mirror of
https://github.com/open-telemetry/opentelemetry-go.git
synced 2025-01-07 23:02:15 +02:00
0bb12d9b1b
* New label set API * Checkpoint * Remove label.Labels interface * Fix trace * Remove label storage * Restore metric_test.go * Tidy tests * More comments * More comments * Same changes as 654 * Checkpoint * Fix batch labels * Avoid Resource.Attributes() where possible * Update comments and restore order in resource.go * From feedback * From feedback * Move iterator_test & feedback * Strenghten the label.Set test * Feedback on typos * Fix the set test per @krnowak * Nit
390 lines
9.6 KiB
Go
390 lines
9.6 KiB
Go
// Copyright The OpenTelemetry Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package label // import "go.opentelemetry.io/otel/api/label"
|
|
|
|
import (
|
|
"encoding/json"
|
|
"reflect"
|
|
"sort"
|
|
"sync"
|
|
|
|
"go.opentelemetry.io/otel/api/core"
|
|
)
|
|
|
|
type (
|
|
// Set is the representation for a distinct label set. It
|
|
// manages an immutable set of labels, with an internal cache
|
|
// for storing label encodings.
|
|
//
|
|
// This type supports the `Equivalent` method of comparison
|
|
// using values of type `Distinct`.
|
|
//
|
|
// This type is used to implement:
|
|
// 1. Metric labels
|
|
// 2. Resource sets
|
|
// 3. Correlation map (TODO)
|
|
Set struct {
|
|
equivalent Distinct
|
|
|
|
lock sync.Mutex
|
|
encoders [maxConcurrentEncoders]EncoderID
|
|
encoded [maxConcurrentEncoders]string
|
|
}
|
|
|
|
// Distinct wraps a variable-size array of `core.KeyValue`,
|
|
// constructed with keys in sorted order. This can be used as
|
|
// a map key or for equality checking between Sets.
|
|
Distinct struct {
|
|
iface interface{}
|
|
}
|
|
|
|
// Sortable implements `sort.Interface`, used for sorting
|
|
// `core.KeyValue`. This is an exported type to support a
|
|
// memory optimization. A pointer to one of these is needed
|
|
// for the call to `sort.Stable()`, which the caller may
|
|
// provide in order to avoid an allocation. See
|
|
// `NewSetWithSortable()`.
|
|
Sortable []core.KeyValue
|
|
)
|
|
|
|
var (
|
|
// keyValueType is used in `computeDistinctReflect`.
|
|
keyValueType = reflect.TypeOf(core.KeyValue{})
|
|
|
|
// emptySet is returned for empty label sets.
|
|
emptySet = &Set{
|
|
equivalent: Distinct{
|
|
iface: [0]core.KeyValue{},
|
|
},
|
|
}
|
|
)
|
|
|
|
const maxConcurrentEncoders = 3
|
|
|
|
func EmptySet() *Set {
|
|
return emptySet
|
|
}
|
|
|
|
// reflect abbreviates `reflect.ValueOf`.
|
|
func (d Distinct) reflect() reflect.Value {
|
|
return reflect.ValueOf(d.iface)
|
|
}
|
|
|
|
// Valid returns true if this value refers to a valid `*Set`.
|
|
func (d Distinct) Valid() bool {
|
|
return d.iface != nil
|
|
}
|
|
|
|
// Len returns the number of labels in this set.
|
|
func (l *Set) Len() int {
|
|
if l == nil || !l.equivalent.Valid() {
|
|
return 0
|
|
}
|
|
return l.equivalent.reflect().Len()
|
|
}
|
|
|
|
// Get returns the KeyValue at ordered position `idx` in this set.
|
|
func (l *Set) Get(idx int) (core.KeyValue, bool) {
|
|
if l == nil {
|
|
return core.KeyValue{}, false
|
|
}
|
|
value := l.equivalent.reflect()
|
|
|
|
if idx >= 0 && idx < value.Len() {
|
|
// Note: The Go compiler successfully avoids an allocation for
|
|
// the interface{} conversion here:
|
|
return value.Index(idx).Interface().(core.KeyValue), true
|
|
}
|
|
|
|
return core.KeyValue{}, false
|
|
}
|
|
|
|
// Value returns the value of a specified key in this set.
|
|
func (l *Set) Value(k core.Key) (core.Value, bool) {
|
|
if l == nil {
|
|
return core.Value{}, false
|
|
}
|
|
value := l.equivalent.reflect()
|
|
vlen := value.Len()
|
|
|
|
idx := sort.Search(vlen, func(idx int) bool {
|
|
return value.Index(idx).Interface().(core.KeyValue).Key >= k
|
|
})
|
|
if idx >= vlen {
|
|
return core.Value{}, false
|
|
}
|
|
kv := value.Index(idx).Interface().(core.KeyValue)
|
|
if k == kv.Key {
|
|
return kv.Value, true
|
|
}
|
|
return core.Value{}, false
|
|
}
|
|
|
|
// HasValue tests whether a key is defined in this set.
