1
0
mirror of https://github.com/ManyakRus/telegram_loki.git synced 2024-12-03 08:55:23 +02:00

сделал если только ошибки - то напишем в телеграм

This commit is contained in:
Nikitin Aleksandr 2024-09-13 11:30:54 +03:00
parent 093921d6df
commit 17f4fe913e
2518 changed files with 520236 additions and 78223 deletions

3
.gitignore vendored
View File

@ -12,3 +12,6 @@
/settings/services_add.txt
/settings/services_add2.txt
/bin/session.txt
/updates.bolt.db
/log/log.jsonl
/peers.pebble.db/

View File

@ -49,3 +49,8 @@ graph:
conn:
clear
image_connections ./internal docs/connections.graphml $(SERVICENAME)
lines:
clear
go_lines_count ./ ./docs/lines_count.txt 10
licenses:
golicense -out-xlsx=./docs/licenses.xlsx $(FILEAPP)

3
bin/.gitignore vendored
View File

@ -1,3 +1,6 @@
/app_race
/log.txt
/telegram_loki
/updates.bolt.db
/log/log.jsonl
/peers.pebble.db/

View File

@ -1 +1 @@
2023-12-27 11:52:07.019
2024-09-13 08:28:24.766

View File

@ -1,35 +1,43 @@
{
"admin-service": "@rexMonstra",
"billing-status-service": "@ivanov_i_i",
"admin-service": "@rexMonstra,@AliceDwarf,@t_bondarenko140",
"billing-status-service": "",
"calendar-service": "@AliceDwarf",
"claim-service": "@t_bondarenko140",
"close-service": "@rexMonstra",
"cryptopro-service": "@ivanov_i_i",
"docone-service": "",
"fnsndscaws-service": "@ivanov_i_i",
"cryptopro-service": "",
"docone-service": "@rexMonstra",
"employee-notify-service": "@t_bondarenko140",
"fnsndscaws-service": "",
"gomon": "",
"inner-notify-service": "@t_bondarenko140",
"kafka-service": "@ivanov_i_i",
"kafka-service": "",
"loop-service": "@rexMonstra",
"monitor-service": "@rexMonstra",
"notifi-delivery-service": "@ivanov_i_i",
"notify-service": "@ivanov_i_i",
"nsi-service": "@ivanov_i_i",
"mock-service": "@nich2000",
"notify-delivery-service": "",
"notify-service": "",
"nsi-service": "",
"organization-checker-service": "@rexMonstra",
"penalty-service": "@AliceDwarf",
"pdf-service": "@t_bondarenko140",
"plan-service": "@rexMonstra",
"post-office_service": "@ivanov_i_i",
"post-office-service": "",
"preclaim-service": "@t_bondarenko140",
"pretrial-service": "@t_bondarenko140",
"rabbit-service": "@ivanov_i_i",
"rabbit-service": "",
"report-service": "@rexMonstra",
"snotify-service": "",
"state-duty-service": "@AliceDwarf",
"stage-service": "@rexMonstra",
"status-service": "@rexMonstra",
"sync-service": "@nich2000",
"sync-service": "@nich2000,@ManyakRus,@rexMonstra",
"schedule-service": "@t_bondarenko140",
"state-duty-service": "@AliceDwarf",
"schedule-service": "@t_bondarenko140",
"trial-prepare-service": "",
"casebook-service": "@ManyakRus",
"debezium-adapter-postgres": "@ManyakRus",
"debtors-list": "@ManyakRus",
"stack-exchange-postgres": "@ManyakRus"
"monitor-service": "@ManyakRus",
"stack-exchange-postgres": "@ManyakRus",
"contract-checker-service": "@ManyakRus"
}

View File

@ -1 +1 @@
00142
00152

BIN
docs/licenses.xlsx Normal file

Binary file not shown.

15
docs/lines_count.txt Normal file
View File

@ -0,0 +1,15 @@
Name Level Lines count Functions count
. 1 639 22
bin 2 0 0
settings 3 0 0
cmd 2 0 0
test_copy 3 0 0
docs 2 0 0
internal 2 639 22
config 3 74 2
constants 3 8 0
load_json 3 113 4
logic 3 182 8
loki 3 154 5
types 3 72 0
pkg 2 0 0

61
go.mod
View File

@ -1,35 +1,64 @@
module github.com/ManyakRus/telegram_loki
go 1.20
go 1.22.0
toolchain go1.22.1
require (
github.com/ManyakRus/starter v1.0.0
github.com/golang-module/carbon/v2 v2.3.0
github.com/ManyakRus/starter v1.0.53
github.com/golang-module/carbon/v2 v2.3.12
)
require (
github.com/DataDog/zstd v1.5.6 // indirect
github.com/ManyakRus/logrus v0.0.0-20231019115155-9e6fede0d792 // indirect
github.com/cenkalti/backoff/v4 v4.2.1 // indirect
github.com/beorn7/perks v1.0.1 // indirect
github.com/cenkalti/backoff/v4 v4.3.0 // indirect
github.com/cespare/xxhash/v2 v2.3.0 // indirect
github.com/cockroachdb/errors v1.11.3 // indirect
github.com/cockroachdb/fifo v0.0.0-20240816210425-c5d0cb0b6fc0 // indirect
github.com/cockroachdb/logtags v0.0.0-20230118201751-21c54148d20b // indirect
github.com/cockroachdb/pebble v1.1.2 // indirect
github.com/cockroachdb/redact v1.1.5 // indirect
github.com/cockroachdb/tokenbucket v0.0.0-20230807174530-cc333fc44b06 // indirect
github.com/getsentry/sentry-go v0.29.0 // indirect
github.com/go-faster/errors v0.7.1 // indirect
github.com/go-faster/jx v1.1.0 // indirect
github.com/go-faster/xor v1.0.0 // indirect
github.com/gotd/contrib v0.19.0 // indirect
github.com/gogo/protobuf v1.3.2 // indirect
github.com/golang/snappy v0.0.4 // indirect
github.com/google/uuid v1.6.0 // indirect
github.com/gotd/contrib v0.20.0 // indirect
github.com/gotd/ige v0.2.2 // indirect
github.com/gotd/neo v0.1.5 // indirect
github.com/gotd/td v0.92.0 // indirect
github.com/gotd/td v0.109.0 // indirect
github.com/joho/godotenv v1.5.1 // indirect
github.com/klauspost/compress v1.17.4 // indirect
github.com/klauspost/compress v1.17.9 // indirect
github.com/kr/pretty v0.3.1 // indirect
github.com/kr/text v0.2.0 // indirect
github.com/munnerz/goautoneg v0.0.0-20191010083416-a7dc8b61c822 // indirect
github.com/pkg/errors v0.9.1 // indirect
github.com/prometheus/client_golang v1.20.3 // indirect
github.com/prometheus/client_model v0.6.1 // indirect
github.com/prometheus/common v0.59.1 // indirect
github.com/prometheus/procfs v0.15.1 // indirect
github.com/rogpeppe/go-internal v1.12.0 // indirect
github.com/segmentio/asm v1.2.0 // indirect
go.opentelemetry.io/otel v1.21.0 // indirect
go.opentelemetry.io/otel/trace v1.21.0 // indirect
go.etcd.io/bbolt v1.3.11 // indirect
go.opentelemetry.io/otel v1.30.0 // indirect
go.opentelemetry.io/otel/trace v1.30.0 // indirect
go.uber.org/atomic v1.11.0 // indirect
go.uber.org/multierr v1.11.0 // indirect
go.uber.org/zap v1.26.0 // indirect
golang.org/x/crypto v0.17.0 // indirect
golang.org/x/net v0.19.0 // indirect
golang.org/x/sync v0.5.0 // indirect
golang.org/x/sys v0.15.0 // indirect
golang.org/x/term v0.15.0 // indirect
nhooyr.io/websocket v1.8.10 // indirect
go.uber.org/zap v1.27.0 // indirect
golang.org/x/crypto v0.27.0 // indirect
golang.org/x/exp v0.0.0-20240909161429-701f63a606c0 // indirect
golang.org/x/net v0.29.0 // indirect
golang.org/x/sync v0.8.0 // indirect
golang.org/x/sys v0.25.0 // indirect
golang.org/x/term v0.24.0 // indirect
golang.org/x/text v0.18.0 // indirect
google.golang.org/protobuf v1.34.2 // indirect
gopkg.in/natefinch/lumberjack.v2 v2.2.1 // indirect
nhooyr.io/websocket v1.8.17 // indirect
rsc.io/qr v0.2.0 // indirect
)

161
go.sum
View File

@ -1,12 +1,37 @@
github.com/DataDog/zstd v1.5.6 h1:LbEglqepa/ipmmQJUDnSsfvA8e8IStVcGaFWDuxvGOY=
github.com/DataDog/zstd v1.5.6/go.mod h1:g4AWEaM3yOg3HYfnJ3YIawPnVdXJh9QME85blwSAmyw=
github.com/ManyakRus/logrus v0.0.0-20231019115155-9e6fede0d792 h1:bxwxD0H3kSUAH3uNk/b74gkImcUiP7dyibmMoVwk338=
github.com/ManyakRus/logrus v0.0.0-20231019115155-9e6fede0d792/go.mod h1:OUyxCVbPW/2lC1e6cM7Am941SJiC88BhNnb24x2R3a8=
github.com/ManyakRus/starter v1.0.0 h1:XwlZ8GXjBOldK7jfuW6LJZNPkTfrCfRN3ExzlSo8MsE=
github.com/ManyakRus/starter v1.0.0/go.mod h1:1fRj4AUMGeQTtnwBa52pvMd9zwqPDms+uaxozhHkM1Q=
github.com/cenkalti/backoff/v4 v4.2.1 h1:y4OZtCnogmCPw98Zjyt5a6+QwPLGkiQsYW5oUqylYbM=
github.com/cenkalti/backoff/v4 v4.2.1/go.mod h1:Y3VNntkOUPxTVeUxJ/G5vcM//AlwfmyYozVcomhLiZE=
github.com/ManyakRus/starter v1.0.53 h1:hAF1Hbodwy3rALYwW22xplNqhYGd2SDIz1cAlM4j9LU=
github.com/ManyakRus/starter v1.0.53/go.mod h1:fJC9PeOHag2XTP1833OZkp8gz6s46oMz0i+tzFt8iFg=
github.com/beorn7/perks v1.0.1 h1:VlbKKnNfV8bJzeqoa4cOKqO6bYr3WgKZxO8Z16+hsOM=
github.com/beorn7/perks v1.0.1/go.mod h1:G2ZrVWU2WbWT9wwq4/hrbKbnv/1ERSJQ0ibhJ6rlkpw=
github.com/cenkalti/backoff/v4 v4.3.0 h1:MyRJ/UdXutAwSAT+s3wNd7MfTIcy71VQueUuFK343L8=
github.com/cenkalti/backoff/v4 v4.3.0/go.mod h1:Y3VNntkOUPxTVeUxJ/G5vcM//AlwfmyYozVcomhLiZE=
github.com/cespare/xxhash/v2 v2.3.0 h1:UL815xU9SqsFlibzuggzjXhog7bL6oX9BbNZnL2UFvs=
github.com/cespare/xxhash/v2 v2.3.0/go.mod h1:VGX0DQ3Q6kWi7AoAeZDth3/j3BFtOZR5XLFGgcrjCOs=
github.com/cockroachdb/datadriven v1.0.3-0.20230413201302-be42291fc80f h1:otljaYPt5hWxV3MUfO5dFPFiOXg9CyG5/kCfayTqsJ4=
github.com/cockroachdb/datadriven v1.0.3-0.20230413201302-be42291fc80f/go.mod h1:a9RdTaap04u637JoCzcUoIcDmvwSUtcUFtT/C3kJlTU=
github.com/cockroachdb/errors v1.11.3 h1:5bA+k2Y6r+oz/6Z/RFlNeVCesGARKuC6YymtcDrbC/I=
github.com/cockroachdb/errors v1.11.3/go.mod h1:m4UIW4CDjx+R5cybPsNrRbreomiFqt8o1h1wUVazSd8=
github.com/cockroachdb/fifo v0.0.0-20240816210425-c5d0cb0b6fc0 h1:pU88SPhIFid6/k0egdR5V6eALQYq2qbSmukrkgIh/0A=
github.com/cockroachdb/fifo v0.0.0-20240816210425-c5d0cb0b6fc0/go.mod h1:9/y3cnZ5GKakj/H4y9r9GTjCvAFta7KLgSHPJJYc52M=
github.com/cockroachdb/logtags v0.0.0-20230118201751-21c54148d20b h1:r6VH0faHjZeQy818SGhaone5OnYfxFR/+AzdY3sf5aE=
github.com/cockroachdb/logtags v0.0.0-20230118201751-21c54148d20b/go.mod h1:Vz9DsVWQQhf3vs21MhPMZpMGSht7O/2vFW2xusFUVOs=
github.com/cockroachdb/pebble v1.1.2 h1:CUh2IPtR4swHlEj48Rhfzw6l/d0qA31fItcIszQVIsA=
github.com/cockroachdb/pebble v1.1.2/go.mod h1:4exszw1r40423ZsmkG/09AFEG83I0uDgfujJdbL6kYU=
github.com/cockroachdb/redact v1.1.5 h1:u1PMllDkdFfPWaNGMyLD1+so+aq3uUItthCFqzwPJ30=
github.com/cockroachdb/redact v1.1.5/go.mod h1:BVNblN9mBWFyMyqK1k3AAiSxhvhfK2oOZZ2lK+dpvRg=
github.com/cockroachdb/tokenbucket v0.0.0-20230807174530-cc333fc44b06 h1:zuQyyAKVxetITBuuhv3BI9cMrmStnpT18zmgmTxunpo=
github.com/cockroachdb/tokenbucket v0.0.0-20230807174530-cc333fc44b06/go.mod h1:7nc4anLGjupUW/PeY5qiNYsdNXj7zopG+eqsS7To5IQ=
github.com/creack/pty v1.1.9/go.mod h1:oKZEueFk5CKHvIhNR5MUki03XCEU+Q6VDXinZuGJ33E=
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
github.com/getsentry/sentry-go v0.29.0 h1:YtWluuCFg9OfcqnaujpY918N/AhCCwarIDWOYSBAjCA=
github.com/getsentry/sentry-go v0.29.0/go.mod h1:jhPesDAL0Q0W2+2YEuVOvdWmVtdsr1+jtBrlDEVWwLY=
github.com/go-errors/errors v1.4.2 h1:J6MZopCL4uSllY1OfXM374weqZFFItUbrImctkmUxIA=
github.com/go-errors/errors v1.4.2/go.mod h1:sIVyrIiJhuEF+Pj9Ebtd6P/rEYROXFi3BopGUQ5a5Og=
github.com/go-faster/errors v0.7.1 h1:MkJTnDoEdi9pDabt1dpWf7AA8/BaSYZqibYyhZ20AYg=
github.com/go-faster/errors v0.7.1/go.mod h1:5ySTjWFiphBs07IKuiL69nxdfd5+fzh1u7FPGZP2quo=
github.com/go-faster/jx v1.1.0 h1:ZsW3wD+snOdmTDy9eIVgQdjUpXRRV4rqW8NS3t+20bg=
@ -14,65 +39,135 @@ github.com/go-faster/jx v1.1.0/go.mod h1:vKDNikrKoyUmpzaJ0OkIkRQClNHFX/nF3dnTJZb
github.com/go-faster/xor v0.3.0/go.mod h1:x5CaDY9UKErKzqfRfFZdfu+OSTfoZny3w5Ak7UxcipQ=
github.com/go-faster/xor v1.0.0 h1:2o8vTOgErSGHP3/7XwA5ib1FTtUsNtwCoLLBjl31X38=
github.com/go-faster/xor v1.0.0/go.mod h1:x5CaDY9UKErKzqfRfFZdfu+OSTfoZny3w5Ak7UxcipQ=
github.com/golang-module/carbon/v2 v2.3.0 h1:Nn2H1Hc1iR5LHP9AywC5nIE9Smb3hEaLN0wgHY947Kc=
github.com/golang-module/carbon/v2 v2.3.0/go.mod h1:XDALX7KgqmHk95xyLeaqX9/LJGbfLATyruTziq68SZ8=
github.com/gogo/protobuf v1.3.2 h1:Ov1cvc58UF3b5XjBnZv7+opcTcQFZebYjWzi34vdm4Q=
github.com/gogo/protobuf v1.3.2/go.mod h1:P1XiOD3dCwIKUDQYPy72D8LYyHL2YPYrpS2s69NZV8Q=
github.com/golang-module/carbon/v2 v2.3.12 h1:VC1DwN1kBwJkh5MjXmTFryjs5g4CWyoM8HAHffZPX/k=
github.com/golang-module/carbon/v2 v2.3.12/go.mod h1:HNsedGzXGuNciZImYP2OMnpiwq/vhIstR/vn45ib5cI=
github.com/golang/snappy v0.0.4 h1:yAGX7huGHXlcLOEtBnF4w7FQwA26wojNCwOYAEhLjQM=
github.com/golang/snappy v0.0.4/go.mod h1:/XxbfmMg8lxefKM7IXC3fBNl/7bRcc72aCRzEWrmP2Q=
github.com/google/go-cmp v0.6.0 h1:ofyhxvXcZhMsU5ulbFiLKl/XBFqE1GSq7atu8tAmTRI=
github.com/gotd/contrib v0.19.0 h1:O6GvMrRVeFslIHLUcpaHVzcl9/5PcgR2jQTIIeTyds0=
github.com/gotd/contrib v0.19.0/go.mod h1:LzPxzRF0FvtpBt/WyODWQnPpk0tm/G9z6RHUoPqMakU=
github.com/google/go-cmp v0.6.0/go.mod h1:17dUlkBOakJ0+DkrSSNjCkIjxS6bF9zb3elmeNGIjoY=
github.com/google/uuid v1.6.0 h1:NIvaJDMOsjHA8n1jAhLSgzrAzy1Hgr+hNrb57e+94F0=
github.com/google/uuid v1.6.0/go.mod h1:TIyPZe4MgqvfeYDBFedMoGGpEw/LqOeaOT+nhxU+yHo=
github.com/gotd/contrib v0.20.0 h1:1Wc4+HMQiIKYQuGHVwVksIx152HFTP6B5n88dDe0ZYw=
github.com/gotd/contrib v0.20.0/go.mod h1:P6o8W4niqhDPHLA0U+SA/L7l3BQHYLULpeHfRSePn9o=
github.com/gotd/ige v0.2.2 h1:XQ9dJZwBfDnOGSTxKXBGP4gMud3Qku2ekScRjDWWfEk=
github.com/gotd/ige v0.2.2/go.mod h1:tuCRb+Y5Y3eNTo3ypIfNpQ4MFjrnONiL2jN2AKZXmb0=
github.com/gotd/neo v0.1.5 h1:oj0iQfMbGClP8xI59x7fE/uHoTJD7NZH9oV1WNuPukQ=
github.com/gotd/neo v0.1.5/go.mod h1:9A2a4bn9zL6FADufBdt7tZt+WMhvZoc5gWXihOPoiBQ=
github.com/gotd/td v0.92.0 h1:yGkIWFnIjfiPHPKEdCwFAiBCkLvjaLj+AjqamX4PEEY=
github.com/gotd/td v0.92.0/go.mod h1:NB76GPqUujl9KxjoSL8YP4bN67IIHLrNmfN6rvRKsSE=
github.com/gotd/td v0.109.0 h1:aWV9NgnlHl+4AiOGVh+KQSnlqaYpO483hUdRshkGxFA=
github.com/gotd/td v0.109.0/go.mod h1:Fh4Y7cb3DWhTFZiHnShWOmXK3l9W1HZorfGaxxA7wuE=
github.com/jinzhu/inflection v1.0.0/go.mod h1:h+uFLlag+Qp1Va5pdKtLDYj+kHp5pxUVkryuEj+Srlc=
github.com/jinzhu/now v1.1.5/go.mod h1:d3SSVoowX0Lcu0IBviAWJpolVfI5UJVZZ7cO71lE/z8=
github.com/joho/godotenv v1.5.1 h1:7eLL/+HRGLY0ldzfGMeQkb7vMd0as4CfYvUVzLqw0N0=
github.com/joho/godotenv v1.5.1/go.mod h1:f4LDr5Voq0i2e/R5DDNOoa2zzDfwtkZa6DnEwAbqwq4=
github.com/klauspost/compress v1.17.4 h1:Ej5ixsIri7BrIjBkRZLTo6ghwrEtHFk7ijlczPW4fZ4=
github.com/klauspost/compress v1.17.4/go.mod h1:/dCuZOvVtNoHsyb+cuJD3itjs3NbnF6KH9zAO4BDxPM=
github.com/kisielk/errcheck v1.5.0/go.mod h1:pFxgyoBC7bSaBwPgfKdkLd5X25qrDl4LWUI2bnpBCr8=
github.com/kisielk/gotool v1.0.0/go.mod h1:XhKaO+MFFWcvkIS/tQcRk01m1F5IRFswLeQ+oQHNcck=
github.com/klauspost/compress v1.17.9 h1:6KIumPrER1LHsvBVuDa0r5xaG0Es51mhhB9BQB2qeMA=
github.com/klauspost/compress v1.17.9/go.mod h1:Di0epgTjJY877eYKx5yC51cX2A2Vl2ibi7bDH9ttBbw=
github.com/kr/pretty v0.3.1 h1:flRD4NNwYAUpkphVc1HcthR4KEIFJ65n8Mw5qdRn3LE=
github.com/kr/pretty v0.3.1/go.mod h1:hoEshYVHaxMs3cyo3Yncou5ZscifuDolrwPKZanG3xk=
github.com/kr/text v0.2.0 h1:5Nx0Ya0ZqY2ygV366QzturHI13Jq95ApcVaJBhpS+AY=
github.com/kr/text v0.2.0/go.mod h1:eLer722TekiGuMkidMxC/pM04lWEeraHUUmBw8l2grE=
github.com/munnerz/goautoneg v0.0.0-20191010083416-a7dc8b61c822 h1:C3w9PqII01/Oq1c1nUAm88MOHcQC9l5mIlSMApZMrHA=
github.com/munnerz/goautoneg v0.0.0-20191010083416-a7dc8b61c822/go.mod h1:+n7T8mK8HuQTcFwEeznm/DIxMOiR9yIdICNftLE1DvQ=
github.com/pingcap/errors v0.11.4 h1:lFuQV/oaUMGcD2tqt+01ROSmJs75VG1ToEOkZIZ4nE4=
github.com/pingcap/errors v0.11.4/go.mod h1:Oi8TUi2kEtXXLMJk9l1cGmz20kV3TaQ0usTwv5KuLY8=
github.com/pkg/diff v0.0.0-20210226163009-20ebb0f2a09e/go.mod h1:pJLUxLENpZxwdsKMEsNbx1VGcRFpLqf3715MtcvvzbA=
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
github.com/pmezard/go-difflib v1.0.0 h1:4DBwDE0NGyQoBHbLQYPwSUPoCMWR5BEzIk/f1lZbAQM=
github.com/pmezard/go-difflib v1.0.0/go.mod h1:iKH77koFhYxTK1pcRnkKkqfTogsbg7gZNVY4sRDYZ/4=
github.com/prometheus/client_golang v1.20.3 h1:oPksm4K8B+Vt35tUhw6GbSNSgVlVSBH0qELP/7u83l4=
github.com/prometheus/client_golang v1.20.3/go.mod h1:PIEt8X02hGcP8JWbeHyeZ53Y/jReSnHgO035n//V5WE=
github.com/prometheus/client_model v0.6.1 h1:ZKSh/rekM+n3CeS952MLRAdFwIKqeY8b62p8ais2e9E=
github.com/prometheus/client_model v0.6.1/go.mod h1:OrxVMOVHjw3lKMa8+x6HeMGkHMQyHDk9E3jmP2AmGiY=
github.com/prometheus/common v0.59.1 h1:LXb1quJHWm1P6wq/U824uxYi4Sg0oGvNeUm1z5dJoX0=
github.com/prometheus/common v0.59.1/go.mod h1:GpWM7dewqmVYcd7SmRaiWVe9SSqjf0UrwnYnpEZNuT0=
github.com/prometheus/procfs v0.15.1 h1:YagwOFzUgYfKKHX6Dr+sHT7km/hxC76UB0learggepc=
github.com/prometheus/procfs v0.15.1/go.mod h1:fB45yRUv8NstnjriLhBQLuOUt+WW4BsoGhij/e3PBqk=
github.com/rogpeppe/go-internal v1.9.0/go.mod h1:WtVeX8xhTBvf0smdhujwtBcq4Qrzq/fJaraNFVN+nFs=
github.com/rogpeppe/go-internal v1.12.0 h1:exVL4IDcn6na9z1rAb56Vxr+CgyK3nn3O+epU5NdKM8=
github.com/rogpeppe/go-internal v1.12.0/go.mod h1:E+RYuTGaKKdloAfM02xzb0FW3Paa99yedzYV+kq4uf4=
github.com/segmentio/asm v1.2.0 h1:9BQrFxC+YOHJlTlHGkTrFWf59nbL3XnCoFLTwDCI7ys=
github.com/segmentio/asm v1.2.0/go.mod h1:BqMnlJP91P8d+4ibuonYZw9mfnzI9HfxselHZr5aAcs=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
github.com/stretchr/objx v0.4.0/go.mod h1:YvHI0jy2hoMjB+UWwv71VJQ9isScKT/TqJzVSSt89Yw=
github.com/stretchr/objx v0.5.0/go.mod h1:Yh+to48EsGEfYuaHDzXPcE3xhTkx73EhmCGUpEOglKo=
github.com/stretchr/objx v0.5.2/go.mod h1:FRsXN1f5AsAjCGJKqEizvkpNtU+EGNCLh3NxZ/8L+MA=
github.com/stretchr/testify v1.7.0/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.7.1/go.mod h1:6Fq8oRcR53rry900zMqJjRRixrwX3KX962/h/Wwjteg=
github.com/stretchr/testify v1.8.0/go.mod h1:yNjHg4UonilssWZ8iaSj1OCr/vHnekPRkoO+kdMU+MU=
github.com/stretchr/testify v1.8.4 h1:CcVxjf3Q8PM0mHUKJCdn+eZZtm5yQwehR5yeSVQQcUk=
github.com/stretchr/testify v1.8.4/go.mod h1:sz/lmYIOXD/1dqDmKjjqLyZ2RngseejIcXlSw2iwfAo=
go.opentelemetry.io/otel v1.21.0 h1:hzLeKBZEL7Okw2mGzZ0cc4k/A7Fta0uoPgaJCr8fsFc=
go.opentelemetry.io/otel v1.21.0/go.mod h1:QZzNPQPm1zLX4gZK4cMi+71eaorMSGT3A4znnUvNNEo=
go.opentelemetry.io/otel/trace v1.21.0 h1:WD9i5gzvoUPuXIXH24ZNBudiarZDKuekPqi/E8fpfLc=
go.opentelemetry.io/otel/trace v1.21.0/go.mod h1:LGbsEB0f9LGjN+OZaQQ26sohbOmiMR+BaslueVtS/qQ=
github.com/stretchr/testify v1.9.0 h1:HtqpIVDClZ4nwg75+f6Lvsy/wHu+3BoSGCbBAcpTsTg=
github.com/stretchr/testify v1.9.0/go.mod h1:r2ic/lqez/lEtzL7wO/rwa5dbSLXVDPFyf8C91i36aY=
github.com/yuin/goldmark v1.1.27/go.mod h1:3hX8gzYuyVAZsxl0MRgGTJEmQBFcNTphYh9decYSb74=
github.com/yuin/goldmark v1.2.1/go.mod h1:3hX8gzYuyVAZsxl0MRgGTJEmQBFcNTphYh9decYSb74=
go.etcd.io/bbolt v1.3.11 h1:yGEzV1wPz2yVCLsD8ZAiGHhHVlczyC9d1rP43/VCRJ0=
go.etcd.io/bbolt v1.3.11/go.mod h1:dksAq7YMXoljX0xu6VF5DMZGbhYYoLUalEiSySYAS4I=
go.opentelemetry.io/otel v1.30.0 h1:F2t8sK4qf1fAmY9ua4ohFS/K+FUuOPemHUIXHtktrts=
go.opentelemetry.io/otel v1.30.0/go.mod h1:tFw4Br9b7fOS+uEao81PJjVMjW/5fvNCbpsDIXqP0pc=
go.opentelemetry.io/otel/trace v1.30.0 h1:7UBkkYzeg3C7kQX8VAidWh2biiQbtAKjyIML8dQ9wmc=
go.opentelemetry.io/otel/trace v1.30.0/go.mod h1:5EyKqTzzmyqB9bwtCCq6pDLktPK6fmGf/Dph+8VI02o=
go.uber.org/atomic v1.11.0 h1:ZvwS0R+56ePWxUNi+Atn9dWONBPp/AUETXlHW0DxSjE=
go.uber.org/atomic v1.11.0/go.mod h1:LUxbIzbOniOlMKjJjyPfpl4v+PKK2cNJn91OQbhoJI0=
go.uber.org/goleak v1.2.0 h1:xqgm/S+aQvhWFTtR0XK3Jvg7z8kGV8P4X14IzwN3Eqk=
go.uber.org/goleak v1.3.0 h1:2K3zAYmnTNqV73imy9J1T3WC+gmCePx2hEGkimedGto=
go.uber.org/goleak v1.3.0/go.mod h1:CoHD4mav9JJNrW/WLlf7HGZPjdw8EucARQHekz1X6bE=
go.uber.org/multierr v1.11.0 h1:blXXJkSxSSfBVBlC76pxqeO+LN3aDfLQo+309xJstO0=
go.uber.org/multierr v1.11.0/go.mod h1:20+QtiLqy0Nd6FdQB9TLXag12DsQkrbs3htMFfDN80Y=
go.uber.org/zap v1.26.0 h1:sI7k6L95XOKS281NhVKOFCUNIvv9e0w4BF8N3u+tCRo=
go.uber.org/zap v1.26.0/go.mod h1:dtElttAiwGvoJ/vj4IwHBS/gXsEu/pZ50mUIRWuG0so=
golang.org/x/crypto v0.17.0 h1:r8bRNjWL3GshPW3gkd+RpvzWrZAwPS49OmTGZ/uhM4k=
golang.org/x/crypto v0.17.0/go.mod h1:gCAAfMLgwOJRpTjQ2zCCt2OcSfYMTeZVSRtQlPC7Nq4=
golang.org/x/exp v0.0.0-20231226003508-02704c960a9b h1:kLiC65FbiHWFAOu+lxwNPujcsl8VYyTYYEZnsOO1WK4=
golang.org/x/net v0.19.0 h1:zTwKpTd2XuCqf8huc7Fo2iSy+4RHPd10s4KzeTnVr1c=
golang.org/x/net v0.19.0/go.mod h1:CfAk/cbD4CthTvqiEl8NpboMuiuOYsAr/7NOjZJtv1U=
go.uber.org/zap v1.27.0 h1:aJMhYGrd5QSmlpLMr2MftRKl7t8J8PTZPA732ud/XR8=
go.uber.org/zap v1.27.0/go.mod h1:GB2qFLM7cTU87MWRP2mPIjqfIDnGu+VIO4V/SdhGo2E=
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20191011191535-87dc89f01550/go.mod h1:yigFU9vqHzYiE8UmvKecakEJjdnWj3jj499lnFckfCI=
golang.org/x/crypto v0.0.0-20200622213623-75b288015ac9/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
golang.org/x/crypto v0.27.0 h1:GXm2NjJrPaiv/h1tb2UH8QfgC/hOf/+z0p6PT8o1w7A=
golang.org/x/crypto v0.27.0/go.mod h1:1Xngt8kV6Dvbssa53Ziq6Eqn0HqbZi5Z6R0ZpwQzt70=
golang.org/x/exp v0.0.0-20240909161429-701f63a606c0 h1:e66Fs6Z+fZTbFBAxKfP3PALWBtpfqks2bwGcexMxgtk=
golang.org/x/exp v0.0.0-20240909161429-701f63a606c0/go.mod h1:2TbTHSBQa924w8M6Xs1QcRcFwyucIwBGpK1p2f1YFFY=
golang.org/x/mod v0.2.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/mod v0.3.0/go.mod h1:s0Qsj1ACt9ePp/hMypM3fl4fZqREWJwdYDEqhRiZZUA=
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/net v0.0.0-20200226121028-0de0cce0169b/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/net v0.0.0-20201021035429-f5854403a974/go.mod h1:sp8m0HH+o8qH0wwXwYZr8TS3Oi6o0r6Gce1SSxlDquU=
golang.org/x/net v0.29.0 h1:5ORfpBpCs4HzDYoodCDBbwHzdR5UrLBZ3sOnUJmFoHo=
golang.org/x/net v0.29.0/go.mod h1:gLkgy8jTGERgjzMic6DS9+SP0ajcu6Xu3Orq/SpETg0=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201020160332-67f06af15bc9/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20201207232520-09787c993a3a/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.5.0 h1:60k92dhOjHxJkrqnwsfl8KuaHbn/5dl0lUPUklKo3qE=
golang.org/x/sync v0.5.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sync v0.8.0 h1:3NFvSEYkUoMifnESzZl15y791HH1qU2xm6eCJU5ZPXQ=
golang.org/x/sync v0.8.0/go.mod h1:Czt+wKu1gCyEFDUtn0jG5QVvpJ6rzVqr5aXyt9drQfk=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200930185726-fdedc70b468f/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20220715151400-c0bba94af5f8/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.15.0 h1:h48lPFYpsTvQJZF4EKyI4aLHaev3CxivZmv7yZig9pc=
golang.org/x/sys v0.15.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/term v0.15.0 h1:y/Oo/a/q3IXu26lQgl04j/gjuBDOBlx7X6Om1j2CPW4=
golang.org/x/term v0.15.0/go.mod h1:BDl952bC7+uMoWR75FIrCDx79TPU9oHkTZ9yRbYOrX0=
golang.org/x/sys v0.25.0 h1:r+8e+loiHxRqhXVl6ML1nO3l1+oFoWbnlu2Ehimmi34=
golang.org/x/sys v0.25.0/go.mod h1:/VUhepiaJMQUp4+oa/7Zr1D23ma6VTLIYjOOTFZPUcA=
golang.org/x/term v0.24.0 h1:Mh5cbb+Zk2hqqXNO7S1iTjEphVL+jb8ZWaqh/g+JWkM=
golang.org/x/term v0.24.0/go.mod h1:lOBK/LVxemqiMij05LGJ0tzNr8xlmwBRJ81PX6wVLH8=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.3/go.mod h1:5Zoc/QRtKVWzQhOtBMvqHzDpF6irO9z98xDceosuGiQ=
golang.org/x/text v0.18.0 h1:XvMDiNzPAl0jr17s6W9lcaIhGUfUORdGCNsuLmPG224=
golang.org/x/text v0.18.0/go.mod h1:BuEKDfySbSR4drPmRPG/7iBdf8hvFMuRexcpahXilzY=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20191119224855-298f0cb1881e/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/tools v0.0.0-20200619180055-7c47624df98f/go.mod h1:EkVYQZoAsY45+roYkvgYkIh4xh/qjgUK9TdY2XT94GE=
golang.org/x/tools v0.0.0-20210106214847-113979e3529a/go.mod h1:emZCQorbCU4vsT4fOWvOPXz4eW1wZW4PmDk9uLelYpA=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191011141410-1b5146add898/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20200804184101-5ec99f83aff1/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
google.golang.org/protobuf v1.34.2 h1:6xV6lTsCfpGD21XK49h7MhtcApnLqkfYgPcdHftf6hg=
google.golang.org/protobuf v1.34.2/go.mod h1:qYOHts0dSfpeUzUFpOMr/WGzszTmLH+DiWniOlNbLDw=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
gopkg.in/natefinch/lumberjack.v2 v2.2.1 h1:bBRl1b0OH9s/DuPhuXpNl+VtCaJXFZ5/uEFST95x9zc=
gopkg.in/natefinch/lumberjack.v2 v2.2.1/go.mod h1:YD8tP3GAjkrDg1eZH7EGmyESg/lsYskCTPBJVb9jqSc=
gopkg.in/yaml.v3 v3.0.0-20200313102051-9f266ea9e77c/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
gopkg.in/yaml.v3 v3.0.1 h1:fxVm/GzAzEWqLHuvctI91KS9hhNmmWOoWu0XTYJS7CA=
gopkg.in/yaml.v3 v3.0.1/go.mod h1:K4uyk7z7BCEPqu6E+C64Yfv1cQ7kz7rIZviUmN+EgEM=
gorm.io/gorm v1.25.4/go.mod h1:L4uxeKpfBml98NYqVqwAdmV1a2nBtAec/cf3fpucW/k=
nhooyr.io/websocket v1.8.10 h1:mv4p+MnGrLDcPlBoWsvPP7XCzTYMXP9F9eIGoKbgx7Q=
nhooyr.io/websocket v1.8.10/go.mod h1:rN9OFWIUwuxg4fR5tELlYC04bXYowCP9GX47ivo2l+c=
nhooyr.io/websocket v1.8.17 h1:KEVeLJkUywCKVsnLIDlD/5gtayKp8VoCkksHCGGfT9Y=
nhooyr.io/websocket v1.8.17/go.mod h1:rN9OFWIUwuxg4fR5tELlYC04bXYowCP9GX47ivo2l+c=
rsc.io/qr v0.2.0 h1:6vBLea5/NRMVTz8V66gipeLycZMl/+UlFmk8DvqQ6WY=
rsc.io/qr v0.2.0/go.mod h1:IF+uZjkb9fqyeF/4tlBoynqmQxUoPfWEKh921coOuXs=

