mirror of
https://github.com/open-telemetry/opentelemetry-go.git
synced 2025-01-26 03:52:03 +02:00
6cafa6a060
Signed-off-by: Bogdan Drutu <bogdandrutu@gmail.com>
323 lines
8.2 KiB
Go
323 lines
8.2 KiB
Go
// Copyright The OpenTelemetry Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package opencensus
|
|
|
|
import (
|
|
"errors"
|
|
"testing"
|
|
"time"
|
|
|
|
"go.opencensus.io/metric/metricdata"
|
|
|
|
"go.opentelemetry.io/otel/sdk/metric/export/aggregation"
|
|
)
|
|
|
|
func TestNewAggregationFromPoints(t *testing.T) {
|
|
now := time.Now()
|
|
for _, tc := range []struct {
|
|
desc string
|
|
input []metricdata.Point
|
|
expectedKind aggregation.Kind
|
|
expectedErr error
|
|
}{
|
|
{
|
|
desc: "no points",
|
|
expectedErr: errEmpty,
|
|
},
|
|
{
|
|
desc: "int point",
|
|
input: []metricdata.Point{
|
|
{
|
|
Time: now,
|
|
Value: int64(23),
|
|
},
|
|
},
|
|
expectedKind: aggregation.LastValueKind,
|
|
},
|
|
{
|
|
desc: "float point",
|
|
input: []metricdata.Point{
|
|
{
|
|
Time: now,
|
|
Value: float64(23),
|
|
},
|
|
},
|
|
expectedKind: aggregation.LastValueKind,
|
|
},
|
|
{
|
|
desc: "distribution point",
|
|
input: []metricdata.Point{
|
|
{
|
|
Time: now,
|
|
Value: &metricdata.Distribution{
|
|
Count: 2,
|
|
Sum: 55,
|
|
BucketOptions: &metricdata.BucketOptions{
|
|
Bounds: []float64{20, 30},
|
|
},
|
|
Buckets: []metricdata.Bucket{
|
|
{Count: 1},
|
|
{Count: 1},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
expectedKind: aggregation.HistogramKind,
|
|
},
|
|
{
|
|
desc: "bad distribution bucket count",
|
|
input: []metricdata.Point{
|
|
{
|
|
Time: now,
|
|
Value: &metricdata.Distribution{
|
|
Count: 2,
|
|
Sum: 55,
|
|
BucketOptions: &metricdata.BucketOptions{
|
|
Bounds: []float64{20, 30},
|
|
},
|
|
Buckets: []metricdata.Bucket{
|
|
// negative bucket
|
|
{Count: -1},
|
|
{Count: 1},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
expectedErr: errBadPoint,
|
|
},
|
|
{
|
|
desc: "bad distribution count",
|
|
input: []metricdata.Point{
|
|
{
|
|
Time: now,
|
|
Value: &metricdata.Distribution{
|
|
// negative count
|
|
Count: -2,
|
|
Sum: 55,
|
|
BucketOptions: &metricdata.BucketOptions{
|
|
Bounds: []float64{20, 30},
|
|
},
|
|
Buckets: []metricdata.Bucket{
|
|
{Count: 1},
|
|
{Count: 1},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
expectedErr: errBadPoint,
|
|
},
|
|
{
|
|
desc: "incompatible point type bool",
|
|
input: []metricdata.Point{
|
|
{
|
|
Time: now,
|
|
Value: true,
|
|
},
|
|
},
|
|
expectedErr: errIncompatibleType,
|
|
},
|
|
{
|
|
desc: "dist is incompatible with raw points",
|
|
input: []metricdata.Point{
|
|
{
|
|
Time: now,
|
|
Value: int64(23),
|
|
},
|
|
{
|
|
Time: now,
|
|
Value: &metricdata.Distribution{
|
|
Count: 2,
|
|
Sum: 55,
|
|
BucketOptions: &metricdata.BucketOptions{
|
|