|
|
func (l *Set) HasValue(k core.Key) bool {
|
|
if l == nil {
|
|
return false
|
|
}
|
|
_, ok := l.Value(k)
|
|
return ok
|
|
}
|
|
|
|
// Iter returns an iterator for visiting the labels in this set.
|
|
func (l *Set) Iter() Iterator {
|
|
return Iterator{
|
|
storage: l,
|
|
idx: -1,
|
|
}
|
|
}
|
|
|
|
// ToSlice returns the set of labels belonging to this set, sorted,
|
|
// where keys appear no more than once.
|
|
func (l *Set) ToSlice() []core.KeyValue {
|
|
iter := l.Iter()
|
|
return iter.ToSlice()
|
|
}
|
|
|
|
// Equivalent returns a value that may be used as a map key. The
|
|
// Distinct type guarantees that the result will equal the equivalent
|
|
// Distinct value of any label set with the same elements as this,
|
|
// where sets are made unique by choosing the last value in the input
|
|
// for any given key.
|
|
func (l *Set) Equivalent() Distinct {
|
|
if l == nil || !l.equivalent.Valid() {
|
|
return emptySet.equivalent
|
|
}
|
|
return l.equivalent
|
|
}
|
|
|
|
// Equals returns true if the argument set is equivalent to this set.
|
|
func (l *Set) Equals(o *Set) bool {
|
|
return l.Equivalent() == o.Equivalent()
|
|
}
|
|
|
|
// Encoded returns the encoded form of this set, according to
|
|
// `encoder`. The result will be cached in this `*Set`.
|
|
func (l *Set) Encoded(encoder Encoder) string {
|
|
if l == nil || encoder == nil {
|
|
return ""
|
|
}
|
|
|
|
id := encoder.ID()
|
|
if !id.Valid() {
|
|
// Invalid IDs are not cached.
|
|
return encoder.Encode(l.Iter())
|
|
}
|
|
|
|
var lookup *string
|
|
l.lock.Lock()
|
|
for idx := 0; idx < maxConcurrentEncoders; idx++ {
|
|
if l.encoders[idx] == id {
|
|
lookup = &l.encoded[idx]
|
|
break
|
|
}
|
|
}
|
|
l.lock.Unlock()
|
|
|
|
if lookup != nil {
|
|
return *lookup
|
|
}
|
|
|
|
r := encoder.Encode(l.Iter())
|
|
|
|
l.lock.Lock()
|
|
defer l.lock.Unlock()
|
|
|
|
for idx := 0; idx < maxConcurrentEncoders; idx++ {
|
|
if l.encoders[idx] == id {
|
|
return l.encoded[idx]
|
|
}
|
|
if !l.encoders[idx].Valid() {
|
|
l.encoders[idx] = id
|
|
l.encoded[idx] = r
|
|
return r
|
|
}
|
|
}
|
|
|
|
// TODO: This is a performance cliff. Find a way for this to
|
|
// generate a warning.
|
|
return r
|
|
}
|
|
|
|
// NewSet returns a new `*Set`. See the documentation for
|
|
// `NewSetWithSortable` for more details.
|
|
//
|
|
// Except for empty sets, this method adds an additional allocation
|
|
// compared with a call to `NewSetWithSortable`.
|
|
func NewSet(kvs ...core.KeyValue) Set {
|
|
// Check for empty set.
|
|
if len(kvs) == 0 {
|
|
return Set{
|
|
equivalent: emptySet.equivalent,
|
|
}
|
|
}
|
|
|
|
return NewSetWithSortable(kvs, new(Sortable))
|
|
}
|
|
|
|
// NewSetWithSortable returns a new `*Set`.
|
|
//
|
|
// Duplicate keys are eliminated by taking the last value. This
|
|
// re-orders the input slice so that unique last-values are contiguous
|
|
// at the end of the slice.
|
|
//
|
|
// This ensures the following:
|
|
//
|
|
// - Last-value-wins semantics
|
|
// - Caller sees the reordering, but doesn't lose values
|
|
// - Repeated call preserve last-value wins.
|
|
//
|
|
// Note that methods are defined `*Set`, although no allocation for
|
|
// `Set` is required. Callers can avoid memory allocations by:
|
|
//
|
|
// - allocating a `Sortable` for use as a temporary in this method
|
|
// - allocating a `Set` for storing the return value of this
|
|
// constructor.
|
|
//
|
|
// The result maintains a cache of encoded labels, by label.EncoderID.
|
|
// This value should not be copied after its first use.
|
|
func NewSetWithSortable(kvs []core.KeyValue, tmp *Sortable) Set {
|
|
// Check for empty set.