View File

@ -1,6 +1,7 @@
package logic
import (
"fmt"
"github.com/ManyakRus/starter/contextmain"
"github.com/ManyakRus/starter/log"
"github.com/ManyakRus/starter/micro"
@ -52,16 +53,39 @@ func ReadTicker() {
// Start_period - запускает чтение логов всех сервисов за период
func Start_period(Date1, Date2 time.Time) {
log.Debug("Start search errors from: ", Date1, " to: ", Date2)
IsOnlyErrors := true
var err1 error
var err error
loop_for:
for ServiceName, DeveloperName := range types.MapServiceDeveloper {
//проверка завершения программы
select {
case <-contextmain.GetContext().Done():
log.Warn("Context app is canceled. Start()")
break loop_for
default:
Start_period1(ServiceName, DeveloperName, Date1, Date2)
}
//запуск проверки логов одного сервиса
err1 = Start_period1(ServiceName, DeveloperName, Date1, Date2)
if err1 != nil {
micro.Pause(1000) //error: 502 Bad Gateway
} else {
IsOnlyErrors = false
micro.Pause(100) //error: 429 Too Many Requests
}
}
// если только ошибки - то напишем в телеграм
if IsOnlyErrors == true {
TextError := fmt.Sprint("Search errors: only errors. Last error: ", err1)
log.Debug(TextError)
_, err = telegram_client.SendMessage(config.Settings.TELEGRAM_CHAT_NAME, TextError)
if err != nil {
log.Error("telegram_client.SendMessage() error: ", err)
}
}
LastReadTime = Date2
}
@ -71,7 +95,7 @@ func Start_period1(ServiceName, DeveloperName string, DateFrom, DateTo time.Time
LokiMessage, err := loki.DownloadJSON(ServiceName, DateFrom, DateTo)
if err != nil {
log.Error("DownloadJSON() error: ", err)
//log.Error("DownloadJSON() error: ", err)
micro.Pause(1000)
return err
}

View File

@ -1,9 +1,11 @@
package loki
import (
"context"
"encoding/json"
"errors"
"fmt"
"github.com/ManyakRus/starter/contextmain"
"github.com/ManyakRus/starter/log"
"github.com/ManyakRus/telegram_loki/internal/config"
"github.com/ManyakRus/telegram_loki/internal/types"
@ -41,34 +43,37 @@ func DownloadJSON(ServiceName string, DateFrom, DateTo time.Time) (types.Message
Filter := config.Settings.LOKI_SEARCH_TEXT
URL := QueryApp(ServiceName, DateFrom, DateTo, Filter)
//query := "%7Bapp%3D%22" + ServiceName + "%22%7D%7C~%22(error:%7Cpanic:%7CERROR:%7CPANIC:)%22"
//sTime1 := strconv.FormatInt(DateFrom.UnixNano(), 10)
//sTime2 := strconv.FormatInt(DateTo.UnixNano(), 10)
//URL := config.Settings.LOKI_URL + "/api/datasources/proxy/1/loki/api/v1/query_range?direction=BACKWARD&limit=10&query=" + query
//URL += "&start=" + sTime1 + "&end=" + sTime2
//URL = "http://logmon.dev.atomsbt.ru/api/datasources" //удалить
//запрос http
req, err := http.NewRequest(http.MethodGet, URL, http.NoBody)
if err != nil {
return Otvet, fmt.Errorf("request(), ошибка создания GET запроса, err=%w", err)
err = fmt.Errorf("request(), ошибка создания GET запроса, URL: %s, error: %w", URL, err)
log.Error(err)
return Otvet, err
}
req.SetBasicAuth(config.Settings.GRAFANA_LOGIN, config.Settings.GRAFANA_PASSWORD)
//req.Header.Add("Content-Type:", "application/json")
//client := &http.Client{}
//таймаут 60 секунд
ctx, cancel_ctx := context.WithTimeout(contextmain.GetContext(), 60*time.Second)
defer cancel_ctx()
req = req.WithContext(ctx)
//отправка запроса
response, err := Client.Do(req)
if err != nil {
return Otvet, fmt.Errorf("request(), ошибка выполнения GET запроса, err=%w", err)
err = fmt.Errorf("Client.Do(), ошибка выполнения GET запроса, URL: %s, error: %w", URL, err)
log.Error(err)
return Otvet, err
}
//проверка статуса ответа
switch response.StatusCode {
case 200:
default:
{
TextError := fmt.Sprint("http request error: ", response.Status)
TextError := fmt.Sprintf("http request URL: %s, error status: %s", URL, response.Status)
err = errors.New(TextError)
log.Error(TextError)
return Otvet, err
@ -79,6 +84,8 @@ func DownloadJSON(ServiceName string, DateFrom, DateTo time.Time) (types.Message
TextJson, err := io.ReadAll(response.Body)
err = json.Unmarshal(TextJson, &Otvet)
if err != nil {
err = fmt.Errorf("json.Unmarshal(), ошибка десериализации JSON, URL: %s, error: %w", URL, err)
log.Error(err)
return Otvet, err
}

View File

@ -18,8 +18,8 @@ func StartApp() {
stopapp.StartWaitStop()
telegram_client.CreateTelegramClient(nil)
telegram_client.ConnectTelegram()
//telegram_client.CreateTelegramClient(nil)
telegram_client.Connect(nil)
logic.Start()

27
vendor/github.com/DataDog/zstd/LICENSE generated vendored Normal file
View File

@ -0,0 +1,27 @@
Simplified BSD License
Copyright (c) 2016, Datadog <info@datadoghq.com>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

142
vendor/github.com/DataDog/zstd/README.md generated vendored Normal file
View File

@ -0,0 +1,142 @@
# Zstd Go Wrapper
[![CircleCI](https://circleci.com/gh/DataDog/zstd/tree/1.x.svg?style=svg)](https://circleci.com/gh/DataDog/zstd/tree/1.x)
[![GoDoc](https://godoc.org/github.com/DataDog/zstd?status.svg)](https://godoc.org/github.com/DataDog/zstd)
[C Zstd Homepage](https://github.com/facebook/zstd)
The current headers and C files are from *v1.5.6* (Commit
[794ea1b](https://github.com/facebook/zstd/releases/tag/v1.5.6)).
## Usage
There are two main APIs:
* simple Compress/Decompress
* streaming API (io.Reader/io.Writer)
The compress/decompress APIs mirror that of lz4, while the streaming API was
designed to be a drop-in replacement for zlib.
### Building against an external libzstd
By default, zstd source code is vendored in this repository and the binding will be built with
the vendored source code bundled.
If you want to build this binding against an external static or shared libzstd library, you can
use the `external_libzstd` build tag. This will look for the libzstd pkg-config file and extract
build and linking parameters from that pkg-config file.
Note that it requires at least libzstd 1.4.0.
```bash
go build -tags external_libzstd
```
### Simple `Compress/Decompress`
```go
// Compress compresses the byte array given in src and writes it to dst.
// If you already have a buffer allocated, you can pass it to prevent allocation
// If not, you can pass nil as dst.
// If the buffer is too small, it will be reallocated, resized, and returned bu the function
// If dst is nil, this will allocate the worst case size (CompressBound(src))
Compress(dst, src []byte) ([]byte, error)
```
```go
// CompressLevel is the same as Compress but you can pass another compression level
CompressLevel(dst, src []byte, level int) ([]byte, error)
```
```go
// Decompress will decompress your payload into dst.
// If you already have a buffer allocated, you can pass it to prevent allocation
// If not, you can pass nil as dst (allocates a 4*src size as default).
// If the buffer is too small, it will retry 3 times by doubling the dst size
// After max retries, it will switch to the slower stream API to be sure to be able
// to decompress. Currently switches if compression ratio > 4*2**3=32.
Decompress(dst, src []byte) ([]byte, error)
```
### Stream API
```go
// NewWriter creates a new object that can optionally be initialized with
// a precomputed dictionary. If dict is nil, compress without a dictionary.
// The dictionary array should not be changed during the use of this object.
// You MUST CALL Close() to write the last bytes of a zstd stream and free C objects.
NewWriter(w io.Writer) *Writer
NewWriterLevel(w io.Writer, level int) *Writer
NewWriterLevelDict(w io.Writer, level int, dict []byte) *Writer
// Write compresses the input data and write it to the underlying writer
(w *Writer) Write(p []byte) (int, error)
// Flush writes any unwritten data to the underlying writer
(w *Writer) Flush() error
// Close flushes the buffer and frees C zstd objects
(w *Writer) Close() error
```
```go
// NewReader returns a new io.ReadCloser that will decompress data from the
// underlying reader. If a dictionary is provided to NewReaderDict, it must
// not be modified until Close is called. It is the caller's responsibility
// to call Close, which frees up C objects.
NewReader(r io.Reader) io.ReadCloser
NewReaderDict(r io.Reader, dict []byte) io.ReadCloser
```
### Benchmarks (benchmarked with v0.5.0)
The author of Zstd also wrote lz4. Zstd is intended to occupy a speed/ratio
level similar to what zlib currently provides. In our tests, the can always
be made to be better than zlib by chosing an appropriate level while still
keeping compression and decompression time faster than zlib.
You can run the benchmarks against your own payloads by using the Go benchmarks tool.
Just export your payload filepath as the `PAYLOAD` environment variable and run the benchmarks:
```go
go test -bench .
```
Compression of a 7Mb pdf zstd (this wrapper) vs [czlib](https://github.com/DataDog/czlib):
```
BenchmarkCompression 5 221056624 ns/op 67.34 MB/s
BenchmarkDecompression 100 18370416 ns/op 810.32 MB/s
BenchmarkFzlibCompress 2 610156603 ns/op 24.40 MB/s
BenchmarkFzlibDecompress 20 81195246 ns/op 183.33 MB/s
```
Ratio is also better by a margin of ~20%.
Compression speed is always better than zlib on all the payloads we tested;
However, [czlib](https://github.com/DataDog/czlib) has optimisations that make it
faster at decompressiong small payloads:
```
Testing with size: 11... czlib: 8.97 MB/s, zstd: 3.26 MB/s
Testing with size: 27... czlib: 23.3 MB/s, zstd: 8.22 MB/s
Testing with size: 62... czlib: 31.6 MB/s, zstd: 19.49 MB/s
Testing with size: 141... czlib: 74.54 MB/s, zstd: 42.55 MB/s
Testing with size: 323... czlib: 155.14 MB/s, zstd: 99.39 MB/s
Testing with size: 739... czlib: 235.9 MB/s, zstd: 216.45 MB/s
Testing with size: 1689... czlib: 116.45 MB/s, zstd: 345.64 MB/s
Testing with size: 3858... czlib: 176.39 MB/s, zstd: 617.56 MB/s
Testing with size: 8811... czlib: 254.11 MB/s, zstd: 824.34 MB/s
Testing with size: 20121... czlib: 197.43 MB/s, zstd: 1339.11 MB/s
Testing with size: 45951... czlib: 201.62 MB/s, zstd: 1951.57 MB/s
```
zstd starts to shine with payloads > 1KB
### Stability - Current state: STABLE
The C library seems to be pretty stable and according to the author has been tested and fuzzed.
For the Go wrapper, the test cover most usual cases and we have succesfully tested it on all staging and prod data.