Bounds: []float64{20, 30},
|
|
},
|
|
Buckets: []metricdata.Bucket{
|
|
{Count: 1},
|
|
{Count: 1},
|
|
},
|
|
},
|
|
},
|
|
},
|
|
expectedErr: errIncompatibleType,
|
|
},
|
|
{
|
|
desc: "int point is incompatible with dist",
|
|
input: []metricdata.Point{
|
|
{
|
|
Time: now,
|
|
Value: &metricdata.Distribution{
|
|
Count: 2,
|
|
Sum: 55,
|
|
BucketOptions: &metricdata.BucketOptions{
|
|
Bounds: []float64{20, 30},
|
|
},
|
|
Buckets: []metricdata.Bucket{
|
|
{Count: 1},
|
|
{Count: 1},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
Time: now,
|
|
Value: int64(23),
|
|
},
|
|
},
|
|
expectedErr: errBadPoint,
|
|
},
|
|
} {
|
|
t.Run(tc.desc, func(t *testing.T) {
|
|
var output []aggregation.Aggregation
|
|
err := recordAggregationsFromPoints(tc.input, func(agg aggregation.Aggregation, ts time.Time) error {
|
|
last := tc.input[len(tc.input)-1]
|
|
if ts != last.Time {
|
|
t.Errorf("incorrect timestamp %v != %v", ts, last.Time)
|
|
}
|
|
output = append(output, agg)
|
|
return nil
|
|
})
|
|
if !errors.Is(err, tc.expectedErr) {
|
|
t.Errorf("newAggregationFromPoints(%v) = err(%v), want err(%v)", tc.input, err, tc.expectedErr)
|
|
}
|
|
for _, out := range output {
|
|
if tc.expectedErr == nil && out.Kind() != tc.expectedKind {
|
|
t.Errorf("newAggregationFromPoints(%v) = %v, want %v", tc.input, out.Kind(), tc.expectedKind)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
func TestLastValueAggregation(t *testing.T) {
|
|
now := time.Now()
|
|
input := []metricdata.Point{
|
|
{Value: int64(15), Time: now.Add(-time.Minute)},
|
|
{Value: int64(-23), Time: now},
|
|
}
|
|
idx := 0
|
|
err := recordAggregationsFromPoints(input, func(agg aggregation.Aggregation, end time.Time) error {
|
|
if agg.Kind() != aggregation.LastValueKind {
|
|
t.Errorf("recordAggregationsFromPoints(%v) = %v, want %v", input, agg.Kind(), aggregation.LastValueKind)
|
|
}
|
|
if end != input[idx].Time {
|
|
t.Errorf("recordAggregationsFromPoints(%v).end() = %v, want %v", input, end, input[idx].Time)
|
|
}
|
|
pointsLV, ok := agg.(aggregation.LastValue)
|
|
if !ok {
|
|
t.Errorf("recordAggregationsFromPoints(%v) = %v does not implement the aggregation.LastValue interface", input, agg)
|
|
}
|
|
lv, ts, _ := pointsLV.LastValue()
|
|
if lv.AsInt64() != input[idx].Value {
|
|
t.Errorf("recordAggregationsFromPoints(%v) = %v, want %v", input, lv.AsInt64(), input[idx].Value)
|
|
}
|
|
if ts != input[idx].Time {
|
|
t.Errorf("recordAggregationsFromPoints(%v) = %v, want %v", input, ts, input[idx].Time)
|
|
}
|
|
idx++
|
|
return nil
|
|
})
|
|
if err != nil {
|
|
t.Errorf("recordAggregationsFromPoints(%v) = unexpected error %v", input, err)
|
|
}
|
|
}
|
|
|
|
func TestHistogramAggregation(t *testing.T) {
|
|
now := time.Now()
|
|
input := []metricdata.Point{
|
|
{
|
|
Value: &metricdata.Distribution{
