1
0
mirror of https://github.com/open-telemetry/opentelemetry-go.git synced 2025-01-26 03:52:03 +02:00
Joshua MacDonald 3475d5575e
Fix incorrect aggregation; Prometheus exporter behavior (#903)
* Avoid applying stale udpates; add a test

* Add Memory option to basic processor

* Always use memory in the pull controller

* Test the memory option

* Precommit

* Add a Prometheus-specific test

* More comment on Memory option

* Link to 862

* Remove sleep

* Update changelog

* Comment on stale and stateless aggregators

* Update sdk/metric/processor/basic/config.go

Co-authored-by: Tyler Yahn <MrAlias@users.noreply.github.com>

Co-authored-by: Liz Fong-Jones <lizf@honeycomb.io>
Co-authored-by: Tyler Yahn <MrAlias@users.noreply.github.com>
2020-07-07 12:52:35 -07:00

423 lines
14 KiB
Go

// Copyright The OpenTelemetry Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package basic // import "go.opentelemetry.io/otel/sdk/metric/processor/basic"
import (
"errors"
"fmt"
"sync"
"time"
"go.opentelemetry.io/otel/api/label"
"go.opentelemetry.io/otel/api/metric"
export "go.opentelemetry.io/otel/sdk/export/metric"
"go.opentelemetry.io/otel/sdk/export/metric/aggregation"
"go.opentelemetry.io/otel/sdk/resource"
)
type (
Processor struct {
export.ExportKindSelector
export.AggregatorSelector
state
}
stateKey struct {
// TODO: This code is organized to support multiple
// accumulators which could theoretically produce the
// data for the same instrument with the same
// resources, and this code has logic to combine data
// properly from multiple accumulators. However, the
// use of *metric.Descriptor in the stateKey makes
// such combination impossible, because each
// accumulator allocates its own instruments. This
// can be fixed by using the instrument name and kind
// instead of the descriptor pointer. See
// https://github.com/open-telemetry/opentelemetry-go/issues/862.
descriptor *metric.Descriptor
distinct label.Distinct
resource label.Distinct
}
stateValue struct {
// labels corresponds to the stateKey.distinct field.
labels *label.Set
// resource corresponds to the stateKey.resource field.
resource *resource.Resource
// updated indicates the last sequence number when this value had
// Process() called by an accumulator.
updated int64
// stateful indicates that a cumulative aggregation is
// being maintained, taken from the process start time.
stateful bool
// TODO: as seen in lengthy comments below, both the
// `current` and `delta` fields have multiple uses
// depending on the specific configuration of
// instrument, exporter, and accumulator. It is
// possible to simplify this situation by declaring
// explicit fields that are not used with a dual
// purpose. Improve this situation?
//
// 1. "delta" is used to combine deltas from multiple
// accumulators, and it is also used to store the
// output of subtraction when computing deltas of
// PrecomputedSum instruments.
//
// 2. "current" either refers to the Aggregator passed
// to Process() by a single accumulator (when either
// there is just one Accumulator, or the instrument is
// Asynchronous), or it refers to "delta", depending
// on configuration.
current export.Aggregator // refers to single-accumulator checkpoint or delta.
delta export.Aggregator // owned if multi accumulator else nil.
cumulative export.Aggregator // owned if stateful else nil.
}
state struct {
config Config
// RWMutex implements locking for the `CheckpointSet` interface.
sync.RWMutex
values map[stateKey]*stateValue
// Note: the timestamp logic currently assumes all
// exports are deltas.
processStart time.Time
intervalStart time.Time
intervalEnd time.Time
// startedCollection and finishedCollection are the
// number of StartCollection() and FinishCollection()
// calls, used to ensure that the sequence of starts
// and finishes are correctly balanced.
startedCollection int64
finishedCollection int64
}
)
var _ export.Processor = &Processor{}
var _ export.CheckpointSet = &state{}
var ErrInconsistentState = fmt.Errorf("inconsistent processor state")
var ErrInvalidExporterKind = fmt.Errorf("invalid exporter kind")
// New returns a basic Processor using the provided
// AggregatorSelector to select Aggregators. The ExportKindSelector
// is consulted to determine the kind(s) of exporter that will consume
// data, so that this Processor can prepare to compute Delta or
// Cumulative Aggregations as needed.
func New(aselector export.AggregatorSelector, eselector export.ExportKindSelector, opts ...Option) *Processor {
now := time.Now()
p := &Processor{
AggregatorSelector: aselector,
