// Copyright 2011 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package ssh import ( "bufio" "bytes" "errors" "io" "log" ) // debugTransport if set, will print packet types as they go over the // wire. No message decoding is done, to minimize the impact on timing. const debugTransport = false const ( gcmCipherID = "aes128-gcm@openssh.com" aes128cbcID = "aes128-cbc" tripledescbcID = "3des-cbc" ) // packetConn represents a transport that implements packet based // operations. type packetConn interface { // Encrypt and send a packet of data to the remote peer. writePacket(packet []byte) error // Read a packet from the connection. The read is blocking, // i.e. if error is nil, then the returned byte slice is // always non-empty. readPacket() ([]byte, error) // Close closes the write-side of the connection. Close() error } // transport is the keyingTransport that implements the SSH packet // protocol. type transport struct { reader connectionState writer connectionState bufReader *bufio.Reader bufWriter *bufio.Writer rand io.Reader isClient bool io.Closer } // packetCipher represents a combination of SSH encryption/MAC // protocol. A single instance should be used for one direction only. type packetCipher interface { // writePacket encrypts the packet and writes it to w. The // contents of the packet are generally scrambled. writePacket(seqnum uint32, w io.Writer, rand io.Reader, packet []byte) error // readPacket reads and decrypts a packet of data. The // returned packet may be overwritten by future calls of // readPacket. readPacket(seqnum uint32, r io.Reader) ([]byte, error) } // connectionState represents one side (read or write) of the // connection. This is necessary because each direction has its own // keys, and can even have its own algorithms type connectionState struct { packetCipher seqNum uint32 dir direction pendingKeyChange chan packetCipher } // prepareKeyChange sets up key material for a keychange. The key changes in // both directions are triggered by reading and writing a msgNewKey packet // respectively. func (t *transport) prepareKeyChange(algs *algorithms, kexResult *kexResult) error { ciph, err := newPacketCipher(t.reader.dir, algs.r, kexResult) if err != nil { return err } t.reader.pendingKeyChange <- ciph ciph, err = newPacketCipher(t.writer.dir, algs.w, kexResult) if err != nil { return err } t.writer.pendingKeyChange <- ciph return nil } func (t *transport) printPacket(p []byte, write bool) { if len(p) == 0 { return } who := "server" if t.isClient { who = "client" } what := "read" if write { what = "write" } log.Println(what, who, p[0]) } // Read and decrypt next packet. func (t *transport) readPacket() (p []byte, err error) { for { p, err = t.reader.readPacket(t.bufReader) if err != nil { break } if len(p) == 0 || (p[0] != msgIgnore && p[0] != msgDebug) { break } } if debugTransport { t.printPacket(p, false) } return p, err } func (s *connectionState) readPacket(r *bufio.Reader) ([]byte, error) { packet, err := s.packetCipher.readPacket(s.seqNum, r) s.seqNum++ if err == nil && len(packet) == 0 { err = errors.New("ssh: zero length packet") } if len(packet) > 0 { switch packet[0] { case msgNewKeys: select { case cipher := <-s.pendingKeyChange: s.packetCipher = cipher default: return nil, errors.New("ssh: got bogus newkeys message") } case msgDisconnect: // Transform a disconnect message into an // error. Since this is lowest level at which // we interpret message types, doing it here // ensures that we don't have to handle it // elsewhere. var msg disconnectMsg if err := Unmarshal(packet, &msg); err != nil { return nil, err } return nil, &msg } } // The packet may point to an internal buffer, so copy the // packet out here. fresh := make([]byte, len(packet)) copy(fresh, packet) return fresh, err } func (t *transport) writePacket(packet []byte) error { if debugTransport { t.printPacket(packet, true) } return t.writer.writePacket(t.bufWriter, t.rand, packet) } func (s *connectionState) writePacket(w *bufio.Writer, rand io.Reader, packet []byte) error { changeKeys := len(packet) > 0 && packet[0] == msgNewKeys err := s.packetCipher.writePacket(s.seqNum, w, rand, packet) if err != nil { return err } if err = w.Flush(); err != nil { return err } s.seqNum++ if changeKeys { select { case cipher := <-s.pendingKeyChange: s.packetCipher = cipher default: panic("ssh: no key material for msgNewKeys") } } return err } func newTransport(rwc io.ReadWriteCloser, rand io.Reader, isClient bool) *transport { t := &transport{ bufReader: bufio.NewReader(rwc), bufWriter: bufio.NewWriter(rwc), rand: rand, reader: connectionState{ packetCipher: &streamPacketCipher{cipher: noneCipher{}}, pendingKeyChange: