mirror of
https://github.com/open-telemetry/opentelemetry-go.git
synced 2025-01-24 03:47:19 +02:00
1f5b159161
* Refactor golangci-lint conf Order settings alphabetically. * Add revive settings to golangci conf * Check blank imports * Check bool-literal-in-expr * Check constant-logical-expr * Check context-as-argument * Check context-key-type * Check deep-exit * Check defer * Check dot-imports * Check duplicated-imports * Check early-return * Check empty-block * Check empty-lines * Check error-naming * Check error-return * Check error-strings * Check errorf * Stop ignoring context first arg in tests * Check exported comments * Check flag-parameter * Check identical branches * Check if-return * Check increment-decrement * Check indent-error-flow * Check deny list of go imports * Check import shadowing * Check package comments * Check range * Check range val in closure * Check range val address * Check redefines builtin id * Check string-format * Check struct tag * Check superfluous else * Check time equal * Check var naming * Check var declaration * Check unconditional recursion * Check unexported return * Check unhandled errors * Check unnecessary stmt * Check unnecessary break * Check waitgroup by value * Exclude deep-exit check in example*_test.go files
270 lines
7.9 KiB
Go
270 lines
7.9 KiB
Go
// Copyright The OpenTelemetry Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package histogram // import "go.opentelemetry.io/otel/sdk/metric/aggregator/histogram"
|
|
|
|
import (
|
|
"context"
|
|
"sort"
|
|
"sync"
|
|
|
|
"go.opentelemetry.io/otel/sdk/metric/aggregator"
|
|
"go.opentelemetry.io/otel/sdk/metric/export/aggregation"
|
|
"go.opentelemetry.io/otel/sdk/metric/number"
|
|
"go.opentelemetry.io/otel/sdk/metric/sdkapi"
|
|
)
|
|
|
|
// Note: This code uses a Mutex to govern access to the exclusive
|
|
// aggregator state. This is in contrast to a lock-free approach
|
|
// (as in the Go prometheus client) that was reverted here:
|
|
// https://github.com/open-telemetry/opentelemetry-go/pull/669
|
|
|
|
type (
|
|
// Aggregator observe events and counts them in pre-determined buckets.
|
|
// It also calculates the sum and count of all events.
|
|
Aggregator struct {
|
|
lock sync.Mutex
|
|
boundaries []float64
|
|
kind number.Kind
|
|
state *state
|
|
}
|
|
|
|
// config describes how the histogram is aggregated.
|
|
config struct {
|
|
// explicitBoundaries support arbitrary bucketing schemes. This
|
|
// is the general case.
|
|
explicitBoundaries []float64
|
|
}
|
|
|
|
// Option configures a histogram config.
|
|
Option interface {
|
|
// apply sets one or more config fields.
|
|
apply(*config)
|
|
}
|
|
|
|
// state represents the state of a histogram, consisting of
|
|
// the sum and counts for all observed values and
|
|
// the less than equal bucket count for the pre-determined boundaries.
|
|
state struct {
|
|
bucketCounts []uint64
|
|
sum number.Number
|
|
count uint64
|
|
}
|
|
)
|
|
|
|
// WithExplicitBoundaries sets the ExplicitBoundaries configuration option of a config.
|
|
func WithExplicitBoundaries(explicitBoundaries []float64) Option {
|
|
return explicitBoundariesOption{explicitBoundaries}
|
|
}
|
|
|
|
type explicitBoundariesOption struct {
|
|
boundaries []float64
|
|
}
|
|
|
|
func (o explicitBoundariesOption) apply(config *config) {
|
|
config.explicitBoundaries = o.boundaries
|
|
}
|
|
|
|
// defaultExplicitBoundaries have been copied from prometheus.DefBuckets.
|
|
//
|
|
// Note we anticipate the use of a high-precision histogram sketch as
|
|
// the standard histogram aggregator for OTLP export.