30
vendor/github.com/DataDog/zstd/ZSTD_LICENSE generated vendored Normal file
View File

@ -0,0 +1,30 @@
BSD License
For Zstandard software
Copyright (c) Meta Platforms, Inc. and affiliates. All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name Facebook, nor Meta, nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

58
vendor/github.com/DataDog/zstd/allocations.h generated vendored Normal file
View File

@ -0,0 +1,58 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This file provides custom allocation primitives
*/
#define ZSTD_DEPS_NEED_MALLOC
#include "zstd_deps.h" /* ZSTD_malloc, ZSTD_calloc, ZSTD_free, ZSTD_memset */
#include "compiler.h" /* MEM_STATIC */
#define ZSTD_STATIC_LINKING_ONLY
#include "zstd.h" /* ZSTD_customMem */
#ifndef ZSTD_ALLOCATIONS_H
#define ZSTD_ALLOCATIONS_H
/* custom memory allocation functions */
MEM_STATIC void* ZSTD_customMalloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc)
return customMem.customAlloc(customMem.opaque, size);
return ZSTD_malloc(size);
}
MEM_STATIC void* ZSTD_customCalloc(size_t size, ZSTD_customMem customMem)
{
if (customMem.customAlloc) {
/* calloc implemented as malloc+memset;
* not as efficient as calloc, but next best guess for custom malloc */
void* const ptr = customMem.customAlloc(customMem.opaque, size);
ZSTD_memset(ptr, 0, size);
return ptr;
}
return ZSTD_calloc(1, size);
}
MEM_STATIC void ZSTD_customFree(void* ptr, ZSTD_customMem customMem)
{
if (ptr!=NULL) {
if (customMem.customFree)
customMem.customFree(customMem.opaque, ptr);
else
ZSTD_free(ptr);
}
}
#endif /* ZSTD_ALLOCATIONS_H */
#endif /* USE_EXTERNAL_ZSTD */

203
vendor/github.com/DataDog/zstd/bits.h generated vendored Normal file
View File

@ -0,0 +1,203 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_BITS_H
#define ZSTD_BITS_H
#include "mem.h"
MEM_STATIC unsigned ZSTD_countTrailingZeros32_fallback(U32 val)
{
assert(val != 0);
{
static const U32 DeBruijnBytePos[32] = {0, 1, 28, 2, 29, 14, 24, 3,
30, 22, 20, 15, 25, 17, 4, 8,
31, 27, 13, 23, 21, 19, 16, 7,
26, 12, 18, 6, 11, 5, 10, 9};
return DeBruijnBytePos[((U32) ((val & -(S32) val) * 0x077CB531U)) >> 27];
}
}
MEM_STATIC unsigned ZSTD_countTrailingZeros32(U32 val)
{
assert(val != 0);
# if defined(_MSC_VER)
# if STATIC_BMI2 == 1
return (unsigned)_tzcnt_u32(val);
# else
if (val != 0) {
unsigned long r;
_BitScanForward(&r, val);
return (unsigned)r;
} else {
/* Should not reach this code path */
__assume(0);
}
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (unsigned)__builtin_ctz(val);
# else
return ZSTD_countTrailingZeros32_fallback(val);
# endif
}
MEM_STATIC unsigned ZSTD_countLeadingZeros32_fallback(U32 val) {
assert(val != 0);
{
static const U32 DeBruijnClz[32] = {0, 9, 1, 10, 13, 21, 2, 29,
11, 14, 16, 18, 22, 25, 3, 30,
8, 12, 20, 28, 15, 17, 24, 7,
19, 27, 23, 6, 26, 5, 4, 31};
val |= val >> 1;
val |= val >> 2;
val |= val >> 4;
val |= val >> 8;
val |= val >> 16;
return 31 - DeBruijnClz[(val * 0x07C4ACDDU) >> 27];
}
}
MEM_STATIC unsigned ZSTD_countLeadingZeros32(U32 val)
{
assert(val != 0);
# if defined(_MSC_VER)
# if STATIC_BMI2 == 1
return (unsigned)_lzcnt_u32(val);
# else
if (val != 0) {
unsigned long r;
_BitScanReverse(&r, val);
return (unsigned)(31 - r);
} else {
/* Should not reach this code path */
__assume(0);
}
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (unsigned)__builtin_clz(val);
# else
return ZSTD_countLeadingZeros32_fallback(val);
# endif
}
MEM_STATIC unsigned ZSTD_countTrailingZeros64(U64 val)
{
assert(val != 0);
# if defined(_MSC_VER) && defined(_WIN64)
# if STATIC_BMI2 == 1
return (unsigned)_tzcnt_u64(val);
# else
if (val != 0) {
unsigned long r;
_BitScanForward64(&r, val);
return (unsigned)r;
} else {
/* Should not reach this code path */
__assume(0);
}
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4) && defined(__LP64__)
return (unsigned)__builtin_ctzll(val);
# else
{
U32 mostSignificantWord = (U32)(val >> 32);
U32 leastSignificantWord = (U32)val;
if (leastSignificantWord == 0) {
return 32 + ZSTD_countTrailingZeros32(mostSignificantWord);
} else {
return ZSTD_countTrailingZeros32(leastSignificantWord);
}
}
# endif
}
MEM_STATIC unsigned ZSTD_countLeadingZeros64(U64 val)
{
assert(val != 0);
# if defined(_MSC_VER) && defined(_WIN64)
# if STATIC_BMI2 == 1
return (unsigned)_lzcnt_u64(val);
# else
if (val != 0) {
unsigned long r;
_BitScanReverse64(&r, val);
return (unsigned)(63 - r);
} else {
/* Should not reach this code path */
__assume(0);
}
# endif
# elif defined(__GNUC__) && (__GNUC__ >= 4)
return (unsigned)(__builtin_clzll(val));
# else
{
U32 mostSignificantWord = (U32)(val >> 32);
U32 leastSignificantWord = (U32)val;
if (mostSignificantWord == 0) {
return 32 + ZSTD_countLeadingZeros32(leastSignificantWord);
} else {
return ZSTD_countLeadingZeros32(mostSignificantWord);
}
}
# endif
}
MEM_STATIC unsigned ZSTD_NbCommonBytes(size_t val)
{
if (MEM_isLittleEndian()) {
if (MEM_64bits()) {
return ZSTD_countTrailingZeros64((U64)val) >> 3;
} else {
return ZSTD_countTrailingZeros32((U32)val) >> 3;
}
} else { /* Big Endian CPU */
if (MEM_64bits()) {
return ZSTD_countLeadingZeros64((U64)val) >> 3;
} else {
return ZSTD_countLeadingZeros32((U32)val) >> 3;
}
}
}
MEM_STATIC unsigned ZSTD_highbit32(U32 val) /* compress, dictBuilder, decodeCorpus */
{
assert(val != 0);
return 31 - ZSTD_countLeadingZeros32(val);
}
/* ZSTD_rotateRight_*():
* Rotates a bitfield to the right by "count" bits.
* https://en.wikipedia.org/w/index.php?title=Circular_shift&oldid=991635599#Implementing_circular_shifts
*/
MEM_STATIC
U64 ZSTD_rotateRight_U64(U64 const value, U32 count) {
assert(count < 64);
count &= 0x3F; /* for fickle pattern recognition */
return (value >> count) | (U64)(value << ((0U - count) & 0x3F));
}
MEM_STATIC
U32 ZSTD_rotateRight_U32(U32 const value, U32 count) {
assert(count < 32);
count &= 0x1F; /* for fickle pattern recognition */
return (value >> count) | (U32)(value << ((0U - count) & 0x1F));
}
MEM_STATIC
U16 ZSTD_rotateRight_U16(U16 const value, U32 count) {
assert(count < 16);
count &= 0x0F; /* for fickle pattern recognition */
return (value >> count) | (U16)(value << ((0U - count) & 0x0F));
}
#endif /* ZSTD_BITS_H */
#endif /* USE_EXTERNAL_ZSTD */

460
vendor/github.com/DataDog/zstd/bitstream.h generated vendored Normal file
View File

@ -0,0 +1,460 @@
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* bitstream
* Part of FSE library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#ifndef BITSTREAM_H_MODULE
#define BITSTREAM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*
* This API consists of small unitary functions, which must be inlined for best performance.
* Since link-time-optimization is not available for all compilers,
* these functions are defined into a .h to be included.
*/
/*-****************************************
* Dependencies
******************************************/
#include "mem.h" /* unaligned access routines */
#include "compiler.h" /* UNLIKELY() */
#include "debug.h" /* assert(), DEBUGLOG(), RAWLOG() */
#include "error_private.h" /* error codes and messages */
#include "bits.h" /* ZSTD_highbit32 */
/*=========================================
* Target specific
=========================================*/
#ifndef ZSTD_NO_INTRINSICS
# if (defined(__BMI__) || defined(__BMI2__)) && defined(__GNUC__)
# include <immintrin.h> /* support for bextr (experimental)/bzhi */
# elif defined(__ICCARM__)
# include <intrinsics.h>
# endif
#endif
#define STREAM_ACCUMULATOR_MIN_32 25
#define STREAM_ACCUMULATOR_MIN_64 57
#define STREAM_ACCUMULATOR_MIN ((U32)(MEM_32bits() ? STREAM_ACCUMULATOR_MIN_32 : STREAM_ACCUMULATOR_MIN_64))
/*-******************************************
* bitStream encoding API (write forward)
********************************************/
/* bitStream can mix input from multiple sources.
* A critical property of these streams is that they encode and decode in **reverse** direction.
* So the first bit sequence you add will be the last to be read, like a LIFO stack.
*/
typedef struct {
size_t bitContainer;
unsigned bitPos;
char* startPtr;
char* ptr;
char* endPtr;
} BIT_CStream_t;
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC, void* dstBuffer, size_t dstCapacity);
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC);
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC);
/* Start with initCStream, providing the size of buffer to write into.
* bitStream will never write outside of this buffer.
* `dstCapacity` must be >= sizeof(bitD->bitContainer), otherwise @return will be an error code.
*
* bits are first added to a local register.
* Local register is size_t, hence 64-bits on 64-bits systems, or 32-bits on 32-bits systems.
* Writing data into memory is an explicit operation, performed by the flushBits function.
* Hence keep track how many bits are potentially stored into local register to avoid register overflow.
* After a flushBits, a maximum of 7 bits might still be stored into local register.
*
* Avoid storing elements of more than 24 bits if you want compatibility with 32-bits bitstream readers.
*
* Last operation is to close the bitStream.
* The function returns the final size of CStream in bytes.
* If data couldn't fit into `dstBuffer`, it will return a 0 ( == not storable)
*/
/*-********************************************
* bitStream decoding API (read backward)
**********************************************/
typedef size_t BitContainerType;
typedef struct {
BitContainerType bitContainer;
unsigned bitsConsumed;
const char* ptr;
const char* start;
const char* limitPtr;
} BIT_DStream_t;
typedef enum { BIT_DStream_unfinished = 0, /* fully refilled */
BIT_DStream_endOfBuffer = 1, /* still some bits left in bitstream */
BIT_DStream_completed = 2, /* bitstream entirely consumed, bit-exact */
BIT_DStream_overflow = 3 /* user requested more bits than present in bitstream */
} BIT_DStream_status; /* result of BIT_reloadDStream() */
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize);
MEM_STATIC size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits);
MEM_STATIC BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD);
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* bitD);
/* Start by invoking BIT_initDStream().
* A chunk of the bitStream is then stored into a local register.
* Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (BitContainerType).
* You can then retrieve bitFields stored into the local register, **in reverse order**.
* Local register is explicitly reloaded from memory by the BIT_reloadDStream() method.
* A reload guarantee a minimum of ((8*sizeof(bitD->bitContainer))-7) bits when its result is BIT_DStream_unfinished.
* Otherwise, it can be less than that, so proceed accordingly.
* Checking if DStream has reached its end can be performed with BIT_endOfDStream().
*/
/*-****************************************
* unsafe API
******************************************/
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC, size_t value, unsigned nbBits);
/* faster, but works only if value is "clean", meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC);
/* unsafe version; does not check buffer overflow */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits);
/* faster, but works only if nbBits >= 1 */
/*===== Local Constants =====*/
static const unsigned BIT_mask[] = {
0, 1, 3, 7, 0xF, 0x1F,
0x3F, 0x7F, 0xFF, 0x1FF, 0x3FF, 0x7FF,
0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, 0x1FFFF,
0x3FFFF, 0x7FFFF, 0xFFFFF, 0x1FFFFF, 0x3FFFFF, 0x7FFFFF,
0xFFFFFF, 0x1FFFFFF, 0x3FFFFFF, 0x7FFFFFF, 0xFFFFFFF, 0x1FFFFFFF,
0x3FFFFFFF, 0x7FFFFFFF}; /* up to 31 bits */
#define BIT_MASK_SIZE (sizeof(BIT_mask) / sizeof(BIT_mask[0]))
/*-**************************************************************
* bitStream encoding
****************************************************************/
/*! BIT_initCStream() :
* `dstCapacity` must be > sizeof(size_t)
* @return : 0 if success,
* otherwise an error code (can be tested using ERR_isError()) */
MEM_STATIC size_t BIT_initCStream(BIT_CStream_t* bitC,
void* startPtr, size_t dstCapacity)
{
bitC->bitContainer = 0;
bitC->bitPos = 0;
bitC->startPtr = (char*)startPtr;
bitC->ptr = bitC->startPtr;
bitC->endPtr = bitC->startPtr + dstCapacity - sizeof(bitC->bitContainer);
if (dstCapacity <= sizeof(bitC->bitContainer)) return ERROR(dstSize_tooSmall);
return 0;
}
FORCE_INLINE_TEMPLATE size_t BIT_getLowerBits(size_t bitContainer, U32 const nbBits)
{
#if defined(STATIC_BMI2) && STATIC_BMI2 == 1 && !defined(ZSTD_NO_INTRINSICS)
return _bzhi_u64(bitContainer, nbBits);
#else
assert(nbBits < BIT_MASK_SIZE);
return bitContainer & BIT_mask[nbBits];
#endif
}
/*! BIT_addBits() :
* can add up to 31 bits into `bitC`.
* Note : does not check for register overflow ! */
MEM_STATIC void BIT_addBits(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
DEBUG_STATIC_ASSERT(BIT_MASK_SIZE == 32);
assert(nbBits < BIT_MASK_SIZE);
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
bitC->bitContainer |= BIT_getLowerBits(value, nbBits) << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_addBitsFast() :
* works only if `value` is _clean_,
* meaning all high bits above nbBits are 0 */
MEM_STATIC void BIT_addBitsFast(BIT_CStream_t* bitC,
size_t value, unsigned nbBits)
{
assert((value>>nbBits) == 0);
assert(nbBits + bitC->bitPos < sizeof(bitC->bitContainer) * 8);
bitC->bitContainer |= value << bitC->bitPos;
bitC->bitPos += nbBits;
}
/*! BIT_flushBitsFast() :
* assumption : bitContainer has not overflowed
* unsafe version; does not check buffer overflow */
MEM_STATIC void BIT_flushBitsFast(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_flushBits() :
* assumption : bitContainer has not overflowed
* safe version; check for buffer overflow, and prevents it.
* note : does not signal buffer overflow.
* overflow will be revealed later on using BIT_closeCStream() */
MEM_STATIC void BIT_flushBits(BIT_CStream_t* bitC)
{
size_t const nbBytes = bitC->bitPos >> 3;
assert(bitC->bitPos < sizeof(bitC->bitContainer) * 8);
assert(bitC->ptr <= bitC->endPtr);
MEM_writeLEST(bitC->ptr, bitC->bitContainer);
bitC->ptr += nbBytes;
if (bitC->ptr > bitC->endPtr) bitC->ptr = bitC->endPtr;
bitC->bitPos &= 7;
bitC->bitContainer >>= nbBytes*8;
}
/*! BIT_closeCStream() :
* @return : size of CStream, in bytes,
* or 0 if it could not fit into dstBuffer */
MEM_STATIC size_t BIT_closeCStream(BIT_CStream_t* bitC)
{
BIT_addBitsFast(bitC, 1, 1); /* endMark */
BIT_flushBits(bitC);
if (bitC->ptr >= bitC->endPtr) return 0; /* overflow detected */
return (bitC->ptr - bitC->startPtr) + (bitC->bitPos > 0);
}
/*-********************************************************
* bitStream decoding
**********************************************************/
/*! BIT_initDStream() :
* Initialize a BIT_DStream_t.
* `bitD` : a pointer to an already allocated BIT_DStream_t structure.
* `srcSize` must be the *exact* size of the bitStream, in bytes.
* @return : size of stream (== srcSize), or an errorCode if a problem is detected
*/
MEM_STATIC size_t BIT_initDStream(BIT_DStream_t* bitD, const void* srcBuffer, size_t srcSize)
{
if (srcSize < 1) { ZSTD_memset(bitD, 0, sizeof(*bitD)); return ERROR(srcSize_wrong); }
bitD->start = (const char*)srcBuffer;
bitD->limitPtr = bitD->start + sizeof(bitD->bitContainer);
if (srcSize >= sizeof(bitD->bitContainer)) { /* normal case */
bitD->ptr = (const char*)srcBuffer + srcSize - sizeof(bitD->bitContainer);
bitD->bitContainer = MEM_readLEST(bitD->ptr);
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0; /* ensures bitsConsumed is always set */
if (lastByte == 0) return ERROR(GENERIC); /* endMark not present */ }
} else {
bitD->ptr = bitD->start;
bitD->bitContainer = *(const BYTE*)(bitD->start);
switch(srcSize)
{
case 7: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[6]) << (sizeof(bitD->bitContainer)*8 - 16);
ZSTD_FALLTHROUGH;
case 6: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[5]) << (sizeof(bitD->bitContainer)*8 - 24);
ZSTD_FALLTHROUGH;
case 5: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[4]) << (sizeof(bitD->bitContainer)*8 - 32);
ZSTD_FALLTHROUGH;
case 4: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[3]) << 24;
ZSTD_FALLTHROUGH;
case 3: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[2]) << 16;
ZSTD_FALLTHROUGH;
case 2: bitD->bitContainer += (BitContainerType)(((const BYTE*)(srcBuffer))[1]) << 8;
ZSTD_FALLTHROUGH;
default: break;
}
{ BYTE const lastByte = ((const BYTE*)srcBuffer)[srcSize-1];
bitD->bitsConsumed = lastByte ? 8 - ZSTD_highbit32(lastByte) : 0;
if (lastByte == 0) return ERROR(corruption_detected); /* endMark not present */
}
bitD->bitsConsumed += (U32)(sizeof(bitD->bitContainer) - srcSize)*8;
}
return srcSize;
}
FORCE_INLINE_TEMPLATE size_t BIT_getUpperBits(BitContainerType bitContainer, U32 const start)
{
return bitContainer >> start;
}
FORCE_INLINE_TEMPLATE size_t BIT_getMiddleBits(BitContainerType bitContainer, U32 const start, U32 const nbBits)
{
U32 const regMask = sizeof(bitContainer)*8 - 1;
/* if start > regMask, bitstream is corrupted, and result is undefined */
assert(nbBits < BIT_MASK_SIZE);
/* x86 transform & ((1 << nbBits) - 1) to bzhi instruction, it is better
* than accessing memory. When bmi2 instruction is not present, we consider
* such cpus old (pre-Haswell, 2013) and their performance is not of that
* importance.
*/
#if defined(__x86_64__) || defined(_M_X86)
return (bitContainer >> (start & regMask)) & ((((U64)1) << nbBits) - 1);
#else
return (bitContainer >> (start & regMask)) & BIT_mask[nbBits];
#endif
}
/*! BIT_lookBits() :
* Provides next n bits from local register.
* local register is not modified.
* On 32-bits, maxNbBits==24.
* On 64-bits, maxNbBits==56.
* @return : value extracted */
FORCE_INLINE_TEMPLATE size_t BIT_lookBits(const BIT_DStream_t* bitD, U32 nbBits)
{
/* arbitrate between double-shift and shift+mask */
#if 1
/* if bitD->bitsConsumed + nbBits > sizeof(bitD->bitContainer)*8,
* bitstream is likely corrupted, and result is undefined */
return BIT_getMiddleBits(bitD->bitContainer, (sizeof(bitD->bitContainer)*8) - bitD->bitsConsumed - nbBits, nbBits);
#else
/* this code path is slower on my os-x laptop */
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
return ((bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> 1) >> ((regMask-nbBits) & regMask);
#endif
}
/*! BIT_lookBitsFast() :
* unsafe version; only works if nbBits >= 1 */
MEM_STATIC size_t BIT_lookBitsFast(const BIT_DStream_t* bitD, U32 nbBits)
{
U32 const regMask = sizeof(bitD->bitContainer)*8 - 1;
assert(nbBits >= 1);
return (bitD->bitContainer << (bitD->bitsConsumed & regMask)) >> (((regMask+1)-nbBits) & regMask);
}
FORCE_INLINE_TEMPLATE void BIT_skipBits(BIT_DStream_t* bitD, U32 nbBits)
{
bitD->bitsConsumed += nbBits;
}
/*! BIT_readBits() :
* Read (consume) next n bits from local register and update.
* Pay attention to not read more than nbBits contained into local register.
* @return : extracted value. */
FORCE_INLINE_TEMPLATE size_t BIT_readBits(BIT_DStream_t* bitD, unsigned nbBits)
{
size_t const value = BIT_lookBits(bitD, nbBits);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_readBitsFast() :
* unsafe version; only works if nbBits >= 1 */
MEM_STATIC size_t BIT_readBitsFast(BIT_DStream_t* bitD, unsigned nbBits)
{
size_t const value = BIT_lookBitsFast(bitD, nbBits);
assert(nbBits >= 1);
BIT_skipBits(bitD, nbBits);
return value;
}
/*! BIT_reloadDStream_internal() :
* Simple variant of BIT_reloadDStream(), with two conditions:
* 1. bitstream is valid : bitsConsumed <= sizeof(bitD->bitContainer)*8
* 2. look window is valid after shifted down : bitD->ptr >= bitD->start
*/
MEM_STATIC BIT_DStream_status BIT_reloadDStream_internal(BIT_DStream_t* bitD)
{
assert(bitD->bitsConsumed <= sizeof(bitD->bitContainer)*8);
bitD->ptr -= bitD->bitsConsumed >> 3;
assert(bitD->ptr >= bitD->start);
bitD->bitsConsumed &= 7;
bitD->bitContainer = MEM_readLEST(bitD->ptr);
return BIT_DStream_unfinished;
}
/*! BIT_reloadDStreamFast() :
* Similar to BIT_reloadDStream(), but with two differences:
* 1. bitsConsumed <= sizeof(bitD->bitContainer)*8 must hold!
* 2. Returns BIT_DStream_overflow when bitD->ptr < bitD->limitPtr, at this
* point you must use BIT_reloadDStream() to reload.
*/
MEM_STATIC BIT_DStream_status BIT_reloadDStreamFast(BIT_DStream_t* bitD)
{
if (UNLIKELY(bitD->ptr < bitD->limitPtr))
return BIT_DStream_overflow;
return BIT_reloadDStream_internal(bitD);
}
/*! BIT_reloadDStream() :
* Refill `bitD` from buffer previously set in BIT_initDStream() .
* This function is safe, it guarantees it will not never beyond src buffer.
* @return : status of `BIT_DStream_t` internal register.
* when status == BIT_DStream_unfinished, internal register is filled with at least 25 or 57 bits */
FORCE_INLINE_TEMPLATE BIT_DStream_status BIT_reloadDStream(BIT_DStream_t* bitD)
{
/* note : once in overflow mode, a bitstream remains in this mode until it's reset */
if (UNLIKELY(bitD->bitsConsumed > (sizeof(bitD->bitContainer)*8))) {
static const BitContainerType zeroFilled = 0;
bitD->ptr = (const char*)&zeroFilled; /* aliasing is allowed for char */
/* overflow detected, erroneous scenario or end of stream: no update */
return BIT_DStream_overflow;
}
assert(bitD->ptr >= bitD->start);
if (bitD->ptr >= bitD->limitPtr) {
return BIT_reloadDStream_internal(bitD);
}
if (bitD->ptr == bitD->start) {
/* reached end of bitStream => no update */
if (bitD->bitsConsumed < sizeof(bitD->bitContainer)*8) return BIT_DStream_endOfBuffer;
return BIT_DStream_completed;
}
/* start < ptr < limitPtr => cautious update */
{ U32 nbBytes = bitD->bitsConsumed >> 3;
BIT_DStream_status result = BIT_DStream_unfinished;
if (bitD->ptr - nbBytes < bitD->start) {
nbBytes = (U32)(bitD->ptr - bitD->start); /* ptr > start */
result = BIT_DStream_endOfBuffer;
}
bitD->ptr -= nbBytes;
bitD->bitsConsumed -= nbBytes*8;
bitD->bitContainer = MEM_readLEST(bitD->ptr); /* reminder : srcSize > sizeof(bitD->bitContainer), otherwise bitD->ptr == bitD->start */
return result;
}
}
/*! BIT_endOfDStream() :
* @return : 1 if DStream has _exactly_ reached its end (all bits consumed).
*/
MEM_STATIC unsigned BIT_endOfDStream(const BIT_DStream_t* DStream)
{
return ((DStream->ptr == DStream->start) && (DStream->bitsConsumed == sizeof(DStream->bitContainer)*8));
}
#if defined (__cplusplus)
}
#endif
#endif /* BITSTREAM_H_MODULE */
#endif /* USE_EXTERNAL_ZSTD */

