mirror of
https://github.com/open-telemetry/opentelemetry-go.git
synced 2025-04-23 11:58:56 +02:00
Part of addressing https://github.com/open-telemetry/opentelemetry-go/issues/5542. ### Motivation This removes the `time.Now()` call from filtered-out Exemplars by only invoking `time.Now()` after the filtering decision is made. This improvement is especially noticeable for measurements without any attributes. ``` goos: linux goarch: amd64 pkg: go.opentelemetry.io/otel/sdk/metric cpu: AMD EPYC 7B12 │ old.txt │ new.txt │ │ sec/op │ sec/op vs base │ SyncMeasure/NoView/Int64Counter/Attributes/0-24 158.20n ± 4% 99.83n ± 1% -36.90% (p=0.000 n=10) SyncMeasure/NoView/Int64Counter/Attributes/1-24 333.3n ± 4% 274.8n ± 1% -17.55% (p=0.000 n=10) SyncMeasure/NoView/Int64Counter/Attributes/10-24 1.640µ ± 1% 1.600µ ± 1% -2.41% (p=0.000 n=10) SyncMeasure/NoView/Float64Counter/Attributes/0-24 159.0n ± 3% 101.3n ± 0% -36.27% (p=0.000 n=10) SyncMeasure/NoView/Float64Counter/Attributes/1-24 340.0n ± 2% 272.0n ± 1% -20.00% (p=0.000 n=10) SyncMeasure/NoView/Float64Counter/Attributes/10-24 1.661µ ± 1% 1.597µ ± 0% -3.85% (p=0.000 n=10) SyncMeasure/NoView/Int64UpDownCounter/Attributes/0-24 159.8n ± 1% 103.1n ± 0% -35.50% (p=0.000 n=10) SyncMeasure/NoView/Int64UpDownCounter/Attributes/1-24 339.5n ± 1% 273.1n ± 0% -19.57% (p=0.000 n=10) SyncMeasure/NoView/Int64UpDownCounter/Attributes/10-24 1.656µ ± 0% 1.589µ ± 0% -4.05% (p=0.000 n=10) SyncMeasure/NoView/Float64UpDownCounter/Attributes/0-24 159.3n ± 2% 100.8n ± 0% -36.74% (p=0.000 n=10) SyncMeasure/NoView/Float64UpDownCounter/Attributes/1-24 337.9n ± 2% 271.8n ± 1% -19.55% (p=0.000 n=10) SyncMeasure/NoView/Float64UpDownCounter/Attributes/10-24 1.657µ ± 0% 1.593µ ± 1% -3.83% (p=0.000 n=10) SyncMeasure/NoView/Int64Histogram/Attributes/0-24 144.65n ± 4% 89.38n ± 0% -38.21% (p=0.000 n=10) SyncMeasure/NoView/Int64Histogram/Attributes/1-24 235.7n ± 2% 183.5n ± 0% -22.15% (p=0.000 n=10) SyncMeasure/NoView/Int64Histogram/Attributes/10-24 900.8n ± 1% 836.8n ± 0% -7.10% (p=0.000 n=10) SyncMeasure/NoView/Float64Histogram/Attributes/0-24 145.60n ± 5% 93.48n ± 1% -35.80% (p=0.000 n=10) SyncMeasure/NoView/Float64Histogram/Attributes/1-24 240.9n ± 1% 183.0n ± 0% -24.06% (p=0.000 n=10) SyncMeasure/NoView/Float64Histogram/Attributes/10-24 905.6n ± 1% 826.3n ± 0% -8.76% (p=0.000 n=10) SyncMeasure/DropView/Int64Counter/Attributes/0-24 20.33n ± 0% 20.35n ± 0% ~ (p=0.302 n=10) SyncMeasure/DropView/Int64Counter/Attributes/1-24 26.46n ± 0% 26.45n ± 1% ~ (p=0.868 n=10) SyncMeasure/DropView/Int64Counter/Attributes/10-24 26.50n ± 0% 26.47n ± 0% ~ (p=0.208 n=10) SyncMeasure/DropView/Float64Counter/Attributes/0-24 20.34n ± 1% 20.27n ± 0% -0.34% (p=0.009 n=10) SyncMeasure/DropView/Float64Counter/Attributes/1-24 26.55n ± 0% 26.60n ± 1% ~ (p=0.109 n=10) SyncMeasure/DropView/Float64Counter/Attributes/10-24 26.59n ± 1% 26.57n ± 1% ~ (p=0.926 n=10) SyncMeasure/DropView/Int64UpDownCounter/Attributes/0-24 20.38n ± 1% 20.38n ± 0% ~ (p=0.725 n=10) SyncMeasure/DropView/Int64UpDownCounter/Attributes/1-24 26.39n ± 0% 26.44n ± 0% ~ (p=0.238 n=10) SyncMeasure/DropView/Int64UpDownCounter/Attributes/10-24 26.52n ± 0% 26.42n ± 0% -0.36% (p=0.049 n=10) SyncMeasure/DropView/Float64UpDownCounter/Attributes/0-24 