundaries is ultimately this type's responsibility. Make a copy
// here so we can always guarantee this. Or, in the case of failure, have
// complete control over the fix.
b := make([]float64, len(bounds))
copy(b, bounds)
sort.Float64s(b)
return &histValues[N]{
bounds: b,
values: make(map[attribute.Set]*buckets),
}
}
// Aggregate records the measurement value, scoped by attr, and aggregates it
// into a histogram.
func (s *histValues[N]) Aggregate(value N, attr attribute.Set) {
// Accept all types to satisfy the Aggregator interface. However, since
// the Aggregation produced by this Aggregator is only float64, convert
// here to only use this type.
v := float64(value)
// This search will return an index in the range [0, len(s.bounds)], where
// it will return len(s.bounds) if value is greater than the last element
// of s.bounds. This aligns with the buckets in that the length of buckets
// is len(s.bounds)+1, with the last bucket representing:
// (s.bounds[len(s.bounds)-1], +∞).
idx := sort.SearchFloat64s(s.bounds, v)
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
b, ok := s.values[attr]
if !ok {
// N+1 buckets. For example:
//
// bounds = [0, 5, 10]
//
// Then,
//
// buckets = (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, +∞)
b = newBuckets(len(s.bounds) + 1)
// Ensure min and max are recorded values (not zero), for new buckets.
b.min, b.max = v, v
s.values[attr] = b
}
b.bin(idx, v)
}
// NewDeltaHistogram returns an Aggregator that summarizes a set of
// measurements as an histogram. Each histogram is scoped by attributes and
// the aggregation cycle the measurements were made in.
//
// Each aggregation cycle is treated independently. When the returned
// Aggregator's Aggregations method is called it will reset all histogram
// counts to zero.
func NewDeltaHistogram[N int64 | float64](cfg aggregation.ExplicitBucketHistogram) Aggregator[N] {
return &deltaHistogram[N]{
histValues: newHistValues[N](cfg.Boundaries),
noMinMax: cfg.NoMinMax,
start: now(),
}
}
// deltaHistogram summarizes a set of measurements made in a single
// aggregation cycle as an histogram with explicitly defined buckets.
type deltaHistogram[N int64 | float64] struct {
*histValues[N]
noMinMax bool
start time.Time
}
func (s *deltaHistogram[N]) Aggregation() metricdata.Aggregation {
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
if len(s.values) == 0 {
return nil
}
t := now()
// Do not allow modification of our copy of bounds.
bounds := make([]float64, len(s.bounds))
copy(bounds, s.bounds)
h := metricdata.Histogram{
Temporality: metricdata.DeltaTemporality,
DataPoints: make([]metricdata.HistogramDataPoint, 0, len(s.values)),
}
for a, b := range s.values {
hdp := metricdata.HistogramDataPoint{
Attributes: a,
StartTime: s.start,
Time: t,
Count: b.count,
Bounds: bounds,
BucketCounts: b.counts,
Sum: b.sum,
}
if !s.noMinMax {
hdp.Min = &b.min
hdp.Max = &b.max
}
h.DataPoints = append(h.DataPoints, hdp)
// Unused attribute sets do not report.
delete(s.values, a)
}
// The delta collection cycle resets.
s.start = t
return h
}
// NewCumulativeHistogram returns an Aggregator that summarizes a set of
// measurements as an histogram. Each histogram is scoped by attributes.
//
// Each aggregation cycle builds from the previous, the histogram counts are
// the bucketed counts of all values aggregated since the returned Aggregator
// was created.
func NewCumulativeHistogram[N int64 | float64](cfg aggregation.ExplicitBucketHistogram) Aggregator[N] {
return &cumulativeHistogram[N]{
histValues: newHistValues[N](cfg.Boundaries),
noMinMax: cfg.NoMinMax,
start: now(),
}
}
// cumulativeHistogram summarizes a set of measurements made over all
// aggregation cycles as an histogram with explicitly defined buckets.
type cumulativeHistogram[N int64 | float64] struct {
*histValues[N]
noMinMax bool
start time.Time
}
func (s *cumulativeHistogram[N]) Aggregation() metricdata.Aggregation {
s.valuesMu.Lock()
defer s.valuesMu.Unlock()
if len(s.values) == 0 {
return nil
}
t := now()
// Do not allow modification of our copy of bounds.
bounds := make([]float64, len(s.bounds))
copy(bounds, s.bounds)
h := metricdata.Histogram{
Temporality: metricdata.CumulativeTemporality,
DataPoints: make([]metricdata.HistogramDataPoint, 0, len(s.values)),
}
for a, b := range s.values {
// The HistogramDataPoint field values returned need to be copies of
// the buckets value as we will keep updating them.
//
// TODO (#3047): Making copies for bounds and counts incurs a large
// memory allocation footprint. Alternatives should be explored.
counts := make([]uint64, len(b.counts))
copy(counts, b.counts)
hdp := metricdata.HistogramDataPoint{
Attributes: a,
StartTime: s.start,
Time: t,
Count: b.count,
Bounds: bounds,
BucketCounts: counts,
Sum: b.sum,
}
if !s.noMinMax {
// Similar to counts, make a copy.
min, max := b.min, b.max
hdp.Min = &min
hdp.Max = &max
}
h.DataPoints = append(h.DataPoints, hdp)
// TODO (#3006): This will use an unbounded amount of memory if there
// are unbounded number of attribute sets being aggregated. Attribute
// sets that become "stale" need to be forgotten so this will not
// overload the system.
}
return h
}