ExportKindSelector: eselector,
state: state{
values: map[stateKey]*stateValue{},
processStart: now,
intervalStart: now,
},
}
for _, opt := range opts {
opt.ApplyProcessor(&p.config)
}
return p
}
// Process implements export.Processor.
func (b *Processor) Process(accum export.Accumulation) error {
if b.startedCollection != b.finishedCollection+1 {
return ErrInconsistentState
}
desc := accum.Descriptor()
key := stateKey{
descriptor: desc,
distinct: accum.Labels().Equivalent(),
resource: accum.Resource().Equivalent(),
}
agg := accum.Aggregator()
// Check if there is an existing value.
value, ok := b.state.values[key]
if !ok {
stateful := b.ExportKindFor(desc, agg.Aggregation().Kind()).MemoryRequired(desc.MetricKind())
newValue := &stateValue{
labels: accum.Labels(),
resource: accum.Resource(),
updated: b.state.finishedCollection,
stateful: stateful,
current: agg,
}
if stateful {
if desc.MetricKind().PrecomputedSum() {
// If we know we need to compute deltas, allocate two aggregators.
b.AggregatorFor(desc, &newValue.cumulative, &newValue.delta)
} else {
// In this case we are not certain to need a delta, only allocate a
// cumulative aggregator. We _may_ need a delta accumulator if
// multiple synchronous Accumulators produce an Accumulation (handled
// below), which requires merging them into a temporary Aggregator.
b.AggregatorFor(desc, &newValue.cumulative)
}
}
b.state.values[key] = newValue
return nil
}
// Advance the update sequence number.
sameCollection := b.state.finishedCollection == value.updated
value.updated = b.state.finishedCollection
// At this point in the code, we have located an existing
// value for some stateKey. This can be because:
//
// (a) stateful aggregation is being used, the entry was
// entered during a prior collection, and this is the first
// time processing an accumulation for this stateKey in the
// current collection. Since this is the first time
// processing an accumulation for this stateKey during this
// collection, we don't know yet whether there are multiple
// accumulators at work. If there are multiple accumulators,
// they'll hit case (b) the second time through.
//
// (b) multiple accumulators are being used, whether stateful
// or not.
//
// Case (a) occurs when the instrument and the exporter
// require memory to work correctly, either because the
// instrument reports a PrecomputedSum to a DeltaExporter or
// the reverse, a non-PrecomputedSum instrument with a
// CumulativeExporter. This logic is encapsulated in
// ExportKind.MemoryRequired(MetricKind).
//
// Case (b) occurs when the variable `sameCollection` is true,
// indicating that the stateKey for Accumulation has already
// been seen in the same collection. When this happens, it
// implies that multiple Accumulators are being used because
// the Accumulator outputs a maximum of one Accumulation per
// instrument and label set.
//
// The following logic distinguishes between asynchronous and
// synchronous instruments in order to ensure that the use of
// multiple Accumulators does not change instrument semantics.
// To maintain the instrument semantics, multiple synchronous
// Accumulations should be merged, whereas when multiple
// asynchronous Accumulations are processed, the last value
// should be kept.
if !sameCollection {
// This is the first Accumulation we've seen for this
// stateKey during this collection. Just keep a
// reference to the Accumulator's Aggregator.
value.current = agg
return nil
}
if desc.MetricKind().Asynchronous() {
// The last value across multiple accumulators is taken.
// Just keep a reference to the Accumulator's Aggregator.
value.current = agg
return nil
}
// The above two cases are keeping a reference to the
// Accumulator's Aggregator. The remaining cases address
// synchronous instruments, which always merge multiple
// Accumulations using `value.delta` for temporary storage.
if value.delta == nil {
// The temporary `value.delta` may have been allocated
// already, either in a prior pass through this block of
// code or in the `!ok` branch above. It would be
// allocated in the `!ok` branch if this is stateful
// PrecomputedSum instrument (in which case the exporter
// is requesting a delta so we allocate it up front),
// and it would be allocated in this block when multiple
// accumulators are used and the first condition is not
// met.
b.AggregatorSelector.AggregatorFor(desc, &value.delta)
}
if value.current != value.delta {
// If the current and delta Aggregators are not the same it
// implies that multiple Accumulators were used. The first
// Accumulation seen for a given stateKey will return in