20.30n ± 0% 20.25n ± 0% ~ (p=0.196 n=10) SyncMeasure/DropView/Float64UpDownCounter/Attributes/1-24 26.57n ± 0% 26.54n ± 1% ~ (p=0.540 n=10) SyncMeasure/DropView/Float64UpDownCounter/Attributes/10-24 26.57n ± 0% 26.51n ± 1% ~ (p=0.643 n=10) SyncMeasure/DropView/Int64Histogram/Attributes/0-24 20.37n ± 0% 20.36n ± 1% ~ (p=1.000 n=10) SyncMeasure/DropView/Int64Histogram/Attributes/1-24 26.41n ± 0% 26.50n ± 0% +0.32% (p=0.007 n=10) SyncMeasure/DropView/Int64Histogram/Attributes/10-24 26.44n ± 0% 26.55n ± 1% +0.42% (p=0.012 n=10) SyncMeasure/DropView/Float64Histogram/Attributes/0-24 20.30n ± 0% 20.45n ± 0% +0.74% (p=0.000 n=10) SyncMeasure/DropView/Float64Histogram/Attributes/1-24 26.52n ± 0% 26.48n ± 0% ~ (p=0.127 n=10) SyncMeasure/DropView/Float64Histogram/Attributes/10-24 26.55n ± 0% 26.48n ± 0% -0.26% (p=0.002 n=10) SyncMeasure/AttrFilterView/Int64Counter/Attributes/0-24 170.5n ± 2% 110.8n ± 0% -35.03% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64Counter/Attributes/1-24 402.5n ± 1% 331.5n ± 1% -17.64% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64Counter/Attributes/10-24 1.363µ ± 1% 1.281µ ± 1% -6.02% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64Counter/Attributes/0-24 170.6n ± 1% 111.5n ± 1% -34.64% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64Counter/Attributes/1-24 397.1n ± 1% 335.9n ± 0% -15.41% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64Counter/Attributes/10-24 1.371µ ± 1% 1.279µ ± 1% -6.71% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64UpDownCounter/Attributes/0-24 170.1n ± 1% 112.2n ± 0% -34.09% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64UpDownCounter/Attributes/1-24 397.5n ± 1% 330.2n ± 0% -16.93% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64UpDownCounter/Attributes/10-24 1.371µ ± 1% 1.289µ ± 1% -5.95% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64UpDownCounter/Attributes/0-24 171.4n ± 2% 112.9n ± 0% -34.13% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64UpDownCounter/Attributes/1-24 397.0n ± 3% 336.4n ± 0% -15.24% (p=0.000 n=10) SyncMeasure/AttrFilterView/Float64UpDownCounter/Attributes/10-24 1.383µ ± 1% 1.305µ ± 1% -5.61% (p=0.000 n=10) SyncMeasure/AttrFilterView/Int64Histogram/Attributes/0-24 157.30n ± 2% 98.58n ± 1% -37.33% (p=0.000 n=6+10) ``` ### Changes * Introduce `exemplar.Filter`, which is a filter function based on the context. It will not be user-facing, so we can always add other parameters later if needed. * Introduce `exemplar.FilteredReservoir`, which is similar to a reservoir, except it does not receive a timestamp. It gets the current time after the filter decision has been made. It uses generics to avoid the call to exemplar.NewValue(), since it is internal-only. * The `exemplar.Reservoir` is left as-is, so that it can be made public when exemplars are stable. It still includes a timestamp argument. * Unit tests are updated to expect a much lower number of calls to time.Now * `exemplar.Drop` is now an `exemplar.FilteredReservoir` instead of a `Reservoir`, since we don't need a Reservoir to store things in if the measurement is always dropped. Co-authored-by: Sam Xie <sam@samxie.me> Co-authored-by: Tyler Yahn <MrAlias@users.noreply.github.com>
397 lines
11 KiB
Go