|
|
Count: 0,
|
|
Sum: 0,
|
|
BucketOptions: &metricdata.BucketOptions{
|
|
Bounds: []float64{20, 30},
|
|
},
|
|
Buckets: []metricdata.Bucket{
|
|
{Count: 0},
|
|
{Count: 0},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
Time: now,
|
|
Value: &metricdata.Distribution{
|
|
Count: 2,
|
|
Sum: 55,
|
|
BucketOptions: &metricdata.BucketOptions{
|
|
Bounds: []float64{20, 30},
|
|
},
|
|
Buckets: []metricdata.Bucket{
|
|
{Count: 1},
|
|
{Count: 1},
|
|
},
|
|
},
|
|
},
|
|
}
|
|
var output aggregation.Aggregation
|
|
var end time.Time
|
|
err := recordAggregationsFromPoints(input, func(argAgg aggregation.Aggregation, argEnd time.Time) error {
|
|
output = argAgg
|
|
end = argEnd
|
|
return nil
|
|
})
|
|
if err != nil {
|
|
t.Fatalf("recordAggregationsFromPoints(%v) = err(%v), want <nil>", input, err)
|
|
}
|
|
if output.Kind() != aggregation.HistogramKind {
|
|
t.Errorf("recordAggregationsFromPoints(%v) = %v, want %v", input, output.Kind(), aggregation.HistogramKind)
|
|
}
|
|
if end != now {
|
|
t.Errorf("recordAggregationsFromPoints(%v).end() = %v, want %v", input, end, now)
|
|
}
|
|
distAgg, ok := output.(aggregation.Histogram)
|
|
if !ok {
|
|
t.Errorf("recordAggregationsFromPoints(%v) = %v does not implement the aggregation.Points interface", input, output)
|
|
}
|
|
sum, err := distAgg.Sum()
|
|
if err != nil {
|
|
t.Fatalf("Unexpected err: %v", err)
|
|
}
|
|
if sum.AsFloat64() != float64(55) {
|
|
t.Errorf("recordAggregationsFromPoints(%v).Sum() = %v, want %v", input, sum.AsFloat64(), float64(55))
|
|
}
|
|
count, err := distAgg.Count()
|
|
if err != nil {
|
|
t.Fatalf("Unexpected err: %v", err)
|
|
}
|
|
if count != 2 {
|
|
t.Errorf("recordAggregationsFromPoints(%v).Count() = %v, want %v", input, count, 2)
|
|
}
|
|
hist, err := distAgg.Histogram()
|
|
if err != nil {
|
|
t.Fatalf("Unexpected err: %v", err)
|
|
}
|
|
inputBucketBoundaries := []float64{20, 30}
|
|
if len(hist.Boundaries) != len(inputBucketBoundaries) {
|
|
t.Fatalf("recordAggregationsFromPoints(%v).Histogram() produced %d boundaries, want %d boundaries", input, len(hist.Boundaries), len(inputBucketBoundaries))
|
|
}
|
|
for i, b := range hist.Boundaries {
|
|
if b != inputBucketBoundaries[i] {
|
|
t.Errorf("recordAggregationsFromPoints(%v).Histogram().Boundaries[%d] = %v, want %v", input, i, b, inputBucketBoundaries[i])
|
|
}
|
|
}
|
|
inputBucketCounts := []uint64{1, 1}
|
|
if len(hist.Counts) != len(inputBucketCounts) {
|
|
t.Fatalf("recordAggregationsFromPoints(%v).Histogram() produced %d buckets, want %d buckets", input, len(hist.Counts), len(inputBucketCounts))
|
|
}
|
|
for i, c := range hist.Counts {
|
|
if c != inputBucketCounts[i] {
|
|
t.Errorf("recordAggregationsFromPoints(%v).Histogram().Counts[%d] = %d, want %d", input, i, c, inputBucketCounts[i])
|
|
}
|
|
}
|
|
}
|