// one of the cases above after assigning `value.current
// = agg` (i.e., after taking a reference to the
// Accumulator's Aggregator).
//
// The second time through this branch copies the
// Accumulator's Aggregator into `value.delta` and sets
// `value.current` appropriately to avoid this branch if
// a third Accumulator is used.
err := value.current.SynchronizedMove(value.delta, desc)
if err != nil {
return err
}
value.current = value.delta
}
// The two statements above ensures that `value.current` refers
// to `value.delta` and not to an Accumulator's Aggregator. Now
// combine this Accumulation with the prior Accumulation.
return value.delta.Merge(agg, desc)
}
// CheckpointSet returns the associated CheckpointSet. Use the
// CheckpointSet Locker interface to synchronize access to this
// object. The CheckpointSet.ForEach() method cannot be called
// concurrently with Process().
func (b *Processor) CheckpointSet() export.CheckpointSet {
return &b.state
}
// StartCollection signals to the Processor one or more Accumulators
// will begin calling Process() calls during collection.
func (b *Processor) StartCollection() {
if b.startedCollection != 0 {
b.intervalStart = b.intervalEnd
}
b.startedCollection++
}
// FinishCollection signals to the Processor that a complete
// collection has finished and that ForEach will be called to access
// the CheckpointSet.
func (b *Processor) FinishCollection() error {
b.intervalEnd = time.Now()
if b.startedCollection != b.finishedCollection+1 {
return ErrInconsistentState
}
defer func() { b.finishedCollection++ }()
for key, value := range b.values {
mkind := key.descriptor.MetricKind()
stale := value.updated != b.finishedCollection
stateless := !value.stateful
// The following branch updates stateful aggregators. Skip
// these updates if the aggregator is not stateful or if the
// aggregator is stale.
if stale || stateless {
// If this processor does not require memeory,
// stale, stateless entries can be removed.
// This implies that they were not updated
// over the previous full collection interval.
if stale && stateless && !b.config.Memory {
delete(b.values, key)
}
continue
}
// Update Aggregator state to support exporting either a
// delta or a cumulative aggregation.
var err error
if mkind.PrecomputedSum() {
if currentSubtractor, ok := value.current.(export.Subtractor); ok {
// This line is equivalent to:
// value.delta = currentSubtractor - value.cumulative
err = currentSubtractor.Subtract(value.cumulative, value.delta, key.descriptor)
if err == nil {
err = value.current.SynchronizedMove(value.cumulative, key.descriptor)
}
} else {
err = aggregation.ErrNoSubtraction
}
} else {
// This line is equivalent to:
// value.cumulative = value.cumulative + value.delta
err = value.cumulative.Merge(value.current, key.descriptor)
}
if err != nil {
return err
}
}
return nil
}
// ForEach iterates through the CheckpointSet, passing an
// export.Record with the appropriate Cumulative or Delta aggregation
// to an exporter.
func (b *state) ForEach(exporter export.ExportKindSelector, f func(export.Record) error) error {
if b.startedCollection != b.finishedCollection {
return ErrInconsistentState
}
for key, value := range b.values {
mkind := key.descriptor.MetricKind()
var agg aggregation.Aggregation
var start time.Time
// If the processor does not have Config.Memory and it was not updated
// in the prior round, do not visit this value.
if !b.config.Memory && value.updated != (b.finishedCollection-1) {
continue
}
ekind := exporter.ExportKindFor(key.descriptor, value.current.Aggregation().Kind())
switch ekind {
case export.PassThroughExporter:
// No state is required, pass through the checkpointed value.
agg = value.current.Aggregation()
if mkind.PrecomputedSum() {
start = b.processStart
} else {
start = b.intervalStart
}
case export.CumulativeExporter:
// If stateful, the sum has been computed. If stateless, the
// input was already cumulative. Either way, use the checkpointed
// value:
if value.stateful {
agg = value.cumulative.Aggregation()
} else {
agg = value.current.Aggregation()
}
start = b.processStart
case export.DeltaExporter:
// Precomputed sums are a special case.
if mkind.PrecomputedSum() {
agg = value.delta.Aggregation()
} else {
agg = value.current.Aggregation()
}
start = b.intervalStart
default:
return fmt.Errorf("%v: %w", ekind, ErrInvalidExporterKind)
}
if err := f(export.NewRecord(
key.descriptor,
value.labels,
value.resource,
agg,
start,
b.intervalEnd,
)); err != nil && !errors.Is(err, aggregation.ErrNoData) {
return err
}
}
return nil
}