137
vendor/github.com/DataDog/zstd/clevels.h generated vendored Normal file
View File

@ -0,0 +1,137 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CLEVELS_H
#define ZSTD_CLEVELS_H
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_compressionParameters */
#include "zstd.h"
/*-===== Pre-defined compression levels =====-*/
#define ZSTD_MAX_CLEVEL 22
#ifdef __GNUC__
__attribute__((__unused__))
#endif
static const ZSTD_compressionParameters ZSTD_defaultCParameters[4][ZSTD_MAX_CLEVEL+1] = {
{ /* "default" - for any srcSize > 256 KB */
/* W, C, H, S, L, TL, strat */
{ 19, 12, 13, 1, 6, 1, ZSTD_fast }, /* base for negative levels */
{ 19, 13, 14, 1, 7, 0, ZSTD_fast }, /* level 1 */
{ 20, 15, 16, 1, 6, 0, ZSTD_fast }, /* level 2 */
{ 21, 16, 17, 1, 5, 0, ZSTD_dfast }, /* level 3 */
{ 21, 18, 18, 1, 5, 0, ZSTD_dfast }, /* level 4 */
{ 21, 18, 19, 3, 5, 2, ZSTD_greedy }, /* level 5 */
{ 21, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6 */
{ 21, 19, 20, 4, 5, 8, ZSTD_lazy }, /* level 7 */
{ 21, 19, 20, 4, 5, 16, ZSTD_lazy2 }, /* level 8 */
{ 22, 20, 21, 4, 5, 16, ZSTD_lazy2 }, /* level 9 */
{ 22, 21, 22, 5, 5, 16, ZSTD_lazy2 }, /* level 10 */
{ 22, 21, 22, 6, 5, 16, ZSTD_lazy2 }, /* level 11 */
{ 22, 22, 23, 6, 5, 32, ZSTD_lazy2 }, /* level 12 */
{ 22, 22, 22, 4, 5, 32, ZSTD_btlazy2 }, /* level 13 */
{ 22, 22, 23, 5, 5, 32, ZSTD_btlazy2 }, /* level 14 */
{ 22, 23, 23, 6, 5, 32, ZSTD_btlazy2 }, /* level 15 */
{ 22, 22, 22, 5, 5, 48, ZSTD_btopt }, /* level 16 */
{ 23, 23, 22, 5, 4, 64, ZSTD_btopt }, /* level 17 */
{ 23, 23, 22, 6, 3, 64, ZSTD_btultra }, /* level 18 */
{ 23, 24, 22, 7, 3,256, ZSTD_btultra2}, /* level 19 */
{ 25, 25, 23, 7, 3,256, ZSTD_btultra2}, /* level 20 */
{ 26, 26, 24, 7, 3,512, ZSTD_btultra2}, /* level 21 */
{ 27, 27, 25, 9, 3,999, ZSTD_btultra2}, /* level 22 */
},
{ /* for srcSize <= 256 KB */
/* W, C, H, S, L, T, strat */
{ 18, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 18, 13, 14, 1, 6, 0, ZSTD_fast }, /* level 1 */
{ 18, 14, 14, 1, 5, 0, ZSTD_dfast }, /* level 2 */
{ 18, 16, 16, 1, 4, 0, ZSTD_dfast }, /* level 3 */
{ 18, 16, 17, 3, 5, 2, ZSTD_greedy }, /* level 4.*/
{ 18, 17, 18, 5, 5, 2, ZSTD_greedy }, /* level 5.*/
{ 18, 18, 19, 3, 5, 4, ZSTD_lazy }, /* level 6.*/
{ 18, 18, 19, 4, 4, 4, ZSTD_lazy }, /* level 7 */
{ 18, 18, 19, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 18, 18, 19, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 18, 18, 19, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 18, 18, 19, 5, 4, 12, ZSTD_btlazy2 }, /* level 11.*/
{ 18, 19, 19, 7, 4, 12, ZSTD_btlazy2 }, /* level 12.*/
{ 18, 18, 19, 4, 4, 16, ZSTD_btopt }, /* level 13 */
{ 18, 18, 19, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
{ 18, 18, 19, 6, 3,128, ZSTD_btopt }, /* level 15.*/
{ 18, 19, 19, 6, 3,128, ZSTD_btultra }, /* level 16.*/
{ 18, 19, 19, 8, 3,256, ZSTD_btultra }, /* level 17.*/
{ 18, 19, 19, 6, 3,128, ZSTD_btultra2}, /* level 18.*/
{ 18, 19, 19, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 18, 19, 19, 10, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 18, 19, 19, 12, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 18, 19, 19, 13, 3,999, ZSTD_btultra2}, /* level 22.*/
},
{ /* for srcSize <= 128 KB */
/* W, C, H, S, L, T, strat */
{ 17, 12, 12, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 17, 12, 13, 1, 6, 0, ZSTD_fast }, /* level 1 */
{ 17, 13, 15, 1, 5, 0, ZSTD_fast }, /* level 2 */
{ 17, 15, 16, 2, 5, 0, ZSTD_dfast }, /* level 3 */
{ 17, 17, 17, 2, 4, 0, ZSTD_dfast }, /* level 4 */
{ 17, 16, 17, 3, 4, 2, ZSTD_greedy }, /* level 5 */
{ 17, 16, 17, 3, 4, 4, ZSTD_lazy }, /* level 6 */
{ 17, 16, 17, 3, 4, 8, ZSTD_lazy2 }, /* level 7 */
{ 17, 16, 17, 4, 4, 8, ZSTD_lazy2 }, /* level 8 */
{ 17, 16, 17, 5, 4, 8, ZSTD_lazy2 }, /* level 9 */
{ 17, 16, 17, 6, 4, 8, ZSTD_lazy2 }, /* level 10 */
{ 17, 17, 17, 5, 4, 8, ZSTD_btlazy2 }, /* level 11 */
{ 17, 18, 17, 7, 4, 12, ZSTD_btlazy2 }, /* level 12 */
{ 17, 18, 17, 3, 4, 12, ZSTD_btopt }, /* level 13.*/
{ 17, 18, 17, 4, 3, 32, ZSTD_btopt }, /* level 14.*/
{ 17, 18, 17, 6, 3,256, ZSTD_btopt }, /* level 15.*/
{ 17, 18, 17, 6, 3,128, ZSTD_btultra }, /* level 16.*/
{ 17, 18, 17, 8, 3,256, ZSTD_btultra }, /* level 17.*/
{ 17, 18, 17, 10, 3,512, ZSTD_btultra }, /* level 18.*/
{ 17, 18, 17, 5, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 17, 18, 17, 7, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 17, 18, 17, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 17, 18, 17, 11, 3,999, ZSTD_btultra2}, /* level 22.*/
},
{ /* for srcSize <= 16 KB */
/* W, C, H, S, L, T, strat */
{ 14, 12, 13, 1, 5, 1, ZSTD_fast }, /* base for negative levels */
{ 14, 14, 15, 1, 5, 0, ZSTD_fast }, /* level 1 */
{ 14, 14, 15, 1, 4, 0, ZSTD_fast }, /* level 2 */
{ 14, 14, 15, 2, 4, 0, ZSTD_dfast }, /* level 3 */
{ 14, 14, 14, 4, 4, 2, ZSTD_greedy }, /* level 4 */
{ 14, 14, 14, 3, 4, 4, ZSTD_lazy }, /* level 5.*/
{ 14, 14, 14, 4, 4, 8, ZSTD_lazy2 }, /* level 6 */
{ 14, 14, 14, 6, 4, 8, ZSTD_lazy2 }, /* level 7 */
{ 14, 14, 14, 8, 4, 8, ZSTD_lazy2 }, /* level 8.*/
{ 14, 15, 14, 5, 4, 8, ZSTD_btlazy2 }, /* level 9.*/
{ 14, 15, 14, 9, 4, 8, ZSTD_btlazy2 }, /* level 10.*/
{ 14, 15, 14, 3, 4, 12, ZSTD_btopt }, /* level 11.*/
{ 14, 15, 14, 4, 3, 24, ZSTD_btopt }, /* level 12.*/
{ 14, 15, 14, 5, 3, 32, ZSTD_btultra }, /* level 13.*/
{ 14, 15, 15, 6, 3, 64, ZSTD_btultra }, /* level 14.*/
{ 14, 15, 15, 7, 3,256, ZSTD_btultra }, /* level 15.*/
{ 14, 15, 15, 5, 3, 48, ZSTD_btultra2}, /* level 16.*/
{ 14, 15, 15, 6, 3,128, ZSTD_btultra2}, /* level 17.*/
{ 14, 15, 15, 7, 3,256, ZSTD_btultra2}, /* level 18.*/
{ 14, 15, 15, 8, 3,256, ZSTD_btultra2}, /* level 19.*/
{ 14, 15, 15, 8, 3,512, ZSTD_btultra2}, /* level 20.*/
{ 14, 15, 15, 9, 3,512, ZSTD_btultra2}, /* level 21.*/
{ 14, 15, 15, 10, 3,999, ZSTD_btultra2}, /* level 22.*/
},
};
#endif /* ZSTD_CLEVELS_H */
#endif /* USE_EXTERNAL_ZSTD */

453
vendor/github.com/DataDog/zstd/compiler.h generated vendored Normal file
View File

@ -0,0 +1,453 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPILER_H
#define ZSTD_COMPILER_H
#include <stddef.h>
#include "portability_macros.h"
/*-*******************************************************
* Compiler specifics
*********************************************************/
/* force inlining */
#if !defined(ZSTD_NO_INLINE)
#if (defined(__GNUC__) && !defined(__STRICT_ANSI__)) || defined(__cplusplus) || defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
# define INLINE_KEYWORD inline
#else
# define INLINE_KEYWORD
#endif
#if defined(__GNUC__) || defined(__ICCARM__)
# define FORCE_INLINE_ATTR __attribute__((always_inline))
#elif defined(_MSC_VER)
# define FORCE_INLINE_ATTR __forceinline
#else
# define FORCE_INLINE_ATTR
#endif
#else
#define INLINE_KEYWORD
#define FORCE_INLINE_ATTR
#endif
/**
On MSVC qsort requires that functions passed into it use the __cdecl calling conversion(CC).
This explicitly marks such functions as __cdecl so that the code will still compile
if a CC other than __cdecl has been made the default.
*/
#if defined(_MSC_VER)
# define WIN_CDECL __cdecl
#else
# define WIN_CDECL
#endif
/* UNUSED_ATTR tells the compiler it is okay if the function is unused. */
#if defined(__GNUC__)
# define UNUSED_ATTR __attribute__((unused))
#else
# define UNUSED_ATTR
#endif
/**
* FORCE_INLINE_TEMPLATE is used to define C "templates", which take constant
* parameters. They must be inlined for the compiler to eliminate the constant
* branches.
*/
#define FORCE_INLINE_TEMPLATE static INLINE_KEYWORD FORCE_INLINE_ATTR UNUSED_ATTR
/**
* HINT_INLINE is used to help the compiler generate better code. It is *not*
* used for "templates", so it can be tweaked based on the compilers
* performance.
*
* gcc-4.8 and gcc-4.9 have been shown to benefit from leaving off the
* always_inline attribute.
*
* clang up to 5.0.0 (trunk) benefit tremendously from the always_inline
* attribute.
*/
#if !defined(__clang__) && defined(__GNUC__) && __GNUC__ >= 4 && __GNUC_MINOR__ >= 8 && __GNUC__ < 5
# define HINT_INLINE static INLINE_KEYWORD
#else
# define HINT_INLINE FORCE_INLINE_TEMPLATE
#endif
/* "soft" inline :
* The compiler is free to select if it's a good idea to inline or not.
* The main objective is to silence compiler warnings
* when a defined function in included but not used.
*
* Note : this macro is prefixed `MEM_` because it used to be provided by `mem.h` unit.
* Updating the prefix is probably preferable, but requires a fairly large codemod,
* since this name is used everywhere.
*/
#ifndef MEM_STATIC /* already defined in Linux Kernel mem.h */
#if defined(__GNUC__)
# define MEM_STATIC static __inline UNUSED_ATTR
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define MEM_STATIC static inline
#elif defined(_MSC_VER)
# define MEM_STATIC static __inline
#else
# define MEM_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
#endif
/* force no inlining */
#ifdef _MSC_VER
# define FORCE_NOINLINE static __declspec(noinline)
#else
# if defined(__GNUC__) || defined(__ICCARM__)
# define FORCE_NOINLINE static __attribute__((__noinline__))
# else
# define FORCE_NOINLINE static
# endif
#endif
/* target attribute */
#if defined(__GNUC__) || defined(__ICCARM__)
# define TARGET_ATTRIBUTE(target) __attribute__((__target__(target)))
#else
# define TARGET_ATTRIBUTE(target)
#endif
/* Target attribute for BMI2 dynamic dispatch.
* Enable lzcnt, bmi, and bmi2.
* We test for bmi1 & bmi2. lzcnt is included in bmi1.
*/
#define BMI2_TARGET_ATTRIBUTE TARGET_ATTRIBUTE("lzcnt,bmi,bmi2")
/* prefetch
* can be disabled, by declaring NO_PREFETCH build macro */
#if defined(NO_PREFETCH)
# define PREFETCH_L1(ptr) do { (void)(ptr); } while (0) /* disabled */
# define PREFETCH_L2(ptr) do { (void)(ptr); } while (0) /* disabled */
#else
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86)) && !defined(_M_ARM64EC) /* _mm_prefetch() is not defined outside of x86/x64 */
# include <mmintrin.h> /* https://msdn.microsoft.com/fr-fr/library/84szxsww(v=vs.90).aspx */
# define PREFETCH_L1(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T0)
# define PREFETCH_L2(ptr) _mm_prefetch((const char*)(ptr), _MM_HINT_T1)
# elif defined(__GNUC__) && ( (__GNUC__ >= 4) || ( (__GNUC__ == 3) && (__GNUC_MINOR__ >= 1) ) )
# define PREFETCH_L1(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 3 /* locality */)
# define PREFETCH_L2(ptr) __builtin_prefetch((ptr), 0 /* rw==read */, 2 /* locality */)
# elif defined(__aarch64__)
# define PREFETCH_L1(ptr) do { __asm__ __volatile__("prfm pldl1keep, %0" ::"Q"(*(ptr))); } while (0)
# define PREFETCH_L2(ptr) do { __asm__ __volatile__("prfm pldl2keep, %0" ::"Q"(*(ptr))); } while (0)
# else
# define PREFETCH_L1(ptr) do { (void)(ptr); } while (0) /* disabled */
# define PREFETCH_L2(ptr) do { (void)(ptr); } while (0) /* disabled */
# endif
#endif /* NO_PREFETCH */
#define CACHELINE_SIZE 64
#define PREFETCH_AREA(p, s) \
do { \
const char* const _ptr = (const char*)(p); \
size_t const _size = (size_t)(s); \
size_t _pos; \
for (_pos=0; _pos<_size; _pos+=CACHELINE_SIZE) { \
PREFETCH_L2(_ptr + _pos); \
} \
} while (0)
/* vectorization
* older GCC (pre gcc-4.3 picked as the cutoff) uses a different syntax,
* and some compilers, like Intel ICC and MCST LCC, do not support it at all. */
#if !defined(__INTEL_COMPILER) && !defined(__clang__) && defined(__GNUC__) && !defined(__LCC__)
# if (__GNUC__ == 4 && __GNUC_MINOR__ > 3) || (__GNUC__ >= 5)
# define DONT_VECTORIZE __attribute__((optimize("no-tree-vectorize")))
# else
# define DONT_VECTORIZE _Pragma("GCC optimize(\"no-tree-vectorize\")")
# endif
#else
# define DONT_VECTORIZE
#endif
/* Tell the compiler that a branch is likely or unlikely.
* Only use these macros if it causes the compiler to generate better code.
* If you can remove a LIKELY/UNLIKELY annotation without speed changes in gcc
* and clang, please do.
*/
#if defined(__GNUC__)
#define LIKELY(x) (__builtin_expect((x), 1))
#define UNLIKELY(x) (__builtin_expect((x), 0))
#else
#define LIKELY(x) (x)
#define UNLIKELY(x) (x)
#endif
#if __has_builtin(__builtin_unreachable) || (defined(__GNUC__) && (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 5)))
# define ZSTD_UNREACHABLE do { assert(0), __builtin_unreachable(); } while (0)
#else
# define ZSTD_UNREACHABLE do { assert(0); } while (0)
#endif
/* disable warnings */
#ifdef _MSC_VER /* Visual Studio */
# include <intrin.h> /* For Visual 2005 */
# pragma warning(disable : 4100) /* disable: C4100: unreferenced formal parameter */
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
# pragma warning(disable : 4214) /* disable: C4214: non-int bitfields */
# pragma warning(disable : 4324) /* disable: C4324: padded structure */
#endif
/*Like DYNAMIC_BMI2 but for compile time determination of BMI2 support*/
#ifndef STATIC_BMI2
# if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_I86))
# ifdef __AVX2__ //MSVC does not have a BMI2 specific flag, but every CPU that supports AVX2 also supports BMI2
# define STATIC_BMI2 1
# endif
# elif defined(__BMI2__) && defined(__x86_64__) && defined(__GNUC__)
# define STATIC_BMI2 1
# endif
#endif
#ifndef STATIC_BMI2
#define STATIC_BMI2 0
#endif
/* compile time determination of SIMD support */
#if !defined(ZSTD_NO_INTRINSICS)
# if defined(__SSE2__) || defined(_M_AMD64) || (defined (_M_IX86) && defined(_M_IX86_FP) && (_M_IX86_FP >= 2))
# define ZSTD_ARCH_X86_SSE2
# endif
# if defined(__ARM_NEON) || defined(_M_ARM64)
# define ZSTD_ARCH_ARM_NEON
# endif
#
# if defined(ZSTD_ARCH_X86_SSE2)
# include <emmintrin.h>
# elif defined(ZSTD_ARCH_ARM_NEON)
# include <arm_neon.h>
# endif
#endif
/* C-language Attributes are added in C23. */
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ > 201710L) && defined(__has_c_attribute)
# define ZSTD_HAS_C_ATTRIBUTE(x) __has_c_attribute(x)
#else
# define ZSTD_HAS_C_ATTRIBUTE(x) 0
#endif
/* Only use C++ attributes in C++. Some compilers report support for C++
* attributes when compiling with C.
*/
#if defined(__cplusplus) && defined(__has_cpp_attribute)
# define ZSTD_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
# define ZSTD_HAS_CPP_ATTRIBUTE(x) 0
#endif
/* Define ZSTD_FALLTHROUGH macro for annotating switch case with the 'fallthrough' attribute.
* - C23: https://en.cppreference.com/w/c/language/attributes/fallthrough
* - CPP17: https://en.cppreference.com/w/cpp/language/attributes/fallthrough
* - Else: __attribute__((__fallthrough__))
*/
#ifndef ZSTD_FALLTHROUGH
# if ZSTD_HAS_C_ATTRIBUTE(fallthrough)
# define ZSTD_FALLTHROUGH [[fallthrough]]
# elif ZSTD_HAS_CPP_ATTRIBUTE(fallthrough)
# define ZSTD_FALLTHROUGH [[fallthrough]]
# elif __has_attribute(__fallthrough__)
/* Leading semicolon is to satisfy gcc-11 with -pedantic. Without the semicolon
* gcc complains about: a label can only be part of a statement and a declaration is not a statement.
*/
# define ZSTD_FALLTHROUGH ; __attribute__((__fallthrough__))
# else
# define ZSTD_FALLTHROUGH
# endif
#endif
/*-**************************************************************
* Alignment check
*****************************************************************/
/* this test was initially positioned in mem.h,
* but this file is removed (or replaced) for linux kernel
* so it's now hosted in compiler.h,
* which remains valid for both user & kernel spaces.
*/
#ifndef ZSTD_ALIGNOF
# if defined(__GNUC__) || defined(_MSC_VER)
/* covers gcc, clang & MSVC */
/* note : this section must come first, before C11,
* due to a limitation in the kernel source generator */
# define ZSTD_ALIGNOF(T) __alignof(T)
# elif defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
/* C11 support */
# include <stdalign.h>
# define ZSTD_ALIGNOF(T) alignof(T)
# else
/* No known support for alignof() - imperfect backup */
# define ZSTD_ALIGNOF(T) (sizeof(void*) < sizeof(T) ? sizeof(void*) : sizeof(T))
# endif
#endif /* ZSTD_ALIGNOF */
/*-**************************************************************
* Sanitizer
*****************************************************************/
/**
* Zstd relies on pointer overflow in its decompressor.
* We add this attribute to functions that rely on pointer overflow.
*/
#ifndef ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
# if __has_attribute(no_sanitize)
# if !defined(__clang__) && defined(__GNUC__) && __GNUC__ < 8
/* gcc < 8 only has signed-integer-overlow which triggers on pointer overflow */
# define ZSTD_ALLOW_POINTER_OVERFLOW_ATTR __attribute__((no_sanitize("signed-integer-overflow")))
# else
/* older versions of clang [3.7, 5.0) will warn that pointer-overflow is ignored. */
# define ZSTD_ALLOW_POINTER_OVERFLOW_ATTR __attribute__((no_sanitize("pointer-overflow")))
# endif
# else
# define ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
# endif
#endif
/**
* Helper function to perform a wrapped pointer difference without trigging
* UBSAN.
*
* @returns lhs - rhs with wrapping
*/
MEM_STATIC
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
ptrdiff_t ZSTD_wrappedPtrDiff(unsigned char const* lhs, unsigned char const* rhs)
{
return lhs - rhs;
}
/**
* Helper function to perform a wrapped pointer add without triggering UBSAN.
*
* @return ptr + add with wrapping
*/
MEM_STATIC
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
unsigned char const* ZSTD_wrappedPtrAdd(unsigned char const* ptr, ptrdiff_t add)
{
return ptr + add;
}
/**
* Helper function to perform a wrapped pointer subtraction without triggering
* UBSAN.
*
* @return ptr - sub with wrapping
*/
MEM_STATIC
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
unsigned char const* ZSTD_wrappedPtrSub(unsigned char const* ptr, ptrdiff_t sub)
{
return ptr - sub;
}
/**
* Helper function to add to a pointer that works around C's undefined behavior
* of adding 0 to NULL.
*
* @returns `ptr + add` except it defines `NULL + 0 == NULL`.
*/
MEM_STATIC
unsigned char* ZSTD_maybeNullPtrAdd(unsigned char* ptr, ptrdiff_t add)
{
return add > 0 ? ptr + add : ptr;
}
/* Issue #3240 reports an ASAN failure on an llvm-mingw build. Out of an
* abundance of caution, disable our custom poisoning on mingw. */
#ifdef __MINGW32__
#ifndef ZSTD_ASAN_DONT_POISON_WORKSPACE
#define ZSTD_ASAN_DONT_POISON_WORKSPACE 1
#endif
#ifndef ZSTD_MSAN_DONT_POISON_WORKSPACE
#define ZSTD_MSAN_DONT_POISON_WORKSPACE 1
#endif
#endif
#if ZSTD_MEMORY_SANITIZER && !defined(ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* Not all platforms that support msan provide sanitizers/msan_interface.h.
* We therefore declare the functions we need ourselves, rather than trying to
* include the header file... */
#include <stddef.h> /* size_t */
#define ZSTD_DEPS_NEED_STDINT
#include "zstd_deps.h" /* intptr_t */
/* Make memory region fully initialized (without changing its contents). */
void __msan_unpoison(const volatile void *a, size_t size);
/* Make memory region fully uninitialized (without changing its contents).
This is a legacy interface that does not update origin information. Use
__msan_allocated_memory() instead. */
void __msan_poison(const volatile void *a, size_t size);
/* Returns the offset of the first (at least partially) poisoned byte in the
memory range, or -1 if the whole range is good. */
intptr_t __msan_test_shadow(const volatile void *x, size_t size);
/* Print shadow and origin for the memory range to stderr in a human-readable
format. */
void __msan_print_shadow(const volatile void *x, size_t size);
#endif
#if ZSTD_ADDRESS_SANITIZER && !defined(ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Not all platforms that support asan provide sanitizers/asan_interface.h.
* We therefore declare the functions we need ourselves, rather than trying to
* include the header file... */
#include <stddef.h> /* size_t */
/**
* Marks a memory region (<c>[addr, addr+size)</c>) as unaddressable.
*
* This memory must be previously allocated by your program. Instrumented
* code is forbidden from accessing addresses in this region until it is
* unpoisoned. This function is not guaranteed to poison the entire region -
* it could poison only a subregion of <c>[addr, addr+size)</c> due to ASan
* alignment restrictions.
*
* \note This function is not thread-safe because no two threads can poison or
* unpoison memory in the same memory region simultaneously.
*
* \param addr Start of memory region.
* \param size Size of memory region. */
void __asan_poison_memory_region(void const volatile *addr, size_t size);
/**
* Marks a memory region (<c>[addr, addr+size)</c>) as addressable.
*
* This memory must be previously allocated by your program. Accessing
* addresses in this region is allowed until this region is poisoned again.
* This function could unpoison a super-region of <c>[addr, addr+size)</c> due
* to ASan alignment restrictions.
*
* \note This function is not thread-safe because no two threads can
* poison or unpoison memory in the same memory region simultaneously.
*
* \param addr Start of memory region.
* \param size Size of memory region. */
void __asan_unpoison_memory_region(void const volatile *addr, size_t size);
#endif
#endif /* ZSTD_COMPILER_H */
#endif /* USE_EXTERNAL_ZSTD */