397 lines
11 KiB
Go
// Copyright The OpenTelemetry Authors
|
|
// SPDX-License-Identifier: Apache-2.0
|
|
|
|
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
|
|
|
import (
|
|
"context"
|
|
"sort"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/stretchr/testify/assert"
|
|
"github.com/stretchr/testify/require"
|
|
|
|
"go.opentelemetry.io/otel/attribute"
|
|
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
|
"go.opentelemetry.io/otel/sdk/metric/metricdata/metricdatatest"
|
|
)
|
|
|
|
var (
|
|
bounds = []float64{1, 5}
|
|
noMinMax = false
|
|
)
|
|
|
|
func TestHistogram(t *testing.T) {
|
|
c := new(clock)
|
|
t.Cleanup(c.Register())
|
|
|
|
t.Run("Int64/Delta/Sum", testDeltaHist[int64](conf[int64]{hPt: hPointSummed[int64]}))
|
|
c.Reset()
|
|
t.Run("Int64/Delta/NoSum", testDeltaHist[int64](conf[int64]{noSum: true, hPt: hPoint[int64]}))
|
|
c.Reset()
|
|
t.Run("Float64/Delta/Sum", testDeltaHist[float64](conf[float64]{hPt: hPointSummed[float64]}))
|
|
c.Reset()
|
|
t.Run("Float64/Delta/NoSum", testDeltaHist[float64](conf[float64]{noSum: true, hPt: hPoint[float64]}))
|
|
c.Reset()
|
|
|
|
t.Run("Int64/Cumulative/Sum", testCumulativeHist[int64](conf[int64]{hPt: hPointSummed[int64]}))
|
|
c.Reset()
|
|
t.Run("Int64/Cumulative/NoSum", testCumulativeHist[int64](conf[int64]{noSum: true, hPt: hPoint[int64]}))
|
|
c.Reset()
|
|
t.Run("Float64/Cumulative/Sum", testCumulativeHist[float64](conf[float64]{hPt: hPointSummed[float64]}))
|
|
c.Reset()
|
|
t.Run("Float64/Cumulative/NoSum", testCumulativeHist[float64](conf[float64]{noSum: true, hPt: hPoint[float64]}))
|
|
}
|
|
|
|
type conf[N int64 | float64] struct {
|
|
noSum bool
|
|
hPt func(attribute.Set, N, uint64, time.Time, time.Time) metricdata.HistogramDataPoint[N]
|
|
}
|
|
|
|
func testDeltaHist[N int64 | float64](c conf[N]) func(t *testing.T) {
|
|
in, out := Builder[N]{
|
|
Temporality: metricdata.DeltaTemporality,
|
|
Filter: attrFltr,
|
|
AggregationLimit: 3,
|
|
}.ExplicitBucketHistogram(bounds, noMinMax, c.noSum)
|
|
ctx := context.Background()
|
|
return test[N](in, out, []teststep[N]{
|
|
{
|
|
input: []arg[N]{},
|
|
expect: output{
|
|
n: 0,
|
|
agg: metricdata.Histogram[N]{
|
|
Temporality: metricdata.DeltaTemporality,
|
|
DataPoints: []metricdata.HistogramDataPoint[N]{},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
input: []arg[N]{
|
|
{ctx, 2, alice},
|
|
{ctx, 10, bob},
|
|
{ctx, 2, alice},
|
|
{ctx, 2, alice},
|
|
{ctx, 10, bob},
|
|
},
|
|
expect: output{
|
|
n: 2,
|
|
agg: metricdata.Histogram[N]{
|
|
Temporality: metricdata.DeltaTemporality,
|
|
DataPoints: []metricdata.HistogramDataPoint[N]{
|
|
c.hPt(fltrAlice, 2, 3, y2kPlus(1), y2kPlus(2)),
|
|
c.hPt(fltrBob, 10, 2, y2kPlus(1), y2kPlus(2)),
|
|
},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
input: []arg[N]{
|
|
{ctx, 10, alice},
|
|
{ctx, 3, bob},
|
|
},
|
|
expect: output{
|
|
n: 2,
|
|
agg: metricdata.Histogram[N]{
|
|
Temporality: metricdata.DeltaTemporality,
|
|
DataPoints: []metricdata.HistogramDataPoint[N]{
|
|
c.hPt(fltrAlice, 10, 1, y2kPlus(2), y2kPlus(3)),
|
|
c.hPt(fltrBob, 3, 1, y2kPlus(2), y2kPlus(3)),
|
|
},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
input: []arg[N]{},
|
|
// Delta histograms are expected to reset.
