1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-24 03:47:19 +02:00
Tyler Yahn 1f5b159161
Use already enabled revive linter and add depguard (#2883)
* Refactor golangci-lint conf

Order settings alphabetically.

* Add revive settings to golangci conf

* Check blank imports

* Check bool-literal-in-expr

* Check constant-logical-expr

* Check context-as-argument

* Check context-key-type

* Check deep-exit

* Check defer

* Check dot-imports

* Check duplicated-imports

* Check early-return

* Check empty-block

* Check empty-lines

* Check error-naming

* Check error-return

* Check error-strings

* Check errorf

* Stop ignoring context first arg in tests

* Check exported comments

* Check flag-parameter

* Check identical branches

* Check if-return

* Check increment-decrement

* Check indent-error-flow

* Check deny list of go imports

* Check import shadowing

* Check package comments

* Check range

* Check range val in closure

* Check range val address

* Check redefines builtin id

* Check string-format

* Check struct tag

* Check superfluous else

* Check time equal

* Check var naming

* Check var declaration

* Check unconditional recursion

* Check unexported return

* Check unhandled errors

* Check unnecessary stmt

* Check unnecessary break

* Check waitgroup by value

* Exclude deep-exit check in example*_test.go files
2022-05-19 15:15:07 -05:00

270 lines
7.9 KiB
Go

// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package histogram // import "go.opentelemetry.io/otel/sdk/metric/aggregator/histogram"
import (
"context"
"sort"
"sync"
"go.opentelemetry.io/otel/sdk/metric/aggregator"
"go.opentelemetry.io/otel/sdk/metric/export/aggregation"
"go.opentelemetry.io/otel/sdk/metric/number"
"go.opentelemetry.io/otel/sdk/metric/sdkapi"
)
// Note: This code uses a Mutex to govern access to the exclusive
// aggregator state. This is in contrast to a lock-free approach
// (as in the Go prometheus client) that was reverted here:
// https://github.com/open-telemetry/opentelemetry-go/pull/669
type (
// Aggregator observe events and counts them in pre-determined buckets.
// It also calculates the sum and count of all events.
Aggregator struct {
lock sync.Mutex
boundaries []float64
kind number.Kind
state *state
}
// config describes how the histogram is aggregated.
config struct {
// explicitBoundaries support arbitrary bucketing schemes. This
// is the general case.
explicitBoundaries []float64
}
// Option configures a histogram config.
Option interface {
// apply sets one or more config fields.
apply(*config)
}
// state represents the state of a histogram, consisting of
// the sum and counts for all observed values and
// the less than equal bucket count for the pre-determined boundaries.
state struct {
bucketCounts []uint64
sum number.Number
count uint64
}
)
// WithExplicitBoundaries sets the ExplicitBoundaries configuration option of a config.
func WithExplicitBoundaries(explicitBoundaries []float64) Option {
return explicitBoundariesOption{explicitBoundaries}
}
type explicitBoundariesOption struct {
boundaries []float64
}
func (o explicitBoundariesOption) apply(config *config) {
config.explicitBoundaries = o.boundaries
}
// defaultExplicitBoundaries have been copied from prometheus.DefBuckets.
//
// Note we anticipate the use of a high-precision histogram sketch as
// the standard histogram aggregator for OTLP export.
// (https://github.com/open-telemetry/opentelemetry-specification/issues/982).
var defaultFloat64ExplicitBoundaries = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
// defaultInt64ExplicitBoundaryMultiplier determines the default
// integer histogram boundaries.
const defaultInt64ExplicitBoundaryMultiplier = 1e6
// defaultInt64ExplicitBoundaries applies a multiplier to the default
// float64 boundaries: [ 5K, 10K, 25K, ..., 2.5M, 5M, 10M ].
var defaultInt64ExplicitBoundaries = func(bounds []float64) (asint []float64) {
for _, f := range bounds {
asint = append(asint, defaultInt64ExplicitBoundaryMultiplier*f)
}
return
}(defaultFloat64ExplicitBoundaries)
var _ aggregator.Aggregator = &Aggregator{}
var _ aggregation.Sum = &Aggregator{}
var _ aggregation.Count = &Aggregator{}
var _ aggregation.Histogram = &Aggregator{}
// New returns a new aggregator for computing Histograms.
//
// A Histogram observe events and counts them in pre-defined buckets.