1264
vendor/github.com/DataDog/zstd/cover.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

155
vendor/github.com/DataDog/zstd/cover.h generated vendored Normal file
View File

@ -0,0 +1,155 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZDICT_STATIC_LINKING_ONLY
# define ZDICT_STATIC_LINKING_ONLY
#endif
#include "threading.h" /* ZSTD_pthread_mutex_t */
#include "mem.h" /* U32, BYTE */
#include "zdict.h"
/**
* COVER_best_t is used for two purposes:
* 1. Synchronizing threads.
* 2. Saving the best parameters and dictionary.
*
* All of the methods except COVER_best_init() are thread safe if zstd is
* compiled with multithreaded support.
*/
typedef struct COVER_best_s {
ZSTD_pthread_mutex_t mutex;
ZSTD_pthread_cond_t cond;
size_t liveJobs;
void *dict;
size_t dictSize;
ZDICT_cover_params_t parameters;
size_t compressedSize;
} COVER_best_t;
/**
* A segment is a range in the source as well as the score of the segment.
*/
typedef struct {
U32 begin;
U32 end;
U32 score;
} COVER_segment_t;
/**
*Number of epochs and size of each epoch.
*/
typedef struct {
U32 num;
U32 size;
} COVER_epoch_info_t;
/**
* Struct used for the dictionary selection function.
*/
typedef struct COVER_dictSelection {
BYTE* dictContent;
size_t dictSize;
size_t totalCompressedSize;
} COVER_dictSelection_t;
/**
* Computes the number of epochs and the size of each epoch.
* We will make sure that each epoch gets at least 10 * k bytes.
*
* The COVER algorithms divide the data up into epochs of equal size and
* select one segment from each epoch.
*
* @param maxDictSize The maximum allowed dictionary size.
* @param nbDmers The number of dmers we are training on.
* @param k The parameter k (segment size).
* @param passes The target number of passes over the dmer corpus.
* More passes means a better dictionary.
*/
COVER_epoch_info_t COVER_computeEpochs(U32 maxDictSize, U32 nbDmers,
U32 k, U32 passes);
/**
* Warns the user when their corpus is too small.
*/
void COVER_warnOnSmallCorpus(size_t maxDictSize, size_t nbDmers, int displayLevel);
/**
* Checks total compressed size of a dictionary
*/
size_t COVER_checkTotalCompressedSize(const ZDICT_cover_params_t parameters,
const size_t *samplesSizes, const BYTE *samples,
size_t *offsets,
size_t nbTrainSamples, size_t nbSamples,
BYTE *const dict, size_t dictBufferCapacity);
/**
* Returns the sum of the sample sizes.
*/
size_t COVER_sum(const size_t *samplesSizes, unsigned nbSamples) ;
/**
* Initialize the `COVER_best_t`.
*/
void COVER_best_init(COVER_best_t *best);
/**
* Wait until liveJobs == 0.
*/
void COVER_best_wait(COVER_best_t *best);
/**
* Call COVER_best_wait() and then destroy the COVER_best_t.
*/
void COVER_best_destroy(COVER_best_t *best);
/**
* Called when a thread is about to be launched.
* Increments liveJobs.
*/
void COVER_best_start(COVER_best_t *best);
/**
* Called when a thread finishes executing, both on error or success.
* Decrements liveJobs and signals any waiting threads if liveJobs == 0.
* If this dictionary is the best so far save it and its parameters.
*/
void COVER_best_finish(COVER_best_t *best, ZDICT_cover_params_t parameters,
COVER_dictSelection_t selection);
/**
* Error function for COVER_selectDict function. Checks if the return
* value is an error.
*/
unsigned COVER_dictSelectionIsError(COVER_dictSelection_t selection);
/**
* Error function for COVER_selectDict function. Returns a struct where
* return.totalCompressedSize is a ZSTD error.
*/
COVER_dictSelection_t COVER_dictSelectionError(size_t error);
/**
* Always call after selectDict is called to free up used memory from
* newly created dictionary.
*/
void COVER_dictSelectionFree(COVER_dictSelection_t selection);
/**
* Called to finalize the dictionary and select one based on whether or not
* the shrink-dict flag was enabled. If enabled the dictionary used is the
* smallest dictionary within a specified regression of the compressed size
* from the largest dictionary.
*/
COVER_dictSelection_t COVER_selectDict(BYTE* customDictContent, size_t dictBufferCapacity,
size_t dictContentSize, const BYTE* samplesBuffer, const size_t* samplesSizes, unsigned nbFinalizeSamples,
size_t nbCheckSamples, size_t nbSamples, ZDICT_cover_params_t params, size_t* offsets, size_t totalCompressedSize);
#endif /* USE_EXTERNAL_ZSTD */

252
vendor/github.com/DataDog/zstd/cpu.h generated vendored Normal file
View File

@ -0,0 +1,252 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMMON_CPU_H
#define ZSTD_COMMON_CPU_H
/**
* Implementation taken from folly/CpuId.h
* https://github.com/facebook/folly/blob/master/folly/CpuId.h
*/
#include "mem.h"
#ifdef _MSC_VER
#include <intrin.h>
#endif
typedef struct {
U32 f1c;
U32 f1d;
U32 f7b;
U32 f7c;
} ZSTD_cpuid_t;
MEM_STATIC ZSTD_cpuid_t ZSTD_cpuid(void) {
U32 f1c = 0;
U32 f1d = 0;
U32 f7b = 0;
U32 f7c = 0;
#if defined(_MSC_VER) && (defined(_M_X64) || defined(_M_IX86))
#if !defined(__clang__)
int reg[4];
__cpuid((int*)reg, 0);
{
int const n = reg[0];
if (n >= 1) {
__cpuid((int*)reg, 1);
f1c = (U32)reg[2];
f1d = (U32)reg[3];
}
if (n >= 7) {
__cpuidex((int*)reg, 7, 0);
f7b = (U32)reg[1];
f7c = (U32)reg[2];
}
}
#else
/* Clang compiler has a bug (fixed in https://reviews.llvm.org/D101338) in
* which the `__cpuid` intrinsic does not save and restore `rbx` as it needs
* to due to being a reserved register. So in that case, do the `cpuid`
* ourselves. Clang supports inline assembly anyway.
*/
U32 n;
__asm__(
"pushq %%rbx\n\t"
"cpuid\n\t"
"popq %%rbx\n\t"
: "=a"(n)
: "a"(0)
: "rcx", "rdx");
if (n >= 1) {
U32 f1a;
__asm__(
"pushq %%rbx\n\t"
"cpuid\n\t"
"popq %%rbx\n\t"
: "=a"(f1a), "=c"(f1c), "=d"(f1d)
: "a"(1)
:);
}
if (n >= 7) {
__asm__(
"pushq %%rbx\n\t"
"cpuid\n\t"
"movq %%rbx, %%rax\n\t"
"popq %%rbx"
: "=a"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "rdx");
}
#endif
#elif defined(__i386__) && defined(__PIC__) && !defined(__clang__) && defined(__GNUC__)
/* The following block like the normal cpuid branch below, but gcc
* reserves ebx for use of its pic register so we must specially
* handle the save and restore to avoid clobbering the register
*/
U32 n;
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(n)
: "a"(0)
: "ecx", "edx");
if (n >= 1) {
U32 f1a;
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"popl %%ebx\n\t"
: "=a"(f1a), "=c"(f1c), "=d"(f1d)
: "a"(1));
}
if (n >= 7) {
__asm__(
"pushl %%ebx\n\t"
"cpuid\n\t"
"movl %%ebx, %%eax\n\t"
"popl %%ebx"
: "=a"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "edx");
}
#elif defined(__x86_64__) || defined(_M_X64) || defined(__i386__)
U32 n;
__asm__("cpuid" : "=a"(n) : "a"(0) : "ebx", "ecx", "edx");
if (n >= 1) {
U32 f1a;
__asm__("cpuid" : "=a"(f1a), "=c"(f1c), "=d"(f1d) : "a"(1) : "ebx");
}
if (n >= 7) {
U32 f7a;
__asm__("cpuid"
: "=a"(f7a), "=b"(f7b), "=c"(f7c)
: "a"(7), "c"(0)
: "edx");
}
#endif
{
ZSTD_cpuid_t cpuid;
cpuid.f1c = f1c;
cpuid.f1d = f1d;
cpuid.f7b = f7b;
cpuid.f7c = f7c;
return cpuid;
}
}
#define X(name, r, bit) \
MEM_STATIC int ZSTD_cpuid_##name(ZSTD_cpuid_t const cpuid) { \
return ((cpuid.r) & (1U << bit)) != 0; \
}
/* cpuid(1): Processor Info and Feature Bits. */
#define C(name, bit) X(name, f1c, bit)
C(sse3, 0)
C(pclmuldq, 1)
C(dtes64, 2)
C(monitor, 3)
C(dscpl, 4)
C(vmx, 5)
C(smx, 6)
C(eist, 7)
C(tm2, 8)
C(ssse3, 9)
C(cnxtid, 10)
C(fma, 12)
C(cx16, 13)
C(xtpr, 14)
C(pdcm, 15)
C(pcid, 17)
C(dca, 18)
C(sse41, 19)
C(sse42, 20)
C(x2apic, 21)
C(movbe, 22)
C(popcnt, 23)
C(tscdeadline, 24)
C(aes, 25)
C(xsave, 26)
C(osxsave, 27)
C(avx, 28)
C(f16c, 29)
C(rdrand, 30)
#undef C
#define D(name, bit) X(name, f1d, bit)
D(fpu, 0)
D(vme, 1)
D(de, 2)
D(pse, 3)
D(tsc, 4)
D(msr, 5)
D(pae, 6)
D(mce, 7)
D(cx8, 8)
D(apic, 9)
D(sep, 11)
D(mtrr, 12)
D(pge, 13)
D(mca, 14)
D(cmov, 15)
D(pat, 16)
D(pse36, 17)
D(psn, 18)
D(clfsh, 19)
D(ds, 21)
D(acpi, 22)
D(mmx, 23)
D(fxsr, 24)
D(sse, 25)
D(sse2, 26)
D(ss, 27)
D(htt, 28)
D(tm, 29)
D(pbe, 31)
#undef D
/* cpuid(7): Extended Features. */
#define B(name, bit) X(name, f7b, bit)
B(bmi1, 3)
B(hle, 4)
B(avx2, 5)
B(smep, 7)
B(bmi2, 8)
B(erms, 9)
B(invpcid, 10)
B(rtm, 11)
B(mpx, 14)
B(avx512f, 16)
B(avx512dq, 17)
B(rdseed, 18)
B(adx, 19)
B(smap, 20)
B(avx512ifma, 21)
B(pcommit, 22)
B(clflushopt, 23)
B(clwb, 24)
B(avx512pf, 26)
B(avx512er, 27)
B(avx512cd, 28)
B(sha, 29)
B(avx512bw, 30)
B(avx512vl, 31)
#undef B
#define C(name, bit) X(name, f7c, bit)
C(prefetchwt1, 0)
C(avx512vbmi, 1)
#undef C
#undef X
#endif /* ZSTD_COMMON_CPU_H */
#endif /* USE_EXTERNAL_ZSTD */

33
vendor/github.com/DataDog/zstd/debug.c generated vendored Normal file
View File

@ -0,0 +1,33 @@
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* debug
* Part of FSE library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/*
* This module only hosts one global variable
* which can be used to dynamically influence the verbosity of traces,
* such as DEBUGLOG and RAWLOG
*/
#include "debug.h"
#if !defined(ZSTD_LINUX_KERNEL) || (DEBUGLEVEL>=2)
/* We only use this when DEBUGLEVEL>=2, but we get -Werror=pedantic errors if a
* translation unit is empty. So remove this from Linux kernel builds, but
* otherwise just leave it in.
*/
int g_debuglevel = DEBUGLEVEL;
#endif
#endif /* USE_EXTERNAL_ZSTD */

119
vendor/github.com/DataDog/zstd/debug.h generated vendored Normal file
View File

@ -0,0 +1,119 @@
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* debug
* Part of FSE library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/*
* The purpose of this header is to enable debug functions.
* They regroup assert(), DEBUGLOG() and RAWLOG() for run-time,
* and DEBUG_STATIC_ASSERT() for compile-time.
*
* By default, DEBUGLEVEL==0, which means run-time debug is disabled.
*
* Level 1 enables assert() only.
* Starting level 2, traces can be generated and pushed to stderr.
* The higher the level, the more verbose the traces.
*
* It's possible to dynamically adjust level using variable g_debug_level,
* which is only declared if DEBUGLEVEL>=2,
* and is a global variable, not multi-thread protected (use with care)
*/
#ifndef DEBUG_H_12987983217
#define DEBUG_H_12987983217
#if defined (__cplusplus)
extern "C" {
#endif
/* static assert is triggered at compile time, leaving no runtime artefact.
* static assert only works with compile-time constants.
* Also, this variant can only be used inside a function. */
#define DEBUG_STATIC_ASSERT(c) (void)sizeof(char[(c) ? 1 : -1])
/* DEBUGLEVEL is expected to be defined externally,
* typically through compiler command line.
* Value must be a number. */
#ifndef DEBUGLEVEL
# define DEBUGLEVEL 0
#endif
/* recommended values for DEBUGLEVEL :
* 0 : release mode, no debug, all run-time checks disabled
* 1 : enables assert() only, no display
* 2 : reserved, for currently active debug path
* 3 : events once per object lifetime (CCtx, CDict, etc.)
* 4 : events once per frame
* 5 : events once per block
* 6 : events once per sequence (verbose)
* 7+: events at every position (*very* verbose)
*
* It's generally inconvenient to output traces > 5.
* In which case, it's possible to selectively trigger high verbosity levels
* by modifying g_debug_level.
*/
#if (DEBUGLEVEL>=1)
# define ZSTD_DEPS_NEED_ASSERT
# include "zstd_deps.h"
#else
# ifndef assert /* assert may be already defined, due to prior #include <assert.h> */
# define assert(condition) ((void)0) /* disable assert (default) */
# endif
#endif
#if (DEBUGLEVEL>=2)
# define ZSTD_DEPS_NEED_IO
# include "zstd_deps.h"
extern int g_debuglevel; /* the variable is only declared,
it actually lives in debug.c,
and is shared by the whole process.
It's not thread-safe.
It's useful when enabling very verbose levels
on selective conditions (such as position in src) */
# define RAWLOG(l, ...) \
do { \
if (l<=g_debuglevel) { \
ZSTD_DEBUG_PRINT(__VA_ARGS__); \
} \
} while (0)
#define STRINGIFY(x) #x
#define TOSTRING(x) STRINGIFY(x)
#define LINE_AS_STRING TOSTRING(__LINE__)
# define DEBUGLOG(l, ...) \
do { \
if (l<=g_debuglevel) { \
ZSTD_DEBUG_PRINT(__FILE__ ":" LINE_AS_STRING ": " __VA_ARGS__); \
ZSTD_DEBUG_PRINT(" \n"); \
} \
} while (0)
#else
# define RAWLOG(l, ...) do { } while (0) /* disabled */
# define DEBUGLOG(l, ...) do { } while (0) /* disabled */
#endif
#if defined (__cplusplus)
}
#endif
#endif /* DEBUG_H_12987983217 */
#endif /* USE_EXTERNAL_ZSTD */

1916
vendor/github.com/DataDog/zstd/divsufsort.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

70
vendor/github.com/DataDog/zstd/divsufsort.h generated vendored Normal file
View File

@ -0,0 +1,70 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* divsufsort.h for libdivsufsort-lite
* Copyright (c) 2003-2008 Yuta Mori All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person
* obtaining a copy of this software and associated documentation
* files (the "Software"), to deal in the Software without
* restriction, including without limitation the rights to use,
* copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following
* conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef _DIVSUFSORT_H
#define _DIVSUFSORT_H 1
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
/*- Prototypes -*/
/**
* Constructs the suffix array of a given string.
* @param T [0..n-1] The input string.
* @param SA [0..n-1] The output array of suffixes.
* @param n The length of the given string.
* @param openMP enables OpenMP optimization.
* @return 0 if no error occurred, -1 or -2 otherwise.
*/
int
divsufsort(const unsigned char *T, int *SA, int n, int openMP);
/**
* Constructs the burrows-wheeler transformed string of a given string.
* @param T [0..n-1] The input string.
* @param U [0..n-1] The output string. (can be T)
* @param A [0..n-1] The temporary array. (can be NULL)
* @param n The length of the given string.
* @param num_indexes The length of secondary indexes array. (can be NULL)
* @param indexes The secondary indexes array. (can be NULL)
* @param openMP enables OpenMP optimization.
* @return The primary index if no error occurred, -1 or -2 otherwise.
*/
int
divbwt(const unsigned char *T, unsigned char *U, int *A, int n, unsigned char * num_indexes, int * indexes, int openMP);
#ifdef __cplusplus
} /* extern "C" */
#endif /* __cplusplus */
#endif /* _DIVSUFSORT_H */
#endif /* USE_EXTERNAL_ZSTD */

343
vendor/github.com/DataDog/zstd/entropy_common.c generated vendored Normal file
View File

@ -0,0 +1,343 @@
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* Common functions of New Generation Entropy library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE+HUF source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* *************************************
* Dependencies
***************************************/
#include "mem.h"
#include "error_private.h" /* ERR_*, ERROR */
#define FSE_STATIC_LINKING_ONLY /* FSE_MIN_TABLELOG */
#include "fse.h"
#include "huf.h"
#include "bits.h" /* ZSDT_highbit32, ZSTD_countTrailingZeros32 */
/*=== Version ===*/
unsigned FSE_versionNumber(void) { return FSE_VERSION_NUMBER; }
/*=== Error Management ===*/
unsigned FSE_isError(size_t code) { return ERR_isError(code); }
const char* FSE_getErrorName(size_t code) { return ERR_getErrorName(code); }
unsigned HUF_isError(size_t code) { return ERR_isError(code); }
const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*-**************************************************************
* FSE NCount encoding-decoding
****************************************************************/
FORCE_INLINE_TEMPLATE
size_t FSE_readNCount_body(short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
const BYTE* const istart = (const BYTE*) headerBuffer;
const BYTE* const iend = istart + hbSize;
const BYTE* ip = istart;
int nbBits;
int remaining;
int threshold;
U32 bitStream;
int bitCount;
unsigned charnum = 0;
unsigned const maxSV1 = *maxSVPtr + 1;
int previous0 = 0;
if (hbSize < 8) {
/* This function only works when hbSize >= 8 */
char buffer[8] = {0};
ZSTD_memcpy(buffer, headerBuffer, hbSize);
{ size_t const countSize = FSE_readNCount(normalizedCounter, maxSVPtr, tableLogPtr,
buffer, sizeof(buffer));
if (FSE_isError(countSize)) return countSize;
if (countSize > hbSize) return ERROR(corruption_detected);
return countSize;
} }
assert(hbSize >= 8);
/* init */
ZSTD_memset(normalizedCounter, 0, (*maxSVPtr+1) * sizeof(normalizedCounter[0])); /* all symbols not present in NCount have a frequency of 0 */
bitStream = MEM_readLE32(ip);
nbBits = (bitStream & 0xF) + FSE_MIN_TABLELOG; /* extract tableLog */
if (nbBits > FSE_TABLELOG_ABSOLUTE_MAX) return ERROR(tableLog_tooLarge);
bitStream >>= 4;
bitCount = 4;
*tableLogPtr = nbBits;
remaining = (1<<nbBits)+1;
threshold = 1<<nbBits;
nbBits++;
for (;;) {
if (previous0) {
/* Count the number of repeats. Each time the
* 2-bit repeat code is 0b11 there is another
* repeat.
* Avoid UB by setting the high bit to 1.
*/
int repeats = ZSTD_countTrailingZeros32(~bitStream | 0x80000000) >> 1;
while (repeats >= 12) {
charnum += 3 * 12;
if (LIKELY(ip <= iend-7)) {
ip += 3;
} else {
bitCount -= (int)(8 * (iend - 7 - ip));
bitCount &= 31;
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> bitCount;
repeats = ZSTD_countTrailingZeros32(~bitStream | 0x80000000) >> 1;
}
charnum += 3 * repeats;
bitStream >>= 2 * repeats;
bitCount += 2 * repeats;
/* Add the final repeat which isn't 0b11. */
assert((bitStream & 3) < 3);
charnum += bitStream & 3;
bitCount += 2;
/* This is an error, but break and return an error
* at the end, because returning out of a loop makes
* it harder for the compiler to optimize.
*/
if (charnum >= maxSV1) break;
/* We don't need to set the normalized count to 0
* because we already memset the whole buffer to 0.
*/
if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
assert((bitCount >> 3) <= 3); /* For first condition to work */
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
bitCount &= 31;
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> bitCount;
}
{
int const max = (2*threshold-1) - remaining;
int count;
if ((bitStream & (threshold-1)) < (U32)max) {
count = bitStream & (threshold-1);
bitCount += nbBits-1;
} else {
count = bitStream & (2*threshold-1);
if (count >= threshold) count -= max;
bitCount += nbBits;
}
count--; /* extra accuracy */
/* When it matters (small blocks), this is a
* predictable branch, because we don't use -1.
*/
if (count >= 0) {
remaining -= count;
} else {
assert(count == -1);
remaining += count;
}
normalizedCounter[charnum++] = (short)count;
previous0 = !count;
assert(threshold > 1);
if (remaining < threshold) {
/* This branch can be folded into the
* threshold update condition because we
* know that threshold > 1.
*/
if (remaining <= 1) break;
nbBits = ZSTD_highbit32(remaining) + 1;
threshold = 1 << (nbBits - 1);
}
if (charnum >= maxSV1) break;
if (LIKELY(ip <= iend-7) || (ip + (bitCount>>3) <= iend-4)) {
ip += bitCount>>3;
bitCount &= 7;
} else {
bitCount -= (int)(8 * (iend - 4 - ip));
bitCount &= 31;
ip = iend - 4;
}
bitStream = MEM_readLE32(ip) >> bitCount;
} }
if (remaining != 1) return ERROR(corruption_detected);
/* Only possible when there are too many zeros. */
if (charnum > maxSV1) return ERROR(maxSymbolValue_tooSmall);
if (bitCount > 32) return ERROR(corruption_detected);
*maxSVPtr = charnum-1;
ip += (bitCount+7)>>3;
return ip-istart;
}
/* Avoids the FORCE_INLINE of the _body() function. */
static size_t FSE_readNCount_body_default(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
#if DYNAMIC_BMI2
BMI2_TARGET_ATTRIBUTE static size_t FSE_readNCount_body_bmi2(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
return FSE_readNCount_body(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
#endif
size_t FSE_readNCount_bmi2(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize, int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
return FSE_readNCount_body_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
#endif
(void)bmi2;
return FSE_readNCount_body_default(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize);
}
size_t FSE_readNCount(
short* normalizedCounter, unsigned* maxSVPtr, unsigned* tableLogPtr,
const void* headerBuffer, size_t hbSize)
{
return FSE_readNCount_bmi2(normalizedCounter, maxSVPtr, tableLogPtr, headerBuffer, hbSize, /* bmi2 */ 0);
}
/*! HUF_readStats() :
Read compact Huffman tree, saved by HUF_writeCTable().
`huffWeight` is destination buffer.
`rankStats` is assumed to be a table of at least HUF_TABLELOG_MAX U32.
@return : size read from `src` , or an error Code .
Note : Needed by HUF_readCTable() and HUF_readDTableX?() .
*/
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize)
{
U32 wksp[HUF_READ_STATS_WORKSPACE_SIZE_U32];
return HUF_readStats_wksp(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, wksp, sizeof(wksp), /* flags */ 0);
}
FORCE_INLINE_TEMPLATE size_t
HUF_readStats_body(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize,
int bmi2)
{
U32 weightTotal;
const BYTE* ip = (const BYTE*) src;
size_t iSize;
size_t oSize;
if (!srcSize) return ERROR(srcSize_wrong);
iSize = ip[0];
/* ZSTD_memset(huffWeight, 0, hwSize); *//* is not necessary, even though some analyzer complain ... */
if (iSize >= 128) { /* special header */
oSize = iSize - 127;
iSize = ((oSize+1)/2);
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
if (oSize >= hwSize) return ERROR(corruption_detected);
ip += 1;
{ U32 n;
for (n=0; n<oSize; n+=2) {
huffWeight[n] = ip[n/2] >> 4;
huffWeight[n+1] = ip[n/2] & 15;
} } }
else { /* header compressed with FSE (normal case) */
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
/* max (hwSize-1) values decoded, as last one is implied */
oSize = FSE_decompress_wksp_bmi2(huffWeight, hwSize-1, ip+1, iSize, 6, workSpace, wkspSize, bmi2);
if (FSE_isError(oSize)) return oSize;
}
/* collect weight stats */
ZSTD_memset(rankStats, 0, (HUF_TABLELOG_MAX + 1) * sizeof(U32));
weightTotal = 0;
{ U32 n; for (n=0; n<oSize; n++) {
if (huffWeight[n] > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
rankStats[huffWeight[n]]++;
weightTotal += (1 << huffWeight[n]) >> 1;
} }
if (weightTotal == 0) return ERROR(corruption_detected);
/* get last non-null symbol weight (implied, total must be 2^n) */
{ U32 const tableLog = ZSTD_highbit32(weightTotal) + 1;
if (tableLog > HUF_TABLELOG_MAX) return ERROR(corruption_detected);
*tableLogPtr = tableLog;
/* determine last weight */
{ U32 const total = 1 << tableLog;
U32 const rest = total - weightTotal;
U32 const verif = 1 << ZSTD_highbit32(rest);
U32 const lastWeight = ZSTD_highbit32(rest) + 1;
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
huffWeight[oSize] = (BYTE)lastWeight;
rankStats[lastWeight]++;
} }
/* check tree construction validity */
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
/* results */
*nbSymbolsPtr = (U32)(oSize+1);
return iSize+1;
}
/* Avoids the FORCE_INLINE of the _body() function. */
static size_t HUF_readStats_body_default(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize)
{
return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 0);
}
#if DYNAMIC_BMI2
static BMI2_TARGET_ATTRIBUTE size_t HUF_readStats_body_bmi2(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize)
{
return HUF_readStats_body(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize, 1);
}
#endif
size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize, U32* rankStats,
U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workSpace, size_t wkspSize,
int flags)
{
#if DYNAMIC_BMI2
if (flags & HUF_flags_bmi2) {
return HUF_readStats_body_bmi2(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize);
}
#endif
(void)flags;
return HUF_readStats_body_default(huffWeight, hwSize, rankStats, nbSymbolsPtr, tableLogPtr, src, srcSize, workSpace, wkspSize);
}
#endif /* USE_EXTERNAL_ZSTD */