|
|
expect: output{
|
|
n: 0,
|
|
agg: metricdata.Histogram[N]{
|
|
Temporality: metricdata.DeltaTemporality,
|
|
DataPoints: []metricdata.HistogramDataPoint[N]{},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
input: []arg[N]{
|
|
{ctx, 1, alice},
|
|
{ctx, 1, bob},
|
|
// These will exceed cardinality limit.
|
|
{ctx, 1, carol},
|
|
{ctx, 1, dave},
|
|
},
|
|
expect: output{
|
|
n: 3,
|
|
agg: metricdata.Histogram[N]{
|
|
Temporality: metricdata.DeltaTemporality,
|
|
DataPoints: []metricdata.HistogramDataPoint[N]{
|
|
c.hPt(fltrAlice, 1, 1, y2kPlus(4), y2kPlus(5)),
|
|
c.hPt(fltrBob, 1, 1, y2kPlus(4), y2kPlus(5)),
|
|
c.hPt(overflowSet, 1, 2, y2kPlus(4), y2kPlus(5)),
|
|
},
|
|
},
|
|
},
|
|
},
|
|
})
|
|
}
|
|
|
|
func testCumulativeHist[N int64 | float64](c conf[N]) func(t *testing.T) {
|
|
in, out := Builder[N]{
|
|
Temporality: metricdata.CumulativeTemporality,
|
|
Filter: attrFltr,
|
|
AggregationLimit: 3,
|
|
}.ExplicitBucketHistogram(bounds, noMinMax, c.noSum)
|
|
ctx := context.Background()
|
|
return test[N](in, out, []teststep[N]{
|
|
{
|
|
input: []arg[N]{},
|
|
expect: output{
|
|
n: 0,
|
|
agg: metricdata.Histogram[N]{
|
|
Temporality: metricdata.CumulativeTemporality,
|
|
DataPoints: []metricdata.HistogramDataPoint[N]{},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
input: []arg[N]{
|
|
{ctx, 2, alice},
|
|
{ctx, 10, bob},
|
|
{ctx, 2, alice},
|
|
{ctx, 2, alice},
|
|
{ctx, 10, bob},
|
|
},
|
|
expect: output{
|
|
n: 2,
|
|
agg: metricdata.Histogram[N]{
|
|
Temporality: metricdata.CumulativeTemporality,
|
|
DataPoints: []metricdata.HistogramDataPoint[N]{
|
|
c.hPt(fltrAlice, 2, 3, y2kPlus(0), y2kPlus(2)),
|
|
c.hPt(fltrBob, 10, 2, y2kPlus(0), y2kPlus(2)),
|
|
},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
input: []arg[N]{
|
|
{ctx, 2, alice},
|
|
{ctx, 10, bob},
|
|
},
|
|
expect: output{
|
|
n: 2,
|
|
agg: metricdata.Histogram[N]{
|
|
Temporality: metricdata.CumulativeTemporality,
|
|
DataPoints: []metricdata.HistogramDataPoint[N]{
|
|
c.hPt(fltrAlice, 2, 4, y2kPlus(0), y2kPlus(3)),
|
|
c.hPt(fltrBob, 10, 3, y2kPlus(0), y2kPlus(3)),
|
|
},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
input: []arg[N]{},
|
|
expect: output{
|
|
n: 2,
|
|
agg: metricdata.Histogram[N]{
|
|
Temporality: metricdata.CumulativeTemporality,
|
|
DataPoints: []metricdata.HistogramDataPoint[N]{
|
|
c.hPt(fltrAlice, 2, 4, y2kPlus(0), y2kPlus(4)),
|
|
c.hPt(fltrBob, 10, 3, y2kPlus(0), y2kPlus(4)),
|
|
},
|
|
},
|
|
},
|
|
},
|
|
{
|
|
input: []arg[N]{
|
|
// These will exceed cardinality limit.