|
|
// (https://github.com/open-telemetry/opentelemetry-specification/issues/982).
|
|
var defaultFloat64ExplicitBoundaries = []float64{.005, .01, .025, .05, .1, .25, .5, 1, 2.5, 5, 10}
|
|
|
|
// defaultInt64ExplicitBoundaryMultiplier determines the default
|
|
// integer histogram boundaries.
|
|
const defaultInt64ExplicitBoundaryMultiplier = 1e6
|
|
|
|
// defaultInt64ExplicitBoundaries applies a multiplier to the default
|
|
// float64 boundaries: [ 5K, 10K, 25K, ..., 2.5M, 5M, 10M ].
|
|
var defaultInt64ExplicitBoundaries = func(bounds []float64) (asint []float64) {
|
|
for _, f := range bounds {
|
|
asint = append(asint, defaultInt64ExplicitBoundaryMultiplier*f)
|
|
}
|
|
return
|
|
}(defaultFloat64ExplicitBoundaries)
|
|
|
|
var _ aggregator.Aggregator = &Aggregator{}
|
|
var _ aggregation.Sum = &Aggregator{}
|
|
var _ aggregation.Count = &Aggregator{}
|
|
var _ aggregation.Histogram = &Aggregator{}
|
|
|
|
// New returns a new aggregator for computing Histograms.
|
|
//
|
|
// A Histogram observe events and counts them in pre-defined buckets.
|
|
// And also provides the total sum and count of all observations.
|
|
//
|
|
// Note that this aggregator maintains each value using independent
|
|
// atomic operations, which introduces the possibility that
|
|
// checkpoints are inconsistent.
|
|
func New(cnt int, desc *sdkapi.Descriptor, opts ...Option) []Aggregator {
|
|
var cfg config
|
|
|
|
if desc.NumberKind() == number.Int64Kind {
|
|
cfg.explicitBoundaries = defaultInt64ExplicitBoundaries
|
|
} else {
|
|
cfg.explicitBoundaries = defaultFloat64ExplicitBoundaries
|
|
}
|
|
|
|
for _, opt := range opts {
|
|
opt.apply(&cfg)
|
|
}
|
|
|
|
aggs := make([]Aggregator, cnt)
|
|
|
|
// Boundaries MUST be ordered otherwise the histogram could not
|
|
// be properly computed.
|
|
sortedBoundaries := make([]float64, len(cfg.explicitBoundaries))
|
|
|
|
copy(sortedBoundaries, cfg.explicitBoundaries)
|
|
sort.Float64s(sortedBoundaries)
|
|
|
|
for i := range aggs {
|
|
aggs[i] = Aggregator{
|
|
kind: desc.NumberKind(),
|
|
boundaries: sortedBoundaries,
|
|
}
|
|
aggs[i].state = aggs[i].newState()
|
|
}
|
|
return aggs
|
|
}
|
|
|
|
// Aggregation returns an interface for reading the state of this aggregator.
|
|
func (c *Aggregator) Aggregation() aggregation.Aggregation {
|
|
return c
|
|
}
|
|
|
|
// Kind returns aggregation.HistogramKind.
|
|
func (c *Aggregator) Kind() aggregation.Kind {
|
|
return aggregation.HistogramKind
|
|
}
|
|
|
|
// Sum returns the sum of all values in the checkpoint.
|
|
func (c *Aggregator) Sum() (number.Number, error) {
|
|
return c.state.sum, nil
|
|
}
|
|
|
|
// Count returns the number of values in the checkpoint.
|
|
func (c *Aggregator) Count() (uint64, error) {
|
|
return c.state.count, nil
|
|
}
|
|
|
|
// Histogram returns the count of events in pre-determined buckets.
