1
0
mirror of https://github.com/rclone/rclone.git synced 2025-01-13 20:38:12 +02:00
rclone/crypt/cipher.go

582 lines
15 KiB
Go
Raw Normal View History

package crypt
import (
"bytes"
"crypto/aes"
gocipher "crypto/cipher"
"crypto/rand"
"encoding/base32"
"io"
"strings"
"sync"
"unicode/utf8"
"github.com/ncw/rclone/crypt/pkcs7"
"github.com/pkg/errors"
"golang.org/x/crypto/nacl/secretbox"
"golang.org/x/crypto/scrypt"
"github.com/rfjakob/eme"
)
// Constancs
const (
nameCipherBlockSize = aes.BlockSize
fileMagic = "RCLONE\x00\x00"
fileMagicSize = len(fileMagic)
fileNonceSize = 24
fileHeaderSize = fileMagicSize + fileNonceSize
blockHeaderSize = secretbox.Overhead
blockDataSize = 64 * 1024
blockSize = blockHeaderSize + blockDataSize
)
// Errors returned by cipher
var (
ErrorBadDecryptUTF8 = errors.New("bad decryption - utf-8 invalid")
ErrorBadDecryptControlChar = errors.New("bad decryption - contains control chars")
ErrorNotAMultipleOfBlocksize = errors.New("not a multiple of blocksize")
ErrorTooShortAfterDecode = errors.New("too short after base32 decode")
ErrorEncryptedFileTooShort = errors.New("file is too short to be encrypted")
ErrorEncryptedFileBadHeader = errors.New("file has truncated block header")
ErrorEncryptedBadMagic = errors.New("not an encrypted file - bad magic string")
ErrorEncryptedBadBlock = errors.New("failed to authenticate decrypted block - bad password?")
ErrorBadBase32Encoding = errors.New("bad base32 filename encoding")
ErrorBadSpreadNotSingleChar = errors.New("bad unspread - not single character")
ErrorBadSpreadResultTooShort = errors.New("bad unspread - result too short")
ErrorBadSpreadDidntMatch = errors.New("bad unspread - directory prefix didn't match")
ErrorFileClosed = errors.New("file already closed")
defaultSalt = []byte{0xA8, 0x0D, 0xF4, 0x3A, 0x8F, 0xBD, 0x03, 0x08, 0xA7, 0xCA, 0xB8, 0x3E, 0x58, 0x1F, 0x86, 0xB1}
)
// Global variables
var (
fileMagicBytes = []byte(fileMagic)
)
// Cipher is used to swap out the encryption implementations
type Cipher interface {
// EncryptName encrypts a file path
EncryptName(string) string
// DecryptName decrypts a file path, returns error if decrypt was invalid
DecryptName(string) (string, error)
// EncryptData
EncryptData(io.Reader) (io.Reader, error)
// DecryptData
DecryptData(io.ReadCloser) (io.ReadCloser, error)
// EncryptedSize calculates the size of the data when encrypted
EncryptedSize(int64) int64
// DecryptedSize calculates the size of the data when decrypted
DecryptedSize(int64) (int64, error)
}
type cipher struct {
dataKey [32]byte // Key for secretbox
nameKey [32]byte // 16,24 or 32 bytes
nameTweak [nameCipherBlockSize]byte // used to tweak the name crypto
block gocipher.Block
flatten int // set flattening level - 0 is off
buffers sync.Pool // encrypt/decrypt buffers
cryptoRand io.Reader // read crypto random numbers from here
}
// newCipher initialises the cipher. If salt is "" then it uses a built in salt val
func newCipher(flatten int, password, salt string) (*cipher, error) {
c := &cipher{
flatten: flatten,
cryptoRand: rand.Reader,
}
c.buffers.New = func() interface{} {
return make([]byte, blockSize)
}
err := c.Key(password, salt)
if err != nil {
return nil, err
}
return c, nil
}
// Key creates all the internal keys from the password passed in using
// scrypt.
//
// If salt is "" we use a fixed salt just to make attackers lives
// slighty harder than using no salt.
//
// Note that empty passsword makes all 0x00 keys which is used in the
// tests.
func (c *cipher) Key(password, salt string) (err error) {
const keySize = len(c.dataKey) + len(c.nameKey) + len(c.nameTweak)
var saltBytes = defaultSalt
if salt != "" {
saltBytes = []byte(salt)
}
var key []byte
if password == "" {
key = make([]byte, keySize)
} else {
key, err = scrypt.Key([]byte(password), saltBytes, 16384, 8, 1, keySize)
if err != nil {
return err
}
}
copy(c.dataKey[:], key)
copy(c.nameKey[:], key[len(c.dataKey):])
copy(c.nameTweak[:], key[len(c.dataKey)+len(c.nameKey):])
// Key the name cipher
c.block, err = aes.NewCipher(c.nameKey[:])
return err
}
// getBlock gets a block from the pool of size blockSize
func (c *cipher) getBlock() []byte {
return c.buffers.Get().([]byte)
}
// putBlock returns a block to the pool of size blockSize
func (c *cipher) putBlock(buf []byte) {
if len(buf) != blockSize {
panic("bad blocksize returned to pool")
}
c.buffers.Put(buf)
}
// check to see if the byte string is valid with no control characters
// from 0x00 to 0x1F and is a valid UTF-8 string
func checkValidString(buf []byte) error {
for i := range buf {
c := buf[i]
if c >= 0x00 && c < 0x20 || c == 0x7F {
return ErrorBadDecryptControlChar
}
}
if !utf8.Valid(buf) {
return ErrorBadDecryptUTF8
}
return nil
}
// encodeFileName encodes a filename using a modified version of
// standard base32 as described in RFC4648
//
// The standard encoding is modified in two ways
// * it becomes lower case (no-one likes upper case filenames!)
// * we strip the padding character `=`
func encodeFileName(in []byte) string {
encoded := base32.HexEncoding.EncodeToString(in)
encoded = strings.TrimRight(encoded, "=")
return strings.ToLower(encoded)
}
// decodeFileName decodes a filename as encoded by encodeFileName
func decodeFileName(in string) ([]byte, error) {
if strings.HasSuffix(in, "=") {
return nil, ErrorBadBase32Encoding
}
// First figure out how many padding characters to add
roundUpToMultipleOf8 := (len(in) + 7) &^ 7
equals := roundUpToMultipleOf8 - len(in)
in = strings.ToUpper(in) + "========"[:equals]
return base32.HexEncoding.DecodeString(in)
}
// encryptSegment encrypts a path segment
//
// This uses EME with AES
//
// EME (ECB-Mix-ECB) is a wide-block encryption mode presented in the
// 2003 paper "A Parallelizable Enciphering Mode" by Halevi and
// Rogaway.
//
// This makes for determinstic encryption which is what we want - the
// same filename must encrypt to the same thing.
//
// This means that
// * filenames with the same name will encrypt the same
// * filenames which start the same won't have a common prefix
func (c *cipher) encryptSegment(plaintext string) string {
if plaintext == "" {
return ""
}
paddedPlaintext := pkcs7.Pad(nameCipherBlockSize, []byte(plaintext))
ciphertext := eme.Transform(c.block, c.nameTweak[:], paddedPlaintext, eme.DirectionEncrypt)
return encodeFileName(ciphertext)
}
// decryptSegment decrypts a path segment
func (c *cipher) decryptSegment(ciphertext string) (string, error) {
if ciphertext == "" {
return "", nil
}
rawCiphertext, err := decodeFileName(ciphertext)
if err != nil {
return "", err
}
if len(rawCiphertext)%nameCipherBlockSize != 0 {
return "", ErrorNotAMultipleOfBlocksize
}
if len(rawCiphertext) == 0 {
// not possible if decodeFilename() working correctly
return "", ErrorTooShortAfterDecode
}
paddedPlaintext := eme.Transform(c.block, c.nameTweak[:], rawCiphertext, eme.DirectionDecrypt)
plaintext, err := pkcs7.Unpad(nameCipherBlockSize, paddedPlaintext)
if err != nil {
return "", err
}
err = checkValidString(plaintext)
if err != nil {
return "", err
}
return string(plaintext), err
}
// spread a name over the given number of directory levels
//
// if in isn't long enough dirs will be reduces
func spreadName(dirs int, in string) string {
if dirs > len(in) {
dirs = len(in)
}
prefix := ""