|
|
{ctx, 1, carol},
|
|
{ctx, 1, dave},
|
|
},
|
|
expect: output{
|
|
n: 3,
|
|
agg: metricdata.Histogram[N]{
|
|
Temporality: metricdata.CumulativeTemporality,
|
|
DataPoints: []metricdata.HistogramDataPoint[N]{
|
|
c.hPt(fltrAlice, 2, 4, y2kPlus(0), y2kPlus(5)),
|
|
c.hPt(fltrBob, 10, 3, y2kPlus(0), y2kPlus(5)),
|
|
c.hPt(overflowSet, 1, 2, y2kPlus(0), y2kPlus(5)),
|
|
},
|
|
},
|
|
},
|
|
},
|
|
})
|
|
}
|
|
|
|
// hPointSummed returns an HistogramDataPoint that started and ended now with
|
|
// multi number of measurements values v. It includes a min and max (set to v).
|
|
func hPointSummed[N int64 | float64](a attribute.Set, v N, multi uint64, start, t time.Time) metricdata.HistogramDataPoint[N] {
|
|
idx := sort.SearchFloat64s(bounds, float64(v))
|
|
counts := make([]uint64, len(bounds)+1)
|
|
counts[idx] += multi
|
|
return metricdata.HistogramDataPoint[N]{
|
|
Attributes: a,
|
|
StartTime: start,
|
|
Time: t,
|
|
Count: multi,
|
|
Bounds: bounds,
|
|
BucketCounts: counts,
|
|
Min: metricdata.NewExtrema(v),
|
|
Max: metricdata.NewExtrema(v),
|
|
Sum: v * N(multi),
|
|
}
|
|
}
|
|
|
|
// hPoint returns an HistogramDataPoint that started and ended now with multi
|
|
// number of measurements values v. It includes a min and max (set to v).
|
|
func hPoint[N int64 | float64](a attribute.Set, v N, multi uint64, start, t time.Time) metricdata.HistogramDataPoint[N] {
|
|
idx := sort.SearchFloat64s(bounds, float64(v))
|
|
counts := make([]uint64, len(bounds)+1)
|
|
counts[idx] += multi
|
|
return metricdata.HistogramDataPoint[N]{
|
|
Attributes: a,
|
|
StartTime: start,
|
|
Time: t,
|
|
Count: multi,
|
|
Bounds: bounds,
|
|
BucketCounts: counts,
|
|
Min: metricdata.NewExtrema(v),
|
|
Max: metricdata.NewExtrema(v),
|
|
}
|
|
}
|
|
|
|
func TestBucketsBin(t *testing.T) {
|
|
t.Run("Int64", testBucketsBin[int64]())
|
|
t.Run("Float64", testBucketsBin[float64]())
|
|
}
|
|
|
|
func testBucketsBin[N int64 | float64]() func(t *testing.T) {
|
|
return func(t *testing.T) {
|
|
b := newBuckets[N](alice, 3)
|
|
assertB := func(counts []uint64, count uint64, min, max N) {
|
|
t.Helper()
|
|
assert.Equal(t, counts, b.counts)
|
|
assert.Equal(t, count, b.count)
|
|
assert.Equal(t, min, b.min)
|
|
assert.Equal(t, max, b.max)
|
|
}
|
|
|
|
assertB([]uint64{0, 0, 0}, 0, 0, 0)
|
|
b.bin(1, 2)
|
|
assertB([]uint64{0, 1, 0}, 1, 0, 2)
|
|
b.bin(0, -1)
|
|
assertB([]uint64{1, 1, 0}, 2, -1, 2)
|
|
}
|
|
}
|
|
|
|
func TestBucketsSum(t *testing.T) {
|
|
t.Run("Int64", testBucketsSum[int64]())
|
|
t.Run("Float64", testBucketsSum[float64]())
|
|
}
|
|
|
|
func testBucketsSum[N int64 | float64]() func(t *testing.T) {
|
|
return func(t *testing.T) {
|
|
b := newBuckets[N](alice, 3)
|
|
|
|
var want N
|
|
assert.Equal(t, want, b.total)
|
|
|
|
b.sum(2)
|
|
want = 2
|
|
assert.Equal(t, want, b.total)
|
|
|
|
b.sum(-1)
|
|
want = 1
|
|
assert.Equal(t, want, b.total)
|
|
}
|
|
}
|
|
|
|
func TestHistogramImmutableBounds(t *testing.T) {
|
|
b := []float64{0, 1, 2}
|
|
cpB := make([]float64, len(b))
|
|
copy(cpB, b)
|
|
|
|
h := newHistogram[int64](b, false, false, 0, dropExemplars[int64])
|
|
require.Equal(t, cpB, h.bounds)
|
|
|
|
b[0] = 10
|
|
assert.Equal(t, cpB, h.bounds, "modifying the bounds argument should not change the bounds")
|
|
|
|