make(chan packetCipher, 1), }, writer: connectionState{ packetCipher: &streamPacketCipher{cipher: noneCipher{}}, pendingKeyChange: make(chan packetCipher, 1), }, Closer: rwc, } t.isClient = isClient if isClient { t.reader.dir = serverKeys t.writer.dir = clientKeys } else { t.reader.dir = clientKeys t.writer.dir = serverKeys } return t } type direction struct { ivTag []byte keyTag []byte macKeyTag []byte } var ( serverKeys = direction{[]byte{'B'}, []byte{'D'}, []byte{'F'}} clientKeys = direction{[]byte{'A'}, []byte{'C'}, []byte{'E'}} ) // generateKeys generates key material for IV, MAC and encryption. func generateKeys(d direction, algs directionAlgorithms, kex *kexResult) (iv, key, macKey []byte) { cipherMode := cipherModes[algs.Cipher] macMode := macModes[algs.MAC] iv = make([]byte, cipherMode.ivSize) key = make([]byte, cipherMode.keySize) macKey = make([]byte, macMode.keySize) generateKeyMaterial(iv, d.ivTag, kex) generateKeyMaterial(key, d.keyTag, kex) generateKeyMaterial(macKey, d.macKeyTag, kex) return } // setupKeys sets the cipher and MAC keys from kex.K, kex.H and sessionId, as // described in RFC 4253, section 6.4. direction should either be serverKeys // (to setup server->client keys) or clientKeys (for client->server keys). func newPacketCipher(d direction, algs directionAlgorithms, kex *kexResult) (packetCipher, error) { iv, key, macKey := generateKeys(d, algs, kex) switch algs.Cipher { case chacha20Poly1305ID: return newChaCha20Cipher(key) case gcmCipherID: return newGCMCipher(iv, key) case aes128cbcID: return newAESCBCCipher(iv, key, macKey, algs) case tripledescbcID: return newTripleDESCBCCipher(iv, key, macKey, algs) } c := &streamPacketCipher{ mac: macModes[algs.MAC].new(macKey), etm: macModes[algs.MAC].etm, } c.macResult = make([]byte, c.mac.Size()) var err error c.cipher, err = cipherModes[algs.Cipher].createStream(key, iv) if err != nil { return nil, err } return c, nil } // generateKeyMaterial fills out with key material generated from tag, K, H // and sessionId, as specified in RFC 4253, section 7.2. func generateKeyMaterial(out, tag []byte, r *kexResult) { var digestsSoFar []byte h := r.Hash.New() for len(out) > 0 { h.Reset() h.Write(r.K) h.Write(r.H) if len(digestsSoFar) == 0 { h.Write(tag) h.Write(r.SessionID) } else { h.Write(digestsSoFar) } digest := h.Sum(nil) n := copy(out, digest) out = out[n:] if len(out) > 0 { digestsSoFar = append(digestsSoFar, digest...) } } } const packageVersion = "SSH-2.0-Go" // Sends and receives a version line. The versionLine string should // be US ASCII, start with "SSH-2.0-", and should not include a // newline. exchangeVersions returns the other side's version line. func exchangeVersions(rw io.ReadWriter, versionLine []byte) (them []byte, err error) { // Contrary to the RFC, we do not ignore lines that don't // start with "SSH-2.0-" to make the library usable with // nonconforming servers. for _, c := range versionLine { // The spec disallows non US-ASCII chars, and // specifically forbids null chars. if c < 32 { return nil, errors.New("ssh: junk character in version line") } } if _, err = rw.Write(append(versionLine, '\r', '\n')); err != nil { return } them, err = readVersion(rw) return them, err } // maxVersionStringBytes is the maximum number of bytes that we'll // accept as a version string. RFC 4253 section 4.2 limits this at 255 // chars const maxVersionStringBytes = 255 // Read version string as specified by RFC 4253, section 4.2. func readVersion(r io.Reader) ([]byte, error) { versionString := make([]byte, 0, 64) var ok bool var buf [1]byte for length := 0; length < maxVersionStringBytes; length++ { _, err := io.ReadFull(r, buf[:]) if err != nil { return nil, err } // The RFC says that the version should be terminated with \r\n // but several SSH servers actually only send a \n. if buf[0] == '\n' { if !bytes.HasPrefix(versionString, []byte("SSH-")) { // RFC 4253 says we need to ignore all version string lines // except the one containing the SSH version (provided that // all the lines do not exceed 255 bytes in total). versionString = versionString[:0] continue } ok = true break } // non ASCII chars are disallowed, but we are lenient, // since Go doesn't use null-terminated strings. // The RFC allows a comment after a space, however, // all of it (version and comments) goes into the // session hash. versionString = append(versionString, buf[0]) } if !ok { return nil, errors.New("ssh: overflow reading version string") } // There might be a '\r' on the end which we should remove. if len(versionString) > 0 && versionString[len(versionString)-1] == '\r' { versionString = versionString[:len(versionString)-1] } return versionString, nil }