66
vendor/github.com/DataDog/zstd/error_private.c generated vendored Normal file
View File

@ -0,0 +1,66 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* The purpose of this file is to have a single list of error strings embedded in binary */
#include "error_private.h"
const char* ERR_getErrorString(ERR_enum code)
{
#ifdef ZSTD_STRIP_ERROR_STRINGS
(void)code;
return "Error strings stripped";
#else
static const char* const notErrorCode = "Unspecified error code";
switch( code )
{
case PREFIX(no_error): return "No error detected";
case PREFIX(GENERIC): return "Error (generic)";
case PREFIX(prefix_unknown): return "Unknown frame descriptor";
case PREFIX(version_unsupported): return "Version not supported";
case PREFIX(frameParameter_unsupported): return "Unsupported frame parameter";
case PREFIX(frameParameter_windowTooLarge): return "Frame requires too much memory for decoding";
case PREFIX(corruption_detected): return "Data corruption detected";
case PREFIX(checksum_wrong): return "Restored data doesn't match checksum";
case PREFIX(literals_headerWrong): return "Header of Literals' block doesn't respect format specification";
case PREFIX(parameter_unsupported): return "Unsupported parameter";
case PREFIX(parameter_combination_unsupported): return "Unsupported combination of parameters";
case PREFIX(parameter_outOfBound): return "Parameter is out of bound";
case PREFIX(init_missing): return "Context should be init first";
case PREFIX(memory_allocation): return "Allocation error : not enough memory";
case PREFIX(workSpace_tooSmall): return "workSpace buffer is not large enough";
case PREFIX(stage_wrong): return "Operation not authorized at current processing stage";
case PREFIX(tableLog_tooLarge): return "tableLog requires too much memory : unsupported";
case PREFIX(maxSymbolValue_tooLarge): return "Unsupported max Symbol Value : too large";
case PREFIX(maxSymbolValue_tooSmall): return "Specified maxSymbolValue is too small";
case PREFIX(stabilityCondition_notRespected): return "pledged buffer stability condition is not respected";
case PREFIX(dictionary_corrupted): return "Dictionary is corrupted";
case PREFIX(dictionary_wrong): return "Dictionary mismatch";
case PREFIX(dictionaryCreation_failed): return "Cannot create Dictionary from provided samples";
case PREFIX(dstSize_tooSmall): return "Destination buffer is too small";
case PREFIX(srcSize_wrong): return "Src size is incorrect";
case PREFIX(dstBuffer_null): return "Operation on NULL destination buffer";
case PREFIX(noForwardProgress_destFull): return "Operation made no progress over multiple calls, due to output buffer being full";
case PREFIX(noForwardProgress_inputEmpty): return "Operation made no progress over multiple calls, due to input being empty";
/* following error codes are not stable and may be removed or changed in a future version */
case PREFIX(frameIndex_tooLarge): return "Frame index is too large";
case PREFIX(seekableIO): return "An I/O error occurred when reading/seeking";
case PREFIX(dstBuffer_wrong): return "Destination buffer is wrong";
case PREFIX(srcBuffer_wrong): return "Source buffer is wrong";
case PREFIX(sequenceProducer_failed): return "Block-level external sequence producer returned an error code";
case PREFIX(externalSequences_invalid): return "External sequences are not valid";
case PREFIX(maxCode):
default: return notErrorCode;
}
#endif
}
#endif /* USE_EXTERNAL_ZSTD */

171
vendor/github.com/DataDog/zstd/error_private.h generated vendored Normal file
View File

@ -0,0 +1,171 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* Note : this module is expected to remain private, do not expose it */
#ifndef ERROR_H_MODULE
#define ERROR_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/* ****************************************
* Dependencies
******************************************/
#include "zstd_errors.h" /* enum list */
#include "compiler.h"
#include "debug.h"
#include "zstd_deps.h" /* size_t */
/* ****************************************
* Compiler-specific
******************************************/
#if defined(__GNUC__)
# define ERR_STATIC static __attribute__((unused))
#elif defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
# define ERR_STATIC static inline
#elif defined(_MSC_VER)
# define ERR_STATIC static __inline
#else
# define ERR_STATIC static /* this version may generate warnings for unused static functions; disable the relevant warning */
#endif
/*-****************************************
* Customization (error_public.h)
******************************************/
typedef ZSTD_ErrorCode ERR_enum;
#define PREFIX(name) ZSTD_error_##name
/*-****************************************
* Error codes handling
******************************************/
#undef ERROR /* already defined on Visual Studio */
#define ERROR(name) ZSTD_ERROR(name)
#define ZSTD_ERROR(name) ((size_t)-PREFIX(name))
ERR_STATIC unsigned ERR_isError(size_t code) { return (code > ERROR(maxCode)); }
ERR_STATIC ERR_enum ERR_getErrorCode(size_t code) { if (!ERR_isError(code)) return (ERR_enum)0; return (ERR_enum) (0-code); }
/* check and forward error code */
#define CHECK_V_F(e, f) \
size_t const e = f; \
do { \
if (ERR_isError(e)) \
return e; \
} while (0)
#define CHECK_F(f) do { CHECK_V_F(_var_err__, f); } while (0)
/*-****************************************
* Error Strings
******************************************/
const char* ERR_getErrorString(ERR_enum code); /* error_private.c */
ERR_STATIC const char* ERR_getErrorName(size_t code)
{
return ERR_getErrorString(ERR_getErrorCode(code));
}
/**
* Ignore: this is an internal helper.
*
* This is a helper function to help force C99-correctness during compilation.
* Under strict compilation modes, variadic macro arguments can't be empty.
* However, variadic function arguments can be. Using a function therefore lets
* us statically check that at least one (string) argument was passed,
* independent of the compilation flags.
*/
static INLINE_KEYWORD UNUSED_ATTR
void _force_has_format_string(const char *format, ...) {
(void)format;
}
/**
* Ignore: this is an internal helper.
*
* We want to force this function invocation to be syntactically correct, but
* we don't want to force runtime evaluation of its arguments.
*/
#define _FORCE_HAS_FORMAT_STRING(...) \
do { \
if (0) { \
_force_has_format_string(__VA_ARGS__); \
} \
} while (0)
#define ERR_QUOTE(str) #str
/**
* Return the specified error if the condition evaluates to true.
*
* In debug modes, prints additional information.
* In order to do that (particularly, printing the conditional that failed),
* this can't just wrap RETURN_ERROR().
*/
#define RETURN_ERROR_IF(cond, err, ...) \
do { \
if (cond) { \
RAWLOG(3, "%s:%d: ERROR!: check %s failed, returning %s", \
__FILE__, __LINE__, ERR_QUOTE(cond), ERR_QUOTE(ERROR(err))); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return ERROR(err); \
} \
} while (0)
/**
* Unconditionally return the specified error.
*
* In debug modes, prints additional information.
*/
#define RETURN_ERROR(err, ...) \
do { \
RAWLOG(3, "%s:%d: ERROR!: unconditional check failed, returning %s", \
__FILE__, __LINE__, ERR_QUOTE(ERROR(err))); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return ERROR(err); \
} while(0)
/**
* If the provided expression evaluates to an error code, returns that error code.
*
* In debug modes, prints additional information.
*/
#define FORWARD_IF_ERROR(err, ...) \
do { \
size_t const err_code = (err); \
if (ERR_isError(err_code)) { \
RAWLOG(3, "%s:%d: ERROR!: forwarding error in %s: %s", \
__FILE__, __LINE__, ERR_QUOTE(err), ERR_getErrorName(err_code)); \
_FORCE_HAS_FORMAT_STRING(__VA_ARGS__); \
RAWLOG(3, ": " __VA_ARGS__); \
RAWLOG(3, "\n"); \
return err_code; \
} \
} while(0)
#if defined (__cplusplus)
}
#endif
#endif /* ERROR_H_MODULE */
#endif /* USE_EXTERNAL_ZSTD */

34
vendor/github.com/DataDog/zstd/errors.go generated vendored Normal file
View File

@ -0,0 +1,34 @@
package zstd
/*
#include "zstd.h"
*/
import "C"
// ErrorCode is an error returned by the zstd library.
type ErrorCode int
// Error returns the error string given by zstd
func (e ErrorCode) Error() string {
return C.GoString(C.ZSTD_getErrorName(C.size_t(e)))
}
func cIsError(code int) bool {
return int(C.ZSTD_isError(C.size_t(code))) != 0
}
// getError returns an error for the return code, or nil if it's not an error
func getError(code int) error {
if code < 0 && cIsError(code) {
return ErrorCode(code)
}
return nil
}
// IsDstSizeTooSmallError returns whether the error correspond to zstd standard sDstSizeTooSmall error
func IsDstSizeTooSmallError(e error) bool {
if e != nil && e.Error() == "Destination buffer is too small" {
return true
}
return false
}

14
vendor/github.com/DataDog/zstd/external_zstd.go generated vendored Normal file
View File

@ -0,0 +1,14 @@
//go:build external_libzstd
// +build external_libzstd
package zstd
// #cgo CFLAGS: -DUSE_EXTERNAL_ZSTD
// #cgo pkg-config: libzstd
/*
#include<zstd.h>
#if ZSTD_VERSION_NUMBER < 10400
#error "ZSTD version >= 1.4 is required"
#endif
*/
import "C"

769
vendor/github.com/DataDog/zstd/fastcover.c generated vendored Normal file
View File