h.measure(context.Background(), 5, alice, nil)
|
|
|
|
var data metricdata.Aggregation = metricdata.Histogram[int64]{}
|
|
h.cumulative(&data)
|
|
hdp := data.(metricdata.Histogram[int64]).DataPoints[0]
|
|
hdp.Bounds[1] = 10
|
|
assert.Equal(t, cpB, h.bounds, "modifying the Aggregation bounds should not change the bounds")
|
|
}
|
|
|
|
func TestCumulativeHistogramImutableCounts(t *testing.T) {
|
|
h := newHistogram[int64](bounds, noMinMax, false, 0, dropExemplars[int64])
|
|
h.measure(context.Background(), 5, alice, nil)
|
|
|
|
var data metricdata.Aggregation = metricdata.Histogram[int64]{}
|
|
h.cumulative(&data)
|
|
hdp := data.(metricdata.Histogram[int64]).DataPoints[0]
|
|
|
|
require.Equal(t, hdp.BucketCounts, h.values[alice.Equivalent()].counts)
|
|
|
|
cpCounts := make([]uint64, len(hdp.BucketCounts))
|
|
copy(cpCounts, hdp.BucketCounts)
|
|
hdp.BucketCounts[0] = 10
|
|
assert.Equal(t, cpCounts, h.values[alice.Equivalent()].counts, "modifying the Aggregator bucket counts should not change the Aggregator")
|
|
}
|
|
|
|
func TestDeltaHistogramReset(t *testing.T) {
|
|
orig := now
|
|
now = func() time.Time { return y2k }
|
|
t.Cleanup(func() { now = orig })
|
|
|
|
h := newHistogram[int64](bounds, noMinMax, false, 0, dropExemplars[int64])
|
|
|
|
var data metricdata.Aggregation = metricdata.Histogram[int64]{}
|
|
require.Equal(t, 0, h.delta(&data))
|
|
require.Len(t, data.(metricdata.Histogram[int64]).DataPoints, 0)
|
|
|
|
h.measure(context.Background(), 1, alice, nil)
|
|
|
|
expect := metricdata.Histogram[int64]{Temporality: metricdata.DeltaTemporality}
|
|
expect.DataPoints = []metricdata.HistogramDataPoint[int64]{hPointSummed[int64](alice, 1, 1, now(), now())}
|
|
h.delta(&data)
|
|
metricdatatest.AssertAggregationsEqual(t, expect, data)
|
|
|
|
// The attr set should be forgotten once Aggregations is called.
|
|
expect.DataPoints = nil
|
|
assert.Equal(t, 0, h.delta(&data))
|
|
assert.Len(t, data.(metricdata.Histogram[int64]).DataPoints, 0)
|
|
|
|
// Aggregating another set should not affect the original (alice).
|
|
h.measure(context.Background(), 1, bob, nil)
|
|
expect.DataPoints = []metricdata.HistogramDataPoint[int64]{hPointSummed[int64](bob, 1, 1, now(), now())}
|
|
h.delta(&data)
|
|
metricdatatest.AssertAggregationsEqual(t, expect, data)
|
|
}
|
|
|
|
func BenchmarkHistogram(b *testing.B) {
|
|
b.Run("Int64/Cumulative", benchmarkAggregate(func() (Measure[int64], ComputeAggregation) {
|
|
return Builder[int64]{
|
|
Temporality: metricdata.CumulativeTemporality,
|
|
}.ExplicitBucketHistogram(bounds, noMinMax, false)
|
|
}))
|
|
b.Run("Int64/Delta", benchmarkAggregate(func() (Measure[int64], ComputeAggregation) {
|
|
return Builder[int64]{
|
|
Temporality: metricdata.DeltaTemporality,
|
|
}.ExplicitBucketHistogram(bounds, noMinMax, false)
|
|
}))
|
|
b.Run("Float64/Cumulative", benchmarkAggregate(func() (Measure[float64], ComputeAggregation) {
|
|
return Builder[float64]{
|
|
Temporality: metricdata.CumulativeTemporality,
|
|
}.ExplicitBucketHistogram(bounds, noMinMax, false)
|
|
}))
|
|
b.Run("Float64/Delta", benchmarkAggregate(func() (Measure[float64], ComputeAggregation) {
|
|
return Builder[float64]{
|
|
Temporality: metricdata.DeltaTemporality,
|
|
}.ExplicitBucketHistogram(bounds, noMinMax, false)
|
|
}))
|
|
}
|