|
|
if len(kvs) == 0 {
|
|
return Set{
|
|
equivalent: emptySet.equivalent,
|
|
}
|
|
}
|
|
|
|
*tmp = kvs
|
|
|
|
// Stable sort so the following de-duplication can implement
|
|
// last-value-wins semantics.
|
|
sort.Stable(tmp)
|
|
|
|
*tmp = nil
|
|
|
|
position := len(kvs) - 1
|
|
offset := position - 1
|
|
|
|
// The requirements stated above require that the stable
|
|
// result be placed in the end of the input slice, while
|
|
// overwritten values are swapped to the beginning.
|
|
//
|
|
// De-duplicate with last-value-wins semantics. Preserve
|
|
// duplicate values at the beginning of the input slice.
|
|
for ; offset >= 0; offset-- {
|
|
if kvs[offset].Key == kvs[position].Key {
|
|
continue
|
|
}
|
|
kvs[offset], kvs[position-1] = kvs[position-1], kvs[offset]
|
|
position--
|
|
}
|
|
|
|
return Set{
|
|
equivalent: computeDistinct(kvs[position:]),
|
|
}
|
|
}
|
|
|
|
// computeDistinct returns a `Distinct` using either the fixed- or
|
|
// reflect-oriented code path, depending on the size of the input.
|
|
// The input slice is assumed to already be sorted and de-duplicated.
|
|
func computeDistinct(kvs []core.KeyValue) Distinct {
|
|
iface := computeDistinctFixed(kvs)
|
|
if iface == nil {
|
|
iface = computeDistinctReflect(kvs)
|
|
}
|
|
return Distinct{
|
|
iface: iface,
|
|
}
|
|
}
|
|
|
|
// computeDistinctFixed computes a `Distinct` for small slices. It
|
|
// returns nil if the input is too large for this code path.
|
|
func computeDistinctFixed(kvs []core.KeyValue) interface{} {
|
|
switch len(kvs) {
|
|
case 1:
|
|
ptr := new([1]core.KeyValue)
|
|
copy((*ptr)[:], kvs)
|
|
return *ptr
|
|
case 2:
|
|
ptr := new([2]core.KeyValue)
|
|
copy((*ptr)[:], kvs)
|
|
return *ptr
|
|
case 3:
|
|
ptr := new([3]core.KeyValue)
|
|
copy((*ptr)[:], kvs)
|
|
return *ptr
|
|
case 4:
|
|
ptr := new([4]core.KeyValue)
|
|
copy((*ptr)[:], kvs)
|
|
return *ptr
|
|
case 5:
|
|
ptr := new([5]core.KeyValue)
|
|
copy((*ptr)[:], kvs)
|
|
return *ptr
|
|
case 6:
|
|
ptr := new([6]core.KeyValue)
|
|
copy((*ptr)[:], kvs)
|
|
return *ptr
|
|
case 7:
|
|
ptr := new([7]core.KeyValue)
|
|
copy((*ptr)[:], kvs)
|
|
return *ptr
|
|
case 8:
|
|
ptr := new([8]core.KeyValue)
|
|
copy((*ptr)[:], kvs)
|
|
return *ptr
|
|
case 9:
|
|
ptr := new([9]core.KeyValue)
|
|
copy((*ptr)[:], kvs)
|
|
return *ptr
|
|
case 10:
|
|
ptr := new([10]core.KeyValue)
|
|
copy((*ptr)[:], kvs)
|
|
return *ptr
|
|
default:
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// computeDistinctReflect computes a `Distinct` using reflection,
|
|
// works for any size input.
|
|
func computeDistinctReflect(kvs []core.KeyValue) interface{} {
|
|
at := reflect.New(reflect.ArrayOf(len(kvs), keyValueType)).Elem()
|
|
for i, kv := range kvs {
|
|
*(at.Index(i).Addr().Interface().(*core.KeyValue)) = kv
|
|
}
|
|
return at.Interface()
|
|
}
|
|
|
|
// MarshalJSON returns the JSON encoding of the `*Set`.
|
|
func (l *Set) MarshalJSON() ([]byte, error) {
|
|
return json.Marshal(l.equivalent.iface)
|
|
}
|
|
|
|
// Len implements `sort.Interface`.
|
|
func (l *Sortable) Len() int {
|
|
return len(*l)
|
|
}
|
|
|
|
// Swap implements `sort.Interface`.
|
|
func (l *Sortable) Swap(i, j int) {
|
|
(*l)[i], (*l)[j] = (*l)[j], (*l)[i]
|
|
}
|
|
|
|
// Less implements `sort.Interface`.
|
|
func (l *Sortable) Less(i, j int) bool {
|
|
return (*l)[i].Key < (*l)[j].Key
|
|
}
|