// And also provides the total sum and count of all observations.
//
// Note that this aggregator maintains each value using independent
// atomic operations, which introduces the possibility that
// checkpoints are inconsistent.
func New(cnt int, desc *sdkapi.Descriptor, opts ...Option) []Aggregator {
var cfg config
if desc.NumberKind() == number.Int64Kind {
cfg.explicitBoundaries = defaultInt64ExplicitBoundaries
} else {
cfg.explicitBoundaries = defaultFloat64ExplicitBoundaries
}
for _, opt := range opts {
opt.apply(&cfg)
}
aggs := make([]Aggregator, cnt)
// Boundaries MUST be ordered otherwise the histogram could not
// be properly computed.
sortedBoundaries := make([]float64, len(cfg.explicitBoundaries))
copy(sortedBoundaries, cfg.explicitBoundaries)
sort.Float64s(sortedBoundaries)
for i := range aggs {
aggs[i] = Aggregator{
kind: desc.NumberKind(),
boundaries: sortedBoundaries,
}
aggs[i].state = aggs[i].newState()
}
return aggs
}
// Aggregation returns an interface for reading the state of this aggregator.
func (c *Aggregator) Aggregation() aggregation.Aggregation {
return c
}
// Kind returns aggregation.HistogramKind.
func (c *Aggregator) Kind() aggregation.Kind {
return aggregation.HistogramKind
}
// Sum returns the sum of all values in the checkpoint.
func (c *Aggregator) Sum() (number.Number, error) {
return c.state.sum, nil
}
// Count returns the number of values in the checkpoint.
func (c *Aggregator) Count() (uint64, error) {
return c.state.count, nil
}
// Histogram returns the count of events in pre-determined buckets.
func (c *Aggregator) Histogram() (aggregation.Buckets, error) {
return aggregation.Buckets{
Boundaries: c.boundaries,
Counts: c.state.bucketCounts,
}, nil
}
// SynchronizedMove saves the current state into oa and resets the current state to
// the empty set. Since no locks are taken, there is a chance that
// the independent Sum, Count and Bucket Count are not consistent with each
// other.
func (c *Aggregator) SynchronizedMove(oa aggregator.Aggregator, desc *sdkapi.Descriptor) error {
o, _ := oa.(*Aggregator)
if oa != nil && o == nil {
return aggregator.NewInconsistentAggregatorError(c, oa)
}
if o != nil {
// Swap case: This is the ordinary case for a
// synchronous instrument, where the SDK allocates two
// Aggregators and lock contention is anticipated.
// Reset the target state before swapping it under the
// lock below.
o.clearState()
}
c.lock.Lock()
if o != nil {
c.state, o.state = o.state, c.state
} else {
// No swap case: This is the ordinary case for an
// asynchronous instrument, where the SDK allocates a
// single Aggregator and there is no anticipated lock
// contention.
c.clearState()
}
c.lock.Unlock()
return nil
}
func (c *Aggregator) newState() *state {
return &state{
bucketCounts: make([]uint64, len(c.boundaries)+1),
}
}
func (c *Aggregator) clearState() {
for i := range c.state.bucketCounts {
c.state.bucketCounts[i] = 0
}
c.state.sum = 0
c.state.count = 0
}
// Update adds the recorded measurement to the current data set.
func (c *Aggregator) Update(_ context.Context, n number.Number, desc *sdkapi.Descriptor) error {
kind := desc.NumberKind()
asFloat := n.CoerceToFloat64(kind)
bucketID := len(c.boundaries)
for i, boundary := range c.boundaries {
if asFloat < boundary {
bucketID = i
break
}
}
// Note: Binary-search was compared using the benchmarks. The following
// code is equivalent to the linear search above:
//
// bucketID := sort.Search(len(c.boundaries), func(i int) bool {
// return asFloat < c.boundaries[i]
// })
//
// The binary search wins for very large boundary sets, but
// the linear search performs better up through arrays between
// 256 and 512 elements, which is a relatively large histogram, so we
// continue to prefer linear search.
c.lock.Lock()
defer c.lock.Unlock()
c.state.count++
c.state.sum.AddNumber(kind, n)
c.state.bucketCounts[bucketID]++
return nil
}
// Merge combines two histograms that have the same buckets into a single one.
func (c *Aggregator) Merge(oa aggregator.Aggregator, desc *sdkapi.Descriptor) error {
o, _ := oa.(*Aggregator)
if o == nil {
return aggregator.NewInconsistentAggregatorError(c, oa)
}
c.state.sum.AddNumber(desc.NumberKind(), o.state.sum)
c.state.count += o.state.count
for i := 0; i < len(c.state.bucketCounts); i++ {
c.state.bucketCounts[i] += o.state.bucketCounts[i]
}
return nil
}