@ -0,0 +1,769 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include <stdio.h> /* fprintf */
#include <stdlib.h> /* malloc, free, qsort */
#include <string.h> /* memset */
#include <time.h> /* clock */
#ifndef ZDICT_STATIC_LINKING_ONLY
# define ZDICT_STATIC_LINKING_ONLY
#endif
#include "mem.h" /* read */
#include "pool.h"
#include "threading.h"
#include "zstd_internal.h" /* includes zstd.h */
#include "zstd_compress_internal.h" /* ZSTD_hash*() */
#include "zdict.h"
#include "cover.h"
/*-*************************************
* Constants
***************************************/
/**
* There are 32bit indexes used to ref samples, so limit samples size to 4GB
* on 64bit builds.
* For 32bit builds we choose 1 GB.
* Most 32bit platforms have 2GB user-mode addressable space and we allocate a large
* contiguous buffer, so 1GB is already a high limit.
*/
#define FASTCOVER_MAX_SAMPLES_SIZE (sizeof(size_t) == 8 ? ((unsigned)-1) : ((unsigned)1 GB))
#define FASTCOVER_MAX_F 31
#define FASTCOVER_MAX_ACCEL 10
#define FASTCOVER_DEFAULT_SPLITPOINT 0.75
#define DEFAULT_F 20
#define DEFAULT_ACCEL 1
/*-*************************************
* Console display
***************************************/
#ifndef LOCALDISPLAYLEVEL
static int g_displayLevel = 0;
#endif
#undef DISPLAY
#define DISPLAY(...) \
{ \
fprintf(stderr, __VA_ARGS__); \
fflush(stderr); \
}
#undef LOCALDISPLAYLEVEL
#define LOCALDISPLAYLEVEL(displayLevel, l, ...) \
if (displayLevel >= l) { \
DISPLAY(__VA_ARGS__); \
} /* 0 : no display; 1: errors; 2: default; 3: details; 4: debug */
#undef DISPLAYLEVEL
#define DISPLAYLEVEL(l, ...) LOCALDISPLAYLEVEL(g_displayLevel, l, __VA_ARGS__)
#ifndef LOCALDISPLAYUPDATE
static const clock_t g_refreshRate = CLOCKS_PER_SEC * 15 / 100;
static clock_t g_time = 0;
#endif
#undef LOCALDISPLAYUPDATE
#define LOCALDISPLAYUPDATE(displayLevel, l, ...) \
if (displayLevel >= l) { \
if ((clock() - g_time > g_refreshRate) || (displayLevel >= 4)) { \
g_time = clock(); \
DISPLAY(__VA_ARGS__); \
} \
}
#undef DISPLAYUPDATE
#define DISPLAYUPDATE(l, ...) LOCALDISPLAYUPDATE(g_displayLevel, l, __VA_ARGS__)
/*-*************************************
* Hash Functions
***************************************/
/**
* Hash the d-byte value pointed to by p and mod 2^f into the frequency vector
*/
static size_t FASTCOVER_hashPtrToIndex(const void* p, U32 f, unsigned d) {
if (d == 6) {
return ZSTD_hash6Ptr(p, f);
}
return ZSTD_hash8Ptr(p, f);
}
/*-*************************************
* Acceleration
***************************************/
typedef struct {
unsigned finalize; /* Percentage of training samples used for ZDICT_finalizeDictionary */
unsigned skip; /* Number of dmer skipped between each dmer counted in computeFrequency */
} FASTCOVER_accel_t;
static const FASTCOVER_accel_t FASTCOVER_defaultAccelParameters[FASTCOVER_MAX_ACCEL+1] = {
{ 100, 0 }, /* accel = 0, should not happen because accel = 0 defaults to accel = 1 */
{ 100, 0 }, /* accel = 1 */
{ 50, 1 }, /* accel = 2 */
{ 34, 2 }, /* accel = 3 */
{ 25, 3 }, /* accel = 4 */
{ 20, 4 }, /* accel = 5 */
{ 17, 5 }, /* accel = 6 */
{ 14, 6 }, /* accel = 7 */
{ 13, 7 }, /* accel = 8 */
{ 11, 8 }, /* accel = 9 */
{ 10, 9 }, /* accel = 10 */
};
/*-*************************************
* Context
***************************************/
typedef struct {
const BYTE *samples;
size_t *offsets;
const size_t *samplesSizes;
size_t nbSamples;
size_t nbTrainSamples;
size_t nbTestSamples;
size_t nbDmers;
U32 *freqs;
unsigned d;
unsigned f;
FASTCOVER_accel_t accelParams;
} FASTCOVER_ctx_t;
/*-*************************************
* Helper functions
***************************************/
/**
* Selects the best segment in an epoch.
* Segments of are scored according to the function:
*
* Let F(d) be the frequency of all dmers with hash value d.
* Let S_i be hash value of the dmer at position i of segment S which has length k.
*
* Score(S) = F(S_1) + F(S_2) + ... + F(S_{k-d+1})
*
* Once the dmer with hash value d is in the dictionary we set F(d) = 0.
*/
static COVER_segment_t FASTCOVER_selectSegment(const FASTCOVER_ctx_t *ctx,
U32 *freqs, U32 begin, U32 end,
ZDICT_cover_params_t parameters,
U16* segmentFreqs) {
/* Constants */
const U32 k = parameters.k;
const U32 d = parameters.d;
const U32 f = ctx->f;
const U32 dmersInK = k - d + 1;
/* Try each segment (activeSegment) and save the best (bestSegment) */
COVER_segment_t bestSegment = {0, 0, 0};
COVER_segment_t activeSegment;
/* Reset the activeDmers in the segment */
/* The activeSegment starts at the beginning of the epoch. */
activeSegment.begin = begin;
activeSegment.end = begin;
activeSegment.score = 0;
/* Slide the activeSegment through the whole epoch.
* Save the best segment in bestSegment.
*/
while (activeSegment.end < end) {
/* Get hash value of current dmer */
const size_t idx = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.end, f, d);
/* Add frequency of this index to score if this is the first occurrence of index in active segment */
if (segmentFreqs[idx] == 0) {
activeSegment.score += freqs[idx];
}
/* Increment end of segment and segmentFreqs*/
activeSegment.end += 1;
segmentFreqs[idx] += 1;
/* If the window is now too large, drop the first position */
if (activeSegment.end - activeSegment.begin == dmersInK + 1) {
/* Get hash value of the dmer to be eliminated from active segment */
const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d);
segmentFreqs[delIndex] -= 1;
/* Subtract frequency of this index from score if this is the last occurrence of this index in active segment */
if (segmentFreqs[delIndex] == 0) {
activeSegment.score -= freqs[delIndex];
}
/* Increment start of segment */
activeSegment.begin += 1;
}
/* If this segment is the best so far save it */
if (activeSegment.score > bestSegment.score) {
bestSegment = activeSegment;
}
}
/* Zero out rest of segmentFreqs array */
while (activeSegment.begin < end) {
const size_t delIndex = FASTCOVER_hashPtrToIndex(ctx->samples + activeSegment.begin, f, d);
segmentFreqs[delIndex] -= 1;
activeSegment.begin += 1;
}
{
/* Zero the frequency of hash value of each dmer covered by the chosen segment. */
U32 pos;
for (pos = bestSegment.begin; pos != bestSegment.end; ++pos) {
const size_t i = FASTCOVER_hashPtrToIndex(ctx->samples + pos, f, d);
freqs[i] = 0;
}
}
return bestSegment;
}
static int FASTCOVER_checkParameters(ZDICT_cover_params_t parameters,
size_t maxDictSize, unsigned f,
unsigned accel) {
/* k, d, and f are required parameters */
if (parameters.d == 0 || parameters.k == 0) {
return 0;
}
/* d has to be 6 or 8 */
if (parameters.d != 6 && parameters.d != 8) {
return 0;
}
/* k <= maxDictSize */
if (parameters.k > maxDictSize) {
return 0;
}
/* d <= k */
if (parameters.d > parameters.k) {
return 0;
}
/* 0 < f <= FASTCOVER_MAX_F*/
if (f > FASTCOVER_MAX_F || f == 0) {
return 0;
}
/* 0 < splitPoint <= 1 */
if (parameters.splitPoint <= 0 || parameters.splitPoint > 1) {
return 0;
}
/* 0 < accel <= 10 */
if (accel > 10 || accel == 0) {
return 0;
}
return 1;
}
/**
* Clean up a context initialized with `FASTCOVER_ctx_init()`.
*/
static void
FASTCOVER_ctx_destroy(FASTCOVER_ctx_t* ctx)
{
if (!ctx) return;
free(ctx->freqs);
ctx->freqs = NULL;
free(ctx->offsets);
ctx->offsets = NULL;
}
/**
* Calculate for frequency of hash value of each dmer in ctx->samples
*/
static void
FASTCOVER_computeFrequency(U32* freqs, const FASTCOVER_ctx_t* ctx)
{
const unsigned f = ctx->f;
const unsigned d = ctx->d;
const unsigned skip = ctx->accelParams.skip;
const unsigned readLength = MAX(d, 8);
size_t i;
assert(ctx->nbTrainSamples >= 5);
assert(ctx->nbTrainSamples <= ctx->nbSamples);
for (i = 0; i < ctx->nbTrainSamples; i++) {
size_t start = ctx->offsets[i]; /* start of current dmer */
size_t const currSampleEnd = ctx->offsets[i+1];
while (start + readLength <= currSampleEnd) {
const size_t dmerIndex = FASTCOVER_hashPtrToIndex(ctx->samples + start, f, d);
freqs[dmerIndex]++;
start = start + skip + 1;
}
}
}
/**
* Prepare a context for dictionary building.
* The context is only dependent on the parameter `d` and can be used multiple
* times.
* Returns 0 on success or error code on error.
* The context must be destroyed with `FASTCOVER_ctx_destroy()`.
*/
static size_t
FASTCOVER_ctx_init(FASTCOVER_ctx_t* ctx,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
unsigned d, double splitPoint, unsigned f,
FASTCOVER_accel_t accelParams)
{
const BYTE* const samples = (const BYTE*)samplesBuffer;
const size_t totalSamplesSize = COVER_sum(samplesSizes, nbSamples);
/* Split samples into testing and training sets */
const unsigned nbTrainSamples = splitPoint < 1.0 ? (unsigned)((double)nbSamples * splitPoint) : nbSamples;
const unsigned nbTestSamples = splitPoint < 1.0 ? nbSamples - nbTrainSamples : nbSamples;
const size_t trainingSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes, nbTrainSamples) : totalSamplesSize;
const size_t testSamplesSize = splitPoint < 1.0 ? COVER_sum(samplesSizes + nbTrainSamples, nbTestSamples) : totalSamplesSize;
/* Checks */
if (totalSamplesSize < MAX(d, sizeof(U64)) ||
totalSamplesSize >= (size_t)FASTCOVER_MAX_SAMPLES_SIZE) {
DISPLAYLEVEL(1, "Total samples size is too large (%u MB), maximum size is %u MB\n",
(unsigned)(totalSamplesSize >> 20), (FASTCOVER_MAX_SAMPLES_SIZE >> 20));
return ERROR(srcSize_wrong);
}
/* Check if there are at least 5 training samples */
if (nbTrainSamples < 5) {
DISPLAYLEVEL(1, "Total number of training samples is %u and is invalid\n", nbTrainSamples);
return ERROR(srcSize_wrong);
}
/* Check if there's testing sample */
if (nbTestSamples < 1) {
DISPLAYLEVEL(1, "Total number of testing samples is %u and is invalid.\n", nbTestSamples);
return ERROR(srcSize_wrong);
}
/* Zero the context */
memset(ctx, 0, sizeof(*ctx));
DISPLAYLEVEL(2, "Training on %u samples of total size %u\n", nbTrainSamples,
(unsigned)trainingSamplesSize);
DISPLAYLEVEL(2, "Testing on %u samples of total size %u\n", nbTestSamples,
(unsigned)testSamplesSize);
ctx->samples = samples;
ctx->samplesSizes = samplesSizes;
ctx->nbSamples = nbSamples;
ctx->nbTrainSamples = nbTrainSamples;
ctx->nbTestSamples = nbTestSamples;
ctx->nbDmers = trainingSamplesSize - MAX(d, sizeof(U64)) + 1;
ctx->d = d;
ctx->f = f;
ctx->accelParams = accelParams;
/* The offsets of each file */
ctx->offsets = (size_t*)calloc((nbSamples + 1), sizeof(size_t));
if (ctx->offsets == NULL) {
DISPLAYLEVEL(1, "Failed to allocate scratch buffers \n");
FASTCOVER_ctx_destroy(ctx);
return ERROR(memory_allocation);
}
/* Fill offsets from the samplesSizes */
{ U32 i;
ctx->offsets[0] = 0;
assert(nbSamples >= 5);
for (i = 1; i <= nbSamples; ++i) {
ctx->offsets[i] = ctx->offsets[i - 1] + samplesSizes[i - 1];
}
}
/* Initialize frequency array of size 2^f */
ctx->freqs = (U32*)calloc(((U64)1 << f), sizeof(U32));
if (ctx->freqs == NULL) {
DISPLAYLEVEL(1, "Failed to allocate frequency table \n");
FASTCOVER_ctx_destroy(ctx);
return ERROR(memory_allocation);
}
DISPLAYLEVEL(2, "Computing frequencies\n");
FASTCOVER_computeFrequency(ctx->freqs, ctx);
return 0;
}
/**
* Given the prepared context build the dictionary.
*/
static size_t
FASTCOVER_buildDictionary(const FASTCOVER_ctx_t* ctx,
U32* freqs,
void* dictBuffer, size_t dictBufferCapacity,
ZDICT_cover_params_t parameters,
U16* segmentFreqs)
{
BYTE *const dict = (BYTE *)dictBuffer;
size_t tail = dictBufferCapacity;
/* Divide the data into epochs. We will select one segment from each epoch. */
const COVER_epoch_info_t epochs = COVER_computeEpochs(
(U32)dictBufferCapacity, (U32)ctx->nbDmers, parameters.k, 1);
const size_t maxZeroScoreRun = 10;
size_t zeroScoreRun = 0;
size_t epoch;
DISPLAYLEVEL(2, "Breaking content into %u epochs of size %u\n",
(U32)epochs.num, (U32)epochs.size);
/* Loop through the epochs until there are no more segments or the dictionary
* is full.
*/
for (epoch = 0; tail > 0; epoch = (epoch + 1) % epochs.num) {
const U32 epochBegin = (U32)(epoch * epochs.size);
const U32 epochEnd = epochBegin + epochs.size;
size_t segmentSize;
/* Select a segment */
COVER_segment_t segment = FASTCOVER_selectSegment(
ctx, freqs, epochBegin, epochEnd, parameters, segmentFreqs);
/* If the segment covers no dmers, then we are out of content.
* There may be new content in other epochs, for continue for some time.
*/
if (segment.score == 0) {
if (++zeroScoreRun >= maxZeroScoreRun) {
break;
}
continue;
}
zeroScoreRun = 0;
/* Trim the segment if necessary and if it is too small then we are done */
segmentSize = MIN(segment.end - segment.begin + parameters.d - 1, tail);
if (segmentSize < parameters.d) {
break;
}
/* We fill the dictionary from the back to allow the best segments to be
* referenced with the smallest offsets.
*/
tail -= segmentSize;
memcpy(dict + tail, ctx->samples + segment.begin, segmentSize);
DISPLAYUPDATE(
2, "\r%u%% ",
(unsigned)(((dictBufferCapacity - tail) * 100) / dictBufferCapacity));
}
DISPLAYLEVEL(2, "\r%79s\r", "");
return tail;
}
/**
* Parameters for FASTCOVER_tryParameters().
*/
typedef struct FASTCOVER_tryParameters_data_s {
const FASTCOVER_ctx_t* ctx;
COVER_best_t* best;
size_t dictBufferCapacity;
ZDICT_cover_params_t parameters;
} FASTCOVER_tryParameters_data_t;
/**
* Tries a set of parameters and updates the COVER_best_t with the results.
* This function is thread safe if zstd is compiled with multithreaded support.
* It takes its parameters as an *OWNING* opaque pointer to support threading.
*/
static void FASTCOVER_tryParameters(void* opaque)
{
/* Save parameters as local variables */
FASTCOVER_tryParameters_data_t *const data = (FASTCOVER_tryParameters_data_t*)opaque;
const FASTCOVER_ctx_t *const ctx = data->ctx;
const ZDICT_cover_params_t parameters = data->parameters;
size_t dictBufferCapacity = data->dictBufferCapacity;
size_t totalCompressedSize = ERROR(GENERIC);
/* Initialize array to keep track of frequency of dmer within activeSegment */
U16* segmentFreqs = (U16*)calloc(((U64)1 << ctx->f), sizeof(U16));
/* Allocate space for hash table, dict, and freqs */
BYTE *const dict = (BYTE*)malloc(dictBufferCapacity);
COVER_dictSelection_t selection = COVER_dictSelectionError(ERROR(GENERIC));
U32* freqs = (U32*) malloc(((U64)1 << ctx->f) * sizeof(U32));
if (!segmentFreqs || !dict || !freqs) {
DISPLAYLEVEL(1, "Failed to allocate buffers: out of memory\n");
goto _cleanup;
}
/* Copy the frequencies because we need to modify them */
memcpy(freqs, ctx->freqs, ((U64)1 << ctx->f) * sizeof(U32));
/* Build the dictionary */
{ const size_t tail = FASTCOVER_buildDictionary(ctx, freqs, dict, dictBufferCapacity,
parameters, segmentFreqs);
const unsigned nbFinalizeSamples = (unsigned)(ctx->nbTrainSamples * ctx->accelParams.finalize / 100);
selection = COVER_selectDict(dict + tail, dictBufferCapacity, dictBufferCapacity - tail,
ctx->samples, ctx->samplesSizes, nbFinalizeSamples, ctx->nbTrainSamples, ctx->nbSamples, parameters, ctx->offsets,
totalCompressedSize);
if (COVER_dictSelectionIsError(selection)) {
DISPLAYLEVEL(1, "Failed to select dictionary\n");
goto _cleanup;
}
}
_cleanup:
free(dict);
COVER_best_finish(data->best, parameters, selection);
free(data);
free(segmentFreqs);
COVER_dictSelectionFree(selection);
free(freqs);
}
static void
FASTCOVER_convertToCoverParams(ZDICT_fastCover_params_t fastCoverParams,
ZDICT_cover_params_t* coverParams)
{
coverParams->k = fastCoverParams.k;
coverParams->d = fastCoverParams.d;
coverParams->steps = fastCoverParams.steps;
coverParams->nbThreads = fastCoverParams.nbThreads;
coverParams->splitPoint = fastCoverParams.splitPoint;
coverParams->zParams = fastCoverParams.zParams;
coverParams->shrinkDict = fastCoverParams.shrinkDict;
}
static void
FASTCOVER_convertToFastCoverParams(ZDICT_cover_params_t coverParams,
ZDICT_fastCover_params_t* fastCoverParams,
unsigned f, unsigned accel)
{
fastCoverParams->k = coverParams.k;
fastCoverParams->d = coverParams.d;
fastCoverParams->steps = coverParams.steps;
fastCoverParams->nbThreads = coverParams.nbThreads;
fastCoverParams->splitPoint = coverParams.splitPoint;
fastCoverParams->f = f;
fastCoverParams->accel = accel;
fastCoverParams->zParams = coverParams.zParams;
fastCoverParams->shrinkDict = coverParams.shrinkDict;
}
ZDICTLIB_STATIC_API size_t
ZDICT_trainFromBuffer_fastCover(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t parameters)
{
BYTE* const dict = (BYTE*)dictBuffer;
FASTCOVER_ctx_t ctx;
ZDICT_cover_params_t coverParams;
FASTCOVER_accel_t accelParams;
/* Initialize global data */
g_displayLevel = (int)parameters.zParams.notificationLevel;
/* Assign splitPoint and f if not provided */
parameters.splitPoint = 1.0;
parameters.f = parameters.f == 0 ? DEFAULT_F : parameters.f;
parameters.accel = parameters.accel == 0 ? DEFAULT_ACCEL : parameters.accel;
/* Convert to cover parameter */
memset(&coverParams, 0 , sizeof(coverParams));
FASTCOVER_convertToCoverParams(parameters, &coverParams);
/* Checks */
if (!FASTCOVER_checkParameters(coverParams, dictBufferCapacity, parameters.f,
parameters.accel)) {
DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n");
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
DISPLAYLEVEL(1, "FASTCOVER must have at least one input file\n");
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
DISPLAYLEVEL(1, "dictBufferCapacity must be at least %u\n",
ZDICT_DICTSIZE_MIN);
return ERROR(dstSize_tooSmall);
}
/* Assign corresponding FASTCOVER_accel_t to accelParams*/
accelParams = FASTCOVER_defaultAccelParameters[parameters.accel];
/* Initialize context */
{
size_t const initVal = FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples,
coverParams.d, parameters.splitPoint, parameters.f,
accelParams);
if (ZSTD_isError(initVal)) {
DISPLAYLEVEL(1, "Failed to initialize context\n");
return initVal;
}
}
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, g_displayLevel);
/* Build the dictionary */
DISPLAYLEVEL(2, "Building dictionary\n");
{
/* Initialize array to keep track of frequency of dmer within activeSegment */
U16* segmentFreqs = (U16 *)calloc(((U64)1 << parameters.f), sizeof(U16));
const size_t tail = FASTCOVER_buildDictionary(&ctx, ctx.freqs, dictBuffer,
dictBufferCapacity, coverParams, segmentFreqs);
const unsigned nbFinalizeSamples = (unsigned)(ctx.nbTrainSamples * ctx.accelParams.finalize / 100);
const size_t dictionarySize = ZDICT_finalizeDictionary(
dict, dictBufferCapacity, dict + tail, dictBufferCapacity - tail,
samplesBuffer, samplesSizes, nbFinalizeSamples, coverParams.zParams);
if (!ZSTD_isError(dictionarySize)) {
DISPLAYLEVEL(2, "Constructed dictionary of size %u\n",
(unsigned)dictionarySize);
}
FASTCOVER_ctx_destroy(&ctx);
free(segmentFreqs);
return dictionarySize;
}
}
ZDICTLIB_STATIC_API size_t
ZDICT_optimizeTrainFromBuffer_fastCover(
void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t* parameters)
{
ZDICT_cover_params_t coverParams;
FASTCOVER_accel_t accelParams;
/* constants */
const unsigned nbThreads = parameters->nbThreads;
const double splitPoint =
parameters->splitPoint <= 0.0 ? FASTCOVER_DEFAULT_SPLITPOINT : parameters->splitPoint;
const unsigned kMinD = parameters->d == 0 ? 6 : parameters->d;
const unsigned kMaxD = parameters->d == 0 ? 8 : parameters->d;
const unsigned kMinK = parameters->k == 0 ? 50 : parameters->k;
const unsigned kMaxK = parameters->k == 0 ? 2000 : parameters->k;
const unsigned kSteps = parameters->steps == 0 ? 40 : parameters->steps;
const unsigned kStepSize = MAX((kMaxK - kMinK) / kSteps, 1);
const unsigned kIterations =
(1 + (kMaxD - kMinD) / 2) * (1 + (kMaxK - kMinK) / kStepSize);
const unsigned f = parameters->f == 0 ? DEFAULT_F : parameters->f;
const unsigned accel = parameters->accel == 0 ? DEFAULT_ACCEL : parameters->accel;
const unsigned shrinkDict = 0;
/* Local variables */
const int displayLevel = (int)parameters->zParams.notificationLevel;
unsigned iteration = 1;
unsigned d;
unsigned k;
COVER_best_t best;
POOL_ctx *pool = NULL;
int warned = 0;
/* Checks */
if (splitPoint <= 0 || splitPoint > 1) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect splitPoint\n");
return ERROR(parameter_outOfBound);
}
if (accel == 0 || accel > FASTCOVER_MAX_ACCEL) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect accel\n");
return ERROR(parameter_outOfBound);
}
if (kMinK < kMaxD || kMaxK < kMinK) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Incorrect k\n");
return ERROR(parameter_outOfBound);
}
if (nbSamples == 0) {
LOCALDISPLAYLEVEL(displayLevel, 1, "FASTCOVER must have at least one input file\n");
return ERROR(srcSize_wrong);
}
if (dictBufferCapacity < ZDICT_DICTSIZE_MIN) {
LOCALDISPLAYLEVEL(displayLevel, 1, "dictBufferCapacity must be at least %u\n",
ZDICT_DICTSIZE_MIN);
return ERROR(dstSize_tooSmall);
}
if (nbThreads > 1) {
pool = POOL_create(nbThreads, 1);
if (!pool) {
return ERROR(memory_allocation);
}
}
/* Initialization */
COVER_best_init(&best);
memset(&coverParams, 0 , sizeof(coverParams));
FASTCOVER_convertToCoverParams(*parameters, &coverParams);
accelParams = FASTCOVER_defaultAccelParameters[accel];
/* Turn down global display level to clean up display at level 2 and below */
g_displayLevel = displayLevel == 0 ? 0 : displayLevel - 1;
/* Loop through d first because each new value needs a new context */
LOCALDISPLAYLEVEL(displayLevel, 2, "Trying %u different sets of parameters\n",
kIterations);
for (d = kMinD; d <= kMaxD; d += 2) {
/* Initialize the context for this value of d */
FASTCOVER_ctx_t ctx;
LOCALDISPLAYLEVEL(displayLevel, 3, "d=%u\n", d);
{
size_t const initVal = FASTCOVER_ctx_init(&ctx, samplesBuffer, samplesSizes, nbSamples, d, splitPoint, f, accelParams);
if (ZSTD_isError(initVal)) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to initialize context\n");
COVER_best_destroy(&best);
POOL_free(pool);
return initVal;
}
}
if (!warned) {
COVER_warnOnSmallCorpus(dictBufferCapacity, ctx.nbDmers, displayLevel);
warned = 1;
}
/* Loop through k reusing the same context */
for (k = kMinK; k <= kMaxK; k += kStepSize) {
/* Prepare the arguments */
FASTCOVER_tryParameters_data_t *data = (FASTCOVER_tryParameters_data_t *)malloc(
sizeof(FASTCOVER_tryParameters_data_t));
LOCALDISPLAYLEVEL(displayLevel, 3, "k=%u\n", k);
if (!data) {
LOCALDISPLAYLEVEL(displayLevel, 1, "Failed to allocate parameters\n");
COVER_best_destroy(&best);
FASTCOVER_ctx_destroy(&ctx);
POOL_free(pool);
return ERROR(memory_allocation);
}
data->ctx = &ctx;
data->best = &best;
data->dictBufferCapacity = dictBufferCapacity;
data->parameters = coverParams;
data->parameters.k = k;
data->parameters.d = d;
data->parameters.splitPoint = splitPoint;
data->parameters.steps = kSteps;
data->parameters.shrinkDict = shrinkDict;
data->parameters.zParams.notificationLevel = (unsigned)g_displayLevel;
/* Check the parameters */
if (!FASTCOVER_checkParameters(data->parameters, dictBufferCapacity,
data->ctx->f, accel)) {
DISPLAYLEVEL(1, "FASTCOVER parameters incorrect\n");
free(data);
continue;
}
/* Call the function and pass ownership of data to it */
COVER_best_start(&best);
if (pool) {
POOL_add(pool, &FASTCOVER_tryParameters, data);
} else {
FASTCOVER_tryParameters(data);
}
/* Print status */
LOCALDISPLAYUPDATE(displayLevel, 2, "\r%u%% ",
(unsigned)((iteration * 100) / kIterations));
++iteration;
}
COVER_best_wait(&best);
FASTCOVER_ctx_destroy(&ctx);
}
LOCALDISPLAYLEVEL(displayLevel, 2, "\r%79s\r", "");
/* Fill the output buffer and parameters with output of the best parameters */
{
const size_t dictSize = best.dictSize;
if (ZSTD_isError(best.compressedSize)) {
const size_t compressedSize = best.compressedSize;
COVER_best_destroy(&best);
POOL_free(pool);
return compressedSize;
}
FASTCOVER_convertToFastCoverParams(best.parameters, parameters, f, accel);
memcpy(dictBuffer, best.dict, dictSize);
COVER_best_destroy(&best);
POOL_free(pool);
return dictSize;
}
}
#endif /* USE_EXTERNAL_ZSTD */

643
vendor/github.com/DataDog/zstd/fse.h generated vendored Normal file
View File