|
|
func (c *Aggregator) Histogram() (aggregation.Buckets, error) {
|
|
return aggregation.Buckets{
|
|
Boundaries: c.boundaries,
|
|
Counts: c.state.bucketCounts,
|
|
}, nil
|
|
}
|
|
|
|
// SynchronizedMove saves the current state into oa and resets the current state to
|
|
// the empty set. Since no locks are taken, there is a chance that
|
|
// the independent Sum, Count and Bucket Count are not consistent with each
|
|
// other.
|
|
func (c *Aggregator) SynchronizedMove(oa aggregator.Aggregator, desc *sdkapi.Descriptor) error {
|
|
o, _ := oa.(*Aggregator)
|
|
|
|
if oa != nil && o == nil {
|
|
return aggregator.NewInconsistentAggregatorError(c, oa)
|
|
}
|
|
|
|
if o != nil {
|
|
// Swap case: This is the ordinary case for a
|
|
// synchronous instrument, where the SDK allocates two
|
|
// Aggregators and lock contention is anticipated.
|
|
// Reset the target state before swapping it under the
|
|
// lock below.
|
|
o.clearState()
|
|
}
|
|
|
|
c.lock.Lock()
|
|
if o != nil {
|
|
c.state, o.state = o.state, c.state
|
|
} else {
|
|
// No swap case: This is the ordinary case for an
|
|
// asynchronous instrument, where the SDK allocates a
|
|
// single Aggregator and there is no anticipated lock
|
|
// contention.
|
|
c.clearState()
|
|
}
|
|
c.lock.Unlock()
|
|
|
|
return nil
|
|
}
|
|
|
|
func (c *Aggregator) newState() *state {
|
|
return &state{
|
|
bucketCounts: make([]uint64, len(c.boundaries)+1),
|
|
}
|
|
}
|
|
|
|
func (c *Aggregator) clearState() {
|
|
for i := range c.state.bucketCounts {
|
|
c.state.bucketCounts[i] = 0
|
|
}
|
|
c.state.sum = 0
|
|
c.state.count = 0
|
|
}
|
|
|
|
// Update adds the recorded measurement to the current data set.
|
|
func (c *Aggregator) Update(_ context.Context, n number.Number, desc *sdkapi.Descriptor) error {
|
|
kind := desc.NumberKind()
|
|
asFloat := n.CoerceToFloat64(kind)
|
|
|
|
bucketID := len(c.boundaries)
|
|
for i, boundary := range c.boundaries {
|
|
if asFloat < boundary {
|
|
bucketID = i
|
|
break
|
|
}
|
|
}
|
|
// Note: Binary-search was compared using the benchmarks. The following
|
|
// code is equivalent to the linear search above:
|
|
//
|
|
// bucketID := sort.Search(len(c.boundaries), func(i int) bool {
|
|
// return asFloat < c.boundaries[i]
|
|
// })
|
|
//
|
|
// The binary search wins for very large boundary sets, but
|
|
// the linear search performs better up through arrays between
|
|
// 256 and 512 elements, which is a relatively large histogram, so we
|
|
// continue to prefer linear search.
|
|
|
|
c.lock.Lock()
|
|
defer c.lock.Unlock()
|
|
|
|
c.state.count++
|
|
c.state.sum.AddNumber(kind, n)
|
|
c.state.bucketCounts[bucketID]++
|
|
|
|
return nil
|
|
}
|
|
|
|
// Merge combines two histograms that have the same buckets into a single one.
|
|
func (c *Aggregator) Merge(oa aggregator.Aggregator, desc *sdkapi.Descriptor) error {
|
|
o, _ := oa.(*Aggregator)
|
|
if o == nil {
|
|
return aggregator.NewInconsistentAggregatorError(c, oa)
|
|
}
|
|
|
|
c.state.sum.AddNumber(desc.NumberKind(), o.state.sum)
|
|
c.state.count += o.state.count
|
|
|
|
for i := 0; i < len(c.state.bucketCounts); i++ {
|
|
c.state.bucketCounts[i] += o.state.bucketCounts[i]
|
|
}
|
|
return nil
|
|
}
|