for i := 0; i < dirs; i++ {
prefix += string(in[i]) + "/"
}
return prefix + in
}
// reverse spreadName, returning an error if not in spread format
//
// This decodes any level of spreading
func unspreadName(in string) (string, error) {
in = strings.ToLower(in)
segments := strings.Split(in, "/")
if len(segments) == 0 {
return in, nil
}
out := segments[len(segments)-1]
segments = segments[:len(segments)-1]
for i, s := range segments {
if len(s) != 1 {
return "", ErrorBadSpreadNotSingleChar
}
if i >= len(out) {
return "", ErrorBadSpreadResultTooShort
}
if s[0] != out[i] {
return "", ErrorBadSpreadDidntMatch
}
}
return out, nil
}
// EncryptName encrypts a file path
func (c *cipher) EncryptName(in string) string {
if c.flatten > 0 {
return spreadName(c.flatten, c.encryptSegment(in))
}
segments := strings.Split(in, "/")
for i := range segments {
segments[i] = c.encryptSegment(segments[i])
}
return strings.Join(segments, "/")
}
// DecryptName decrypts a file path
func (c *cipher) DecryptName(in string) (string, error) {
if c.flatten > 0 {
unspread, err := unspreadName(in)
if err != nil {
return "", err
}
return c.decryptSegment(unspread)
}
segments := strings.Split(in, "/")
for i := range segments {
var err error
segments[i], err = c.decryptSegment(segments[i])
if err != nil {
return "", err
}
}
return strings.Join(segments, "/"), nil
}
// nonce is an NACL secretbox nonce
type nonce [fileNonceSize]byte
// pointer returns the nonce as a *[24]byte for secretbox
func (n *nonce) pointer() *[fileNonceSize]byte {
return (*[fileNonceSize]byte)(n)
}
// fromReader fills the nonce from an io.Reader - normally the OSes
// crypto random number generator
func (n *nonce) fromReader(in io.Reader) error {
read, err := io.ReadFull(in, (*n)[:])
if read != fileNonceSize {
return errors.Wrap(err, "short read of nonce")
}
return nil
}
// fromBuf fills the nonce from the buffer passed in
func (n *nonce) fromBuf(buf []byte) {
read := copy((*n)[:], buf)
if read != fileNonceSize {
panic("buffer to short to read nonce")
}
}
// increment to add 1 to the nonce
func (n *nonce) increment() {
for i := 0; i < len(*n); i++ {
digit := (*n)[i]
newDigit := digit + 1
(*n)[i] = newDigit
if newDigit >= digit {
// exit if no carry
break
}
}
}
// encrypter encrypts an io.Reader on the fly
type encrypter struct {
in io.Reader
c *cipher
nonce nonce
buf []byte
readBuf []byte
bufIndex int
bufSize int
err error
}
// newEncrypter creates a new file handle encrypting on the fly
func (c *cipher) newEncrypter(in io.Reader) (*encrypter, error) {
fh := &encrypter{
in: in,
c: c,
buf: c.getBlock(),
readBuf: c.getBlock(),
bufSize: fileHeaderSize,
}
// Initialise nonce
err := fh.nonce.fromReader(c.cryptoRand)
if err != nil {
return nil, err
}
// Copy magic into buffer
copy(fh.buf, fileMagicBytes)
// Copy nonce into buffer
copy(fh.buf[fileMagicSize:], fh.nonce[:])
return fh, nil
}
// Read as per io.Reader
func (fh *encrypter) Read(p []byte) (n int, err error) {
if fh.err != nil {
return 0, fh.err
}
if fh.bufIndex >= fh.bufSize {
// Read data
// FIXME should overlap the reads with a go-routine and 2 buffers?
readBuf := fh.readBuf[:blockDataSize]
n, err = io.ReadFull(fh.in, readBuf)
if err == io.EOF {
// ReadFull only returns n=0 and EOF
return fh.finish(io.EOF)
} else if err == io.ErrUnexpectedEOF {
// Next read will return EOF
} else if err != nil {
return fh.finish(err)
}
// Write nonce to start of block
copy(fh.buf, fh.nonce[:])
// Encrypt the block using the nonce
block := fh.buf
secretbox.Seal(block[:0], readBuf[:n], fh.nonce.pointer(), &fh.c.dataKey)
fh.bufIndex = 0
fh.bufSize = blockHeaderSize + n
fh.nonce.increment()
}
n = copy(p, fh.buf[fh.bufIndex:fh.bufSize])
fh.bufIndex += n
return n, nil
}
// finish sets the final error and tidies up
func (fh *encrypter) finish(err error) (int, error) {
if fh.err != nil {
return 0, fh.err
}
fh.err = err
fh.c.putBlock(fh.buf)
fh.c.putBlock(fh.readBuf)
return 0, err
}
// Encrypt data encrypts the data stream
func (c *cipher) EncryptData(in io.Reader) (io.Reader, error) {
out, err := c.newEncrypter(in)
if err != nil {
return nil, err
}
return out, nil
}
// decrypter decrypts an io.ReaderCloser on the fly
type decrypter struct {
rc io.ReadCloser
nonce nonce
c *cipher
buf []byte
readBuf []byte
bufIndex int
bufSize int
err error
}
// newDecrypter creates a new file handle decrypting on the fly
func (c *cipher) newDecrypter(rc io.ReadCloser) (*decrypter, error) {
fh := &decrypter{
rc: rc,
c: c,
buf: c.getBlock(),
readBuf: c.getBlock(),
}
// Read file header (magic + nonce)
readBuf := fh.readBuf[:fileHeaderSize]
_, err := io.ReadFull(fh.rc, readBuf)
if err == io.EOF || err == io.ErrUnexpectedEOF {
// This read from 0..fileHeaderSize-1 bytes
return nil, fh.finishAndClose(ErrorEncryptedFileTooShort)
} else if err != nil {
return nil, fh.finishAndClose(err)
}
// check the magic
if !bytes.Equal(readBuf[:fileMagicSize], fileMagicBytes) {
return nil, fh.finishAndClose(ErrorEncryptedBadMagic)
}
// retreive the nonce
fh.nonce.fromBuf(readBuf[fileMagicSize:])
return fh, nil
}
// Read as per io.Reader
func (fh *decrypter) Read(p []byte) (n int, err error) {
if fh.err != nil {
return 0, fh.err
}
if fh.bufIndex >= fh.bufSize {
// Read data
// FIXME should overlap the reads with a go-routine and 2 buffers?
readBuf := fh.readBuf
n, err = io.ReadFull(fh.rc, readBuf)
if err == io.EOF {
// ReadFull only returns n=0 and EOF
return 0, fh.finish(io.EOF)
} else if err == io.ErrUnexpectedEOF {
// Next read will return EOF
} else if err != nil {
return 0, fh.finish(err)
}
// Check header + 1 byte exists
if n <= blockHeaderSize {
return 0, fh.finish(ErrorEncryptedFileBadHeader)
}
// Decrypt the block using the nonce
block := fh.buf
_, ok := secretbox.Open(block[:0], readBuf[:n], fh.nonce.pointer(), &fh.c.dataKey)
if !ok {
return 0, fh.finish(ErrorEncryptedBadBlock)
}
fh.bufIndex = 0
fh.bufSize = n - blockHeaderSize
fh.nonce.increment()
}
n = copy(p, fh.buf[fh.bufIndex:fh.bufSize])
fh.bufIndex += n
return n, nil
}
// finish sets the final error and tidies up
func (fh *decrypter) finish(err error) error {
if fh.err != nil {
return fh.err
}
fh.err = err
fh.c.putBlock(fh.buf)
fh.c.putBlock(fh.readBuf)
return err
}
// Close
func (fh *decrypter) Close() error {
// Check already closed
if fh.err == ErrorFileClosed {
return fh.err
}
// Closed before reading EOF so not finish()ed yet
if fh.err == nil {
_ = fh.finish(io.EOF)
}
// Show file now closed
fh.err = ErrorFileClosed
return fh.rc.Close()
}
// finishAndClose does finish then Close()
//
// Used when we are returning a nil fh from new
func (fh *decrypter) finishAndClose(err error) error {
_ = fh.finish(err)
_ = fh.Close()
return err
}
// DecryptData decrypts the data stream
func (c *cipher) DecryptData(rc io.ReadCloser) (io.ReadCloser, error) {
out, err := c.newDecrypter(rc)
if err != nil {
return nil, err
}
return out, nil
}
// EncryptedSize calculates the size of the data when encrypted
func (c *cipher) EncryptedSize(size int64) int64 {
blocks, residue := size/blockDataSize, size%blockDataSize
encryptedSize := int64(fileHeaderSize) + blocks*(blockHeaderSize+blockDataSize)
if residue != 0 {
encryptedSize += blockHeaderSize + residue
}
return encryptedSize
}
// DecryptedSize calculates the size of the data when decrypted
func (c *cipher) DecryptedSize(size int64) (int64, error) {
size -= int64(fileHeaderSize)
if size < 0 {
return 0, ErrorEncryptedFileTooShort
}
blocks, residue := size/blockSize, size%blockSize
decryptedSize := blocks * blockDataSize
if residue != 0 {
residue -= blockHeaderSize
if residue <= 0 {
return 0, ErrorEncryptedFileBadHeader
}
}
decryptedSize += residue
return decryptedSize, nil
}
// check interfaces
var (
_ Cipher = (*cipher)(nil)
_ io.ReadCloser = (*decrypter)(nil)
_ io.Reader = (*encrypter)(nil)
)