@ -0,0 +1,643 @@
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* FSE : Finite State Entropy codec
* Public Prototypes declaration
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef FSE_H
#define FSE_H
/*-*****************************************
* Dependencies
******************************************/
#include "zstd_deps.h" /* size_t, ptrdiff_t */
/*-*****************************************
* FSE_PUBLIC_API : control library symbols visibility
******************************************/
#if defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) && defined(__GNUC__) && (__GNUC__ >= 4)
# define FSE_PUBLIC_API __attribute__ ((visibility ("default")))
#elif defined(FSE_DLL_EXPORT) && (FSE_DLL_EXPORT==1) /* Visual expected */
# define FSE_PUBLIC_API __declspec(dllexport)
#elif defined(FSE_DLL_IMPORT) && (FSE_DLL_IMPORT==1)
# define FSE_PUBLIC_API __declspec(dllimport) /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define FSE_PUBLIC_API
#endif
/*------ Version ------*/
#define FSE_VERSION_MAJOR 0
#define FSE_VERSION_MINOR 9
#define FSE_VERSION_RELEASE 0
#define FSE_LIB_VERSION FSE_VERSION_MAJOR.FSE_VERSION_MINOR.FSE_VERSION_RELEASE
#define FSE_QUOTE(str) #str
#define FSE_EXPAND_AND_QUOTE(str) FSE_QUOTE(str)
#define FSE_VERSION_STRING FSE_EXPAND_AND_QUOTE(FSE_LIB_VERSION)
#define FSE_VERSION_NUMBER (FSE_VERSION_MAJOR *100*100 + FSE_VERSION_MINOR *100 + FSE_VERSION_RELEASE)
FSE_PUBLIC_API unsigned FSE_versionNumber(void); /**< library version number; to be used when checking dll version */
/*-*****************************************
* Tool functions
******************************************/
FSE_PUBLIC_API size_t FSE_compressBound(size_t size); /* maximum compressed size */
/* Error Management */
FSE_PUBLIC_API unsigned FSE_isError(size_t code); /* tells if a return value is an error code */
FSE_PUBLIC_API const char* FSE_getErrorName(size_t code); /* provides error code string (useful for debugging) */
/*-*****************************************
* FSE detailed API
******************************************/
/*!
FSE_compress() does the following:
1. count symbol occurrence from source[] into table count[] (see hist.h)
2. normalize counters so that sum(count[]) == Power_of_2 (2^tableLog)
3. save normalized counters to memory buffer using writeNCount()
4. build encoding table 'CTable' from normalized counters
5. encode the data stream using encoding table 'CTable'
FSE_decompress() does the following:
1. read normalized counters with readNCount()
2. build decoding table 'DTable' from normalized counters
3. decode the data stream using decoding table 'DTable'
The following API allows targeting specific sub-functions for advanced tasks.
For example, it's possible to compress several blocks using the same 'CTable',
or to save and provide normalized distribution using external method.
*/
/* *** COMPRESSION *** */
/*! FSE_optimalTableLog():
dynamically downsize 'tableLog' when conditions are met.
It saves CPU time, by using smaller tables, while preserving or even improving compression ratio.
@return : recommended tableLog (necessarily <= 'maxTableLog') */
FSE_PUBLIC_API unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue);
/*! FSE_normalizeCount():
normalize counts so that sum(count[]) == Power_of_2 (2^tableLog)
'normalizedCounter' is a table of short, of minimum size (maxSymbolValue+1).
useLowProbCount is a boolean parameter which trades off compressed size for
faster header decoding. When it is set to 1, the compressed data will be slightly
smaller. And when it is set to 0, FSE_readNCount() and FSE_buildDTable() will be
faster. If you are compressing a small amount of data (< 2 KB) then useLowProbCount=0
is a good default, since header deserialization makes a big speed difference.
Otherwise, useLowProbCount=1 is a good default, since the speed difference is small.
@return : tableLog,
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_normalizeCount(short* normalizedCounter, unsigned tableLog,
const unsigned* count, size_t srcSize, unsigned maxSymbolValue, unsigned useLowProbCount);
/*! FSE_NCountWriteBound():
Provides the maximum possible size of an FSE normalized table, given 'maxSymbolValue' and 'tableLog'.
Typically useful for allocation purpose. */
FSE_PUBLIC_API size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_writeNCount():
Compactly save 'normalizedCounter' into 'buffer'.
@return : size of the compressed table,
or an errorCode, which can be tested using FSE_isError(). */
FSE_PUBLIC_API size_t FSE_writeNCount (void* buffer, size_t bufferSize,
const short* normalizedCounter,
unsigned maxSymbolValue, unsigned tableLog);
/*! Constructor and Destructor of FSE_CTable.
Note that FSE_CTable size depends on 'tableLog' and 'maxSymbolValue' */
typedef unsigned FSE_CTable; /* don't allocate that. It's only meant to be more restrictive than void* */
/*! FSE_buildCTable():
Builds `ct`, which must be already allocated, using FSE_createCTable().
@return : 0, or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_buildCTable(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog);
/*! FSE_compress_usingCTable():
Compress `src` using `ct` into `dst` which must be already allocated.
@return : size of compressed data (<= `dstCapacity`),
or 0 if compressed data could not fit into `dst`,
or an errorCode, which can be tested using FSE_isError() */
FSE_PUBLIC_API size_t FSE_compress_usingCTable (void* dst, size_t dstCapacity, const void* src, size_t srcSize, const FSE_CTable* ct);
/*!
Tutorial :
----------
The first step is to count all symbols. FSE_count() does this job very fast.
Result will be saved into 'count', a table of unsigned int, which must be already allocated, and have 'maxSymbolValuePtr[0]+1' cells.
'src' is a table of bytes of size 'srcSize'. All values within 'src' MUST be <= maxSymbolValuePtr[0]
maxSymbolValuePtr[0] will be updated, with its real value (necessarily <= original value)
FSE_count() will return the number of occurrence of the most frequent symbol.
This can be used to know if there is a single symbol within 'src', and to quickly evaluate its compressibility.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
The next step is to normalize the frequencies.
FSE_normalizeCount() will ensure that sum of frequencies is == 2 ^'tableLog'.
It also guarantees a minimum of 1 to any Symbol with frequency >= 1.
You can use 'tableLog'==0 to mean "use default tableLog value".
If you are unsure of which tableLog value to use, you can ask FSE_optimalTableLog(),
which will provide the optimal valid tableLog given sourceSize, maxSymbolValue, and a user-defined maximum (0 means "default").
The result of FSE_normalizeCount() will be saved into a table,
called 'normalizedCounter', which is a table of signed short.
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValue+1' cells.
The return value is tableLog if everything proceeded as expected.
It is 0 if there is a single symbol within distribution.
If there is an error (ex: invalid tableLog value), the function will return an ErrorCode (which can be tested using FSE_isError()).
'normalizedCounter' can be saved in a compact manner to a memory area using FSE_writeNCount().
'buffer' must be already allocated.
For guaranteed success, buffer size must be at least FSE_headerBound().
The result of the function is the number of bytes written into 'buffer'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError(); ex : buffer size too small).
'normalizedCounter' can then be used to create the compression table 'CTable'.
The space required by 'CTable' must be already allocated, using FSE_createCTable().
You can then use FSE_buildCTable() to fill 'CTable'.
If there is an error, both functions will return an ErrorCode (which can be tested using FSE_isError()).
'CTable' can then be used to compress 'src', with FSE_compress_usingCTable().
Similar to FSE_count(), the convention is that 'src' is assumed to be a table of char of size 'srcSize'
The function returns the size of compressed data (without header), necessarily <= `dstCapacity`.
If it returns '0', compressed data could not fit into 'dst'.
If there is an error, the function will return an ErrorCode (which can be tested using FSE_isError()).
*/
/* *** DECOMPRESSION *** */
/*! FSE_readNCount():
Read compactly saved 'normalizedCounter' from 'rBuffer'.
@return : size read from 'rBuffer',
or an errorCode, which can be tested using FSE_isError().
maxSymbolValuePtr[0] and tableLogPtr[0] will also be updated with their respective values */
FSE_PUBLIC_API size_t FSE_readNCount (short* normalizedCounter,
unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
const void* rBuffer, size_t rBuffSize);
/*! FSE_readNCount_bmi2():
* Same as FSE_readNCount() but pass bmi2=1 when your CPU supports BMI2 and 0 otherwise.
*/
FSE_PUBLIC_API size_t FSE_readNCount_bmi2(short* normalizedCounter,
unsigned* maxSymbolValuePtr, unsigned* tableLogPtr,
const void* rBuffer, size_t rBuffSize, int bmi2);
typedef unsigned FSE_DTable; /* don't allocate that. It's just a way to be more restrictive than void* */
/*!
Tutorial :
----------
(Note : these functions only decompress FSE-compressed blocks.
If block is uncompressed, use memcpy() instead
If block is a single repeated byte, use memset() instead )
The first step is to obtain the normalized frequencies of symbols.
This can be performed by FSE_readNCount() if it was saved using FSE_writeNCount().
'normalizedCounter' must be already allocated, and have at least 'maxSymbolValuePtr[0]+1' cells of signed short.
In practice, that means it's necessary to know 'maxSymbolValue' beforehand,
or size the table to handle worst case situations (typically 256).
FSE_readNCount() will provide 'tableLog' and 'maxSymbolValue'.
The result of FSE_readNCount() is the number of bytes read from 'rBuffer'.
Note that 'rBufferSize' must be at least 4 bytes, even if useful information is less than that.
If there is an error, the function will return an error code, which can be tested using FSE_isError().
The next step is to build the decompression tables 'FSE_DTable' from 'normalizedCounter'.
This is performed by the function FSE_buildDTable().
The space required by 'FSE_DTable' must be already allocated using FSE_createDTable().
If there is an error, the function will return an error code, which can be tested using FSE_isError().
`FSE_DTable` can then be used to decompress `cSrc`, with FSE_decompress_usingDTable().
`cSrcSize` must be strictly correct, otherwise decompression will fail.
FSE_decompress_usingDTable() result will tell how many bytes were regenerated (<=`dstCapacity`).
If there is an error, the function will return an error code, which can be tested using FSE_isError(). (ex: dst buffer too small)
*/
#endif /* FSE_H */
#if defined(FSE_STATIC_LINKING_ONLY) && !defined(FSE_H_FSE_STATIC_LINKING_ONLY)
#define FSE_H_FSE_STATIC_LINKING_ONLY
/* *** Dependency *** */
#include "bitstream.h"
/* *****************************************
* Static allocation
*******************************************/
/* FSE buffer bounds */
#define FSE_NCOUNTBOUND 512
#define FSE_BLOCKBOUND(size) ((size) + ((size)>>7) + 4 /* fse states */ + sizeof(size_t) /* bitContainer */)
#define FSE_COMPRESSBOUND(size) (FSE_NCOUNTBOUND + FSE_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* It is possible to statically allocate FSE CTable/DTable as a table of FSE_CTable/FSE_DTable using below macros */
#define FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) (1 + (1<<((maxTableLog)-1)) + (((maxSymbolValue)+1)*2))
#define FSE_DTABLE_SIZE_U32(maxTableLog) (1 + (1<<(maxTableLog)))
/* or use the size to malloc() space directly. Pay attention to alignment restrictions though */
#define FSE_CTABLE_SIZE(maxTableLog, maxSymbolValue) (FSE_CTABLE_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(FSE_CTable))
#define FSE_DTABLE_SIZE(maxTableLog) (FSE_DTABLE_SIZE_U32(maxTableLog) * sizeof(FSE_DTable))
/* *****************************************
* FSE advanced API
***************************************** */
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus);
/**< same as FSE_optimalTableLog(), which used `minus==2` */
size_t FSE_buildCTable_rle (FSE_CTable* ct, unsigned char symbolValue);
/**< build a fake FSE_CTable, designed to compress always the same symbolValue */
/* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* `wkspSize` must be >= `FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog)` of `unsigned`.
* See FSE_buildCTable_wksp() for breakdown of workspace usage.
*/
#define FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog) (((maxSymbolValue + 2) + (1ull << (tableLog)))/2 + sizeof(U64)/sizeof(U32) /* additional 8 bytes for potential table overwrite */)
#define FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) (sizeof(unsigned) * FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(maxSymbolValue, tableLog))
size_t FSE_buildCTable_wksp(FSE_CTable* ct, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
#define FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) (sizeof(short) * (maxSymbolValue + 1) + (1ULL << maxTableLog) + 8)
#define FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) ((FSE_BUILD_DTABLE_WKSP_SIZE(maxTableLog, maxSymbolValue) + sizeof(unsigned) - 1) / sizeof(unsigned))
FSE_PUBLIC_API size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize);
/**< Same as FSE_buildDTable(), using an externally allocated `workspace` produced with `FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxSymbolValue)` */
#define FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) (FSE_DTABLE_SIZE_U32(maxTableLog) + 1 + FSE_BUILD_DTABLE_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) + (FSE_MAX_SYMBOL_VALUE + 1) / 2 + 1)
#define FSE_DECOMPRESS_WKSP_SIZE(maxTableLog, maxSymbolValue) (FSE_DECOMPRESS_WKSP_SIZE_U32(maxTableLog, maxSymbolValue) * sizeof(unsigned))
size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2);
/**< same as FSE_decompress(), using an externally allocated `workSpace` produced with `FSE_DECOMPRESS_WKSP_SIZE_U32(maxLog, maxSymbolValue)`.
* Set bmi2 to 1 if your CPU supports BMI2 or 0 if it doesn't */
typedef enum {
FSE_repeat_none, /**< Cannot use the previous table */
FSE_repeat_check, /**< Can use the previous table but it must be checked */
FSE_repeat_valid /**< Can use the previous table and it is assumed to be valid */
} FSE_repeat;
/* *****************************************
* FSE symbol compression API
*******************************************/
/*!
This API consists of small unitary functions, which highly benefit from being inlined.
Hence their body are included in next section.
*/
typedef struct {
ptrdiff_t value;
const void* stateTable;
const void* symbolTT;
unsigned stateLog;
} FSE_CState_t;
static void FSE_initCState(FSE_CState_t* CStatePtr, const FSE_CTable* ct);
static void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* CStatePtr, unsigned symbol);
static void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* CStatePtr);
/**<
These functions are inner components of FSE_compress_usingCTable().
They allow the creation of custom streams, mixing multiple tables and bit sources.
A key property to keep in mind is that encoding and decoding are done **in reverse direction**.
So the first symbol you will encode is the last you will decode, like a LIFO stack.
You will need a few variables to track your CStream. They are :
FSE_CTable ct; // Provided by FSE_buildCTable()
BIT_CStream_t bitStream; // bitStream tracking structure
FSE_CState_t state; // State tracking structure (can have several)
The first thing to do is to init bitStream and state.
size_t errorCode = BIT_initCStream(&bitStream, dstBuffer, maxDstSize);
FSE_initCState(&state, ct);
Note that BIT_initCStream() can produce an error code, so its result should be tested, using FSE_isError();
You can then encode your input data, byte after byte.
FSE_encodeSymbol() outputs a maximum of 'tableLog' bits at a time.
Remember decoding will be done in reverse direction.
FSE_encodeByte(&bitStream, &state, symbol);
At any time, you can also add any bit sequence.
Note : maximum allowed nbBits is 25, for compatibility with 32-bits decoders
BIT_addBits(&bitStream, bitField, nbBits);
The above methods don't commit data to memory, they just store it into local register, for speed.
Local register size is 64-bits on 64-bits systems, 32-bits on 32-bits systems (size_t).
Writing data to memory is a manual operation, performed by the flushBits function.
BIT_flushBits(&bitStream);
Your last FSE encoding operation shall be to flush your last state value(s).
FSE_flushState(&bitStream, &state);
Finally, you must close the bitStream.
The function returns the size of CStream in bytes.
If data couldn't fit into dstBuffer, it will return a 0 ( == not compressible)
If there is an error, it returns an errorCode (which can be tested using FSE_isError()).
size_t size = BIT_closeCStream(&bitStream);
*/
/* *****************************************
* FSE symbol decompression API
*******************************************/
typedef struct {
size_t state;
const void* table; /* precise table may vary, depending on U16 */
} FSE_DState_t;
static void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt);
static unsigned char FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
static unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr);
/**<
Let's now decompose FSE_decompress_usingDTable() into its unitary components.
You will decode FSE-encoded symbols from the bitStream,
and also any other bitFields you put in, **in reverse order**.
You will need a few variables to track your bitStream. They are :
BIT_DStream_t DStream; // Stream context
FSE_DState_t DState; // State context. Multiple ones are possible
FSE_DTable* DTablePtr; // Decoding table, provided by FSE_buildDTable()
The first thing to do is to init the bitStream.
errorCode = BIT_initDStream(&DStream, srcBuffer, srcSize);
You should then retrieve your initial state(s)
(in reverse flushing order if you have several ones) :
errorCode = FSE_initDState(&DState, &DStream, DTablePtr);
You can then decode your data, symbol after symbol.
For information the maximum number of bits read by FSE_decodeSymbol() is 'tableLog'.
Keep in mind that symbols are decoded in reverse order, like a LIFO stack (last in, first out).
unsigned char symbol = FSE_decodeSymbol(&DState, &DStream);
You can retrieve any bitfield you eventually stored into the bitStream (in reverse order)
Note : maximum allowed nbBits is 25, for 32-bits compatibility
size_t bitField = BIT_readBits(&DStream, nbBits);
All above operations only read from local register (which size depends on size_t).
Refueling the register from memory is manually performed by the reload method.
endSignal = FSE_reloadDStream(&DStream);
BIT_reloadDStream() result tells if there is still some more data to read from DStream.
BIT_DStream_unfinished : there is still some data left into the DStream.
BIT_DStream_endOfBuffer : Dstream reached end of buffer. Its container may no longer be completely filled.
BIT_DStream_completed : Dstream reached its exact end, corresponding in general to decompression completed.
BIT_DStream_tooFar : Dstream went too far. Decompression result is corrupted.
When reaching end of buffer (BIT_DStream_endOfBuffer), progress slowly, notably if you decode multiple symbols per loop,
to properly detect the exact end of stream.
After each decoded symbol, check if DStream is fully consumed using this simple test :
BIT_reloadDStream(&DStream) >= BIT_DStream_completed
When it's done, verify decompression is fully completed, by checking both DStream and the relevant states.
Checking if DStream has reached its end is performed by :
BIT_endOfDStream(&DStream);
Check also the states. There might be some symbols left there, if some high probability ones (>50%) are possible.
FSE_endOfDState(&DState);
*/
/* *****************************************
* FSE unsafe API
*******************************************/
static unsigned char FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD);
/* faster, but works only if nbBits is always >= 1 (otherwise, result will be corrupted) */
/* *****************************************
* Implementation of inlined functions
*******************************************/
typedef struct {
int deltaFindState;
U32 deltaNbBits;
} FSE_symbolCompressionTransform; /* total 8 bytes */
MEM_STATIC void FSE_initCState(FSE_CState_t* statePtr, const FSE_CTable* ct)
{
const void* ptr = ct;
const U16* u16ptr = (const U16*) ptr;
const U32 tableLog = MEM_read16(ptr);
statePtr->value = (ptrdiff_t)1<<tableLog;
statePtr->stateTable = u16ptr+2;
statePtr->symbolTT = ct + 1 + (tableLog ? (1<<(tableLog-1)) : 1);
statePtr->stateLog = tableLog;
}
/*! FSE_initCState2() :
* Same as FSE_initCState(), but the first symbol to include (which will be the last to be read)
* uses the smallest state value possible, saving the cost of this symbol */
MEM_STATIC void FSE_initCState2(FSE_CState_t* statePtr, const FSE_CTable* ct, U32 symbol)
{
FSE_initCState(statePtr, ct);
{ const FSE_symbolCompressionTransform symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* stateTable = (const U16*)(statePtr->stateTable);
U32 nbBitsOut = (U32)((symbolTT.deltaNbBits + (1<<15)) >> 16);
statePtr->value = (nbBitsOut << 16) - symbolTT.deltaNbBits;
statePtr->value = stateTable[(statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
}
MEM_STATIC void FSE_encodeSymbol(BIT_CStream_t* bitC, FSE_CState_t* statePtr, unsigned symbol)
{
FSE_symbolCompressionTransform const symbolTT = ((const FSE_symbolCompressionTransform*)(statePtr->symbolTT))[symbol];
const U16* const stateTable = (const U16*)(statePtr->stateTable);
U32 const nbBitsOut = (U32)((statePtr->value + symbolTT.deltaNbBits) >> 16);
BIT_addBits(bitC, (size_t)statePtr->value, nbBitsOut);
statePtr->value = stateTable[ (statePtr->value >> nbBitsOut) + symbolTT.deltaFindState];
}
MEM_STATIC void FSE_flushCState(BIT_CStream_t* bitC, const FSE_CState_t* statePtr)
{
BIT_addBits(bitC, (size_t)statePtr->value, statePtr->stateLog);
BIT_flushBits(bitC);
}
/* FSE_getMaxNbBits() :
* Approximate maximum cost of a symbol, in bits.
* Fractional get rounded up (i.e. a symbol with a normalized frequency of 3 gives the same result as a frequency of 2)
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
MEM_STATIC U32 FSE_getMaxNbBits(const void* symbolTTPtr, U32 symbolValue)
{
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
return (symbolTT[symbolValue].deltaNbBits + ((1<<16)-1)) >> 16;
}
/* FSE_bitCost() :
* Approximate symbol cost, as fractional value, using fixed-point format (accuracyLog fractional bits)
* note 1 : assume symbolValue is valid (<= maxSymbolValue)
* note 2 : if freq[symbolValue]==0, @return a fake cost of tableLog+1 bits */
MEM_STATIC U32 FSE_bitCost(const void* symbolTTPtr, U32 tableLog, U32 symbolValue, U32 accuracyLog)
{
const FSE_symbolCompressionTransform* symbolTT = (const FSE_symbolCompressionTransform*) symbolTTPtr;
U32 const minNbBits = symbolTT[symbolValue].deltaNbBits >> 16;
U32 const threshold = (minNbBits+1) << 16;
assert(tableLog < 16);
assert(accuracyLog < 31-tableLog); /* ensure enough room for renormalization double shift */
{ U32 const tableSize = 1 << tableLog;
U32 const deltaFromThreshold = threshold - (symbolTT[symbolValue].deltaNbBits + tableSize);
U32 const normalizedDeltaFromThreshold = (deltaFromThreshold << accuracyLog) >> tableLog; /* linear interpolation (very approximate) */
U32 const bitMultiplier = 1 << accuracyLog;
assert(symbolTT[symbolValue].deltaNbBits + tableSize <= threshold);
assert(normalizedDeltaFromThreshold <= bitMultiplier);
return (minNbBits+1)*bitMultiplier - normalizedDeltaFromThreshold;
}
}
/* ====== Decompression ====== */
typedef struct {
U16 tableLog;
U16 fastMode;
} FSE_DTableHeader; /* sizeof U32 */
typedef struct
{
unsigned short newState;
unsigned char symbol;
unsigned char nbBits;
} FSE_decode_t; /* size == U32 */
MEM_STATIC void FSE_initDState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD, const FSE_DTable* dt)
{
const void* ptr = dt;
const FSE_DTableHeader* const DTableH = (const FSE_DTableHeader*)ptr;
DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
BIT_reloadDStream(bitD);
DStatePtr->table = dt + 1;
}
MEM_STATIC BYTE FSE_peekSymbol(const FSE_DState_t* DStatePtr)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
return DInfo.symbol;
}
MEM_STATIC void FSE_updateState(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
}
MEM_STATIC BYTE FSE_decodeSymbol(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BIT_readBits(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
/*! FSE_decodeSymbolFast() :
unsafe, only works if no symbol has a probability > 50% */
MEM_STATIC BYTE FSE_decodeSymbolFast(FSE_DState_t* DStatePtr, BIT_DStream_t* bitD)
{
FSE_decode_t const DInfo = ((const FSE_decode_t*)(DStatePtr->table))[DStatePtr->state];
U32 const nbBits = DInfo.nbBits;
BYTE const symbol = DInfo.symbol;
size_t const lowBits = BIT_readBitsFast(bitD, nbBits);
DStatePtr->state = DInfo.newState + lowBits;
return symbol;
}
MEM_STATIC unsigned FSE_endOfDState(const FSE_DState_t* DStatePtr)
{
return DStatePtr->state == 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/* **************************************************************
* Tuning parameters
****************************************************************/
/*!MEMORY_USAGE :
* Memory usage formula : N->2^N Bytes (examples : 10 -> 1KB; 12 -> 4KB ; 16 -> 64KB; 20 -> 1MB; etc.)
* Increasing memory usage improves compression ratio
* Reduced memory usage can improve speed, due to cache effect
* Recommended max value is 14, for 16KB, which nicely fits into Intel x86 L1 cache */
#ifndef FSE_MAX_MEMORY_USAGE
# define FSE_MAX_MEMORY_USAGE 14
#endif
#ifndef FSE_DEFAULT_MEMORY_USAGE
# define FSE_DEFAULT_MEMORY_USAGE 13
#endif
#if (FSE_DEFAULT_MEMORY_USAGE > FSE_MAX_MEMORY_USAGE)
# error "FSE_DEFAULT_MEMORY_USAGE must be <= FSE_MAX_MEMORY_USAGE"
#endif
/*!FSE_MAX_SYMBOL_VALUE :
* Maximum symbol value authorized.
* Required for proper stack allocation */
#ifndef FSE_MAX_SYMBOL_VALUE
# define FSE_MAX_SYMBOL_VALUE 255
#endif
/* **************************************************************
* template functions type & suffix
****************************************************************/
#define FSE_FUNCTION_TYPE BYTE
#define FSE_FUNCTION_EXTENSION
#define FSE_DECODE_TYPE FSE_decode_t
#endif /* !FSE_COMMONDEFS_ONLY */
/* ***************************************************************
* Constants
*****************************************************************/
#define FSE_MAX_TABLELOG (FSE_MAX_MEMORY_USAGE-2)
#define FSE_MAX_TABLESIZE (1U<<FSE_MAX_TABLELOG)
#define FSE_MAXTABLESIZE_MASK (FSE_MAX_TABLESIZE-1)
#define FSE_DEFAULT_TABLELOG (FSE_DEFAULT_MEMORY_USAGE-2)
#define FSE_MIN_TABLELOG 5
#define FSE_TABLELOG_ABSOLUTE_MAX 15
#if FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX
# error "FSE_MAX_TABLELOG > FSE_TABLELOG_ABSOLUTE_MAX is not supported"
#endif
#define FSE_TABLESTEP(tableSize) (((tableSize)>>1) + ((tableSize)>>3) + 3)
#endif /* FSE_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
#endif /* USE_EXTERNAL_ZSTD */

628
vendor/github.com/DataDog/zstd/fse_compress.c generated vendored Normal file
View File

@ -0,0 +1,628 @@
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* FSE : Finite State Entropy encoder
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Includes
****************************************************************/
#include "compiler.h"
#include "mem.h" /* U32, U16, etc. */
#include "debug.h" /* assert, DEBUGLOG */
#include "hist.h" /* HIST_count_wksp */
#include "bitstream.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "error_private.h"
#define ZSTD_DEPS_NEED_MALLOC
#define ZSTD_DEPS_NEED_MATH64
#include "zstd_deps.h" /* ZSTD_memset */
#include "bits.h" /* ZSTD_highbit32 */
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_isError ERR_isError
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
/* Function templates */
/* FSE_buildCTable_wksp() :
* Same as FSE_buildCTable(), but using an externally allocated scratch buffer (`workSpace`).
* wkspSize should be sized to handle worst case situation, which is `1<<max_tableLog * sizeof(FSE_FUNCTION_TYPE)`
* workSpace must also be properly aligned with FSE_FUNCTION_TYPE requirements
*/
size_t FSE_buildCTable_wksp(FSE_CTable* ct,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize)
{
U32 const tableSize = 1 << tableLog;
U32 const tableMask = tableSize - 1;
void* const ptr = ct;
U16* const tableU16 = ( (U16*) ptr) + 2;
void* const FSCT = ((U32*)ptr) + 1 /* header */ + (tableLog ? tableSize>>1 : 1) ;
FSE_symbolCompressionTransform* const symbolTT = (FSE_symbolCompressionTransform*) (FSCT);
U32 const step = FSE_TABLESTEP(tableSize);
U32 const maxSV1 = maxSymbolValue+1;
U16* cumul = (U16*)workSpace; /* size = maxSV1 */
FSE_FUNCTION_TYPE* const tableSymbol = (FSE_FUNCTION_TYPE*)(cumul + (maxSV1+1)); /* size = tableSize */
U32 highThreshold = tableSize-1;
assert(((size_t)workSpace & 1) == 0); /* Must be 2 bytes-aligned */
if (FSE_BUILD_CTABLE_WORKSPACE_SIZE(maxSymbolValue, tableLog) > wkspSize) return ERROR(tableLog_tooLarge);
/* CTable header */
tableU16[-2] = (U16) tableLog;
tableU16[-1] = (U16) maxSymbolValue;
assert(tableLog < 16); /* required for threshold strategy to work */
/* For explanations on how to distribute symbol values over the table :
* https://fastcompression.blogspot.fr/2014/02/fse-distributing-symbol-values.html */
#ifdef __clang_analyzer__
ZSTD_memset(tableSymbol, 0, sizeof(*tableSymbol) * tableSize); /* useless initialization, just to keep scan-build happy */
#endif
/* symbol start positions */
{ U32 u;
cumul[0] = 0;
for (u=1; u <= maxSV1; u++) {
if (normalizedCounter[u-1]==-1) { /* Low proba symbol */
cumul[u] = cumul[u-1] + 1;
tableSymbol[highThreshold--] = (FSE_FUNCTION_TYPE)(u-1);
} else {
assert(normalizedCounter[u-1] >= 0);
cumul[u] = cumul[u-1] + (U16)normalizedCounter[u-1];
assert(cumul[u] >= cumul[u-1]); /* no overflow */
} }
cumul[maxSV1] = (U16)(tableSize+1);
}
/* Spread symbols */
if (highThreshold == tableSize - 1) {
/* Case for no low prob count symbols. Lay down 8 bytes at a time
* to reduce branch misses since we are operating on a small block
*/
BYTE* const spread = tableSymbol + tableSize; /* size = tableSize + 8 (may write beyond tableSize) */
{ U64 const add = 0x0101010101010101ull;
size_t pos = 0;
U64 sv = 0;
U32 s;
for (s=0; s<maxSV1; ++s, sv += add) {
int i;
int const n = normalizedCounter[s];
MEM_write64(spread + pos, sv);
for (i = 8; i < n; i += 8) {
MEM_write64(spread + pos + i, sv);
}
assert(n>=0);
pos += (size_t)n;
}
}
/* Spread symbols across the table. Lack of lowprob symbols means that
* we don't need variable sized inner loop, so we can unroll the loop and
* reduce branch misses.
*/
{ size_t position = 0;
size_t s;
size_t const unroll = 2; /* Experimentally determined optimal unroll */
assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
for (s = 0; s < (size_t)tableSize; s += unroll) {
size_t u;
for (u = 0; u < unroll; ++u) {
size_t const uPosition = (position + (u * step)) & tableMask;
tableSymbol[uPosition] = spread[s + u];
}
position = (position + (unroll * step)) & tableMask;
}
assert(position == 0); /* Must have initialized all positions */
}
} else {
U32 position = 0;
U32 symbol;
for (symbol=0; symbol<maxSV1; symbol++) {
int nbOccurrences;
int const freq = normalizedCounter[symbol];
for (nbOccurrences=0; nbOccurrences<freq; nbOccurrences++) {
tableSymbol[position] = (FSE_FUNCTION_TYPE)symbol;
position = (position + step) & tableMask;
while (position > highThreshold)
position = (position + step) & tableMask; /* Low proba area */
} }
assert(position==0); /* Must have initialized all positions */
}
/* Build table */
{ U32 u; for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE s = tableSymbol[u]; /* note : static analyzer may not understand tableSymbol is properly initialized */
tableU16[cumul[s]++] = (U16) (tableSize+u); /* TableU16 : sorted by symbol order; gives next state value */
} }
/* Build Symbol Transformation Table */
{ unsigned total = 0;
unsigned s;
for (s=0; s<=maxSymbolValue; s++) {
switch (normalizedCounter[s])
{
case 0:
/* filling nonetheless, for compatibility with FSE_getMaxNbBits() */
symbolTT[s].deltaNbBits = ((tableLog+1) << 16) - (1<<tableLog);
break;
case -1:
case 1:
symbolTT[s].deltaNbBits = (tableLog << 16) - (1<<tableLog);
assert(total <= INT_MAX);
symbolTT[s].deltaFindState = (int)(total - 1);
total ++;
break;
default :
assert(normalizedCounter[s] > 1);
{ U32 const maxBitsOut = tableLog - ZSTD_highbit32 ((U32)normalizedCounter[s]-1);
U32 const minStatePlus = (U32)normalizedCounter[s] << maxBitsOut;
symbolTT[s].deltaNbBits = (maxBitsOut << 16) - minStatePlus;
symbolTT[s].deltaFindState = (int)(total - (unsigned)normalizedCounter[s]);
total += (unsigned)normalizedCounter[s];
} } } }
#if 0 /* debug : symbol costs */
DEBUGLOG(5, "\n --- table statistics : ");
{ U32 symbol;
for (symbol=0; symbol<=maxSymbolValue; symbol++) {
DEBUGLOG(5, "%3u: w=%3i, maxBits=%u, fracBits=%.2f",
symbol, normalizedCounter[symbol],
FSE_getMaxNbBits(symbolTT, symbol),
(double)FSE_bitCost(symbolTT, tableLog, symbol, 8) / 256);
} }
#endif
return 0;
}
#ifndef FSE_COMMONDEFS_ONLY
/*-**************************************************************
* FSE NCount encoding
****************************************************************/
size_t FSE_NCountWriteBound(unsigned maxSymbolValue, unsigned tableLog)
{
size_t const maxHeaderSize = (((maxSymbolValue+1) * tableