// Package pool implements a memory pool similar in concept to // sync.Pool but with more determinism. package pool import ( "fmt" "log" "sync" "time" "github.com/ncw/rclone/lib/mmap" ) // Pool of internal buffers // // We hold buffers in cache. Every time we Get or Put we update // minFill which is the minimum len(cache) seen. // // Every flushTime we remove minFill buffers from the cache as they // were not used in the previous flushTime interval. type Pool struct { mu sync.Mutex cache [][]byte minFill int // the minimum fill of the cache bufferSize int poolSize int timer *time.Timer inUse int flushTime time.Duration flushPending bool alloc func(int) ([]byte, error) free func([]byte) error } // New makes a buffer pool // // flushTime is the interval the buffer pools is flushed // bufferSize is the size of the allocations // poolSize is the maximum number of free buffers in the pool // useMmap should be set to use mmap allocations func New(flushTime time.Duration, bufferSize, poolSize int, useMmap bool) *Pool { bp := &Pool{ cache: make([][]byte, 0, poolSize), poolSize: poolSize, flushTime: flushTime, bufferSize: bufferSize, } if useMmap { bp.alloc = mmap.Alloc bp.free = mmap.Free } else { bp.alloc = func(size int) ([]byte, error) { return make([]byte, size), nil } bp.free = func([]byte) error { return nil } } bp.timer = time.AfterFunc(flushTime, bp.flushAged) return bp } // get gets the last buffer in bp.cache // // Call with mu held func (bp *Pool) get() []byte { n := len(bp.cache) - 1 buf := bp.cache[n] bp.cache[n] = nil // clear buffer pointer from bp.cache bp.cache = bp.cache[:n] return buf } // put puts the buffer on the end of bp.cache // // Call with mu held func (bp *Pool) put(buf []byte) { bp.cache = append(bp.cache, buf) } // flush n entries from the entire buffer pool // Call with mu held func (bp *Pool) flush(n int) { for i := 0; i < n; i++ { _ = bp.get() } bp.minFill = len(bp.cache) } // Flush the entire buffer pool func (bp *Pool) Flush() { bp.mu.Lock() bp.flush(len(bp.cache)) bp.mu.Unlock() } // Remove bp.minFill buffers func (bp *Pool) flushAged() { bp.mu.Lock() bp.flushPending = false bp.flush(bp.minFill) // If there are still items in the cache, schedule another flush if len(bp.cache) != 0 { bp.kickFlusher() } bp.mu.Unlock() } // InUse returns the number of buffers in use which haven't been // returned to the pool func (bp *Pool) InUse() int { bp.mu.Lock() defer bp.mu.Unlock() return bp.inUse } // InPool returns the number of buffers in the pool func (bp *Pool) InPool() int { bp.mu.Lock() defer bp.mu.Unlock() return len(bp.cache) } // starts or resets the buffer flusher timer - call with mu held func (bp *Pool) kickFlusher() { if bp.flushPending { return } bp.flushPending = true bp.timer.Reset(bp.flushTime) } // Make sure minFill is correct - call with mu held func (bp *Pool) updateMinFill() { if len(bp.cache) < bp.minFill { bp.minFill = len(bp.cache) } } // Get a buffer from the pool or allocate one func (bp *Pool) Get() []byte { bp.mu.Lock() var buf []byte waitTime := time.Millisecond for { if len(bp.cache) > 0 { buf = bp.get() break } else { var err error buf, err = bp.alloc(bp.bufferSize) if err == nil { break } log.Printf("Failed to get memory for buffer, waiting for %v: %v", waitTime, err) bp.mu.Unlock() time.Sleep(waitTime) bp.mu.Lock() waitTime *= 2 } } bp.inUse++ bp.updateMinFill() bp.mu.Unlock() return buf } // freeBuffer returns mem to the os if required func (bp *Pool) freeBuffer(mem []byte) { err := bp.free(mem) if err != nil { log.Printf("Failed to free memory: %v", err) } } // Put returns the buffer to the buffer cache or frees it // // Note that if you try to return a buffer of the wrong size to Put it // will panic. func (bp *Pool) Put(buf []byte) { bp.mu.Lock() defer bp.mu.Unlock() buf = buf[0:cap(buf)] if len(buf) != bp.bufferSize { panic(fmt.Sprintf("Returning buffer sized %d but expecting %d", len(buf), bp.bufferSize)) } if len(bp.cache) < bp.poolSize { bp.put(buf) } else { bp.freeBuffer(buf) } bp.inUse-- bp.updateMinFill() bp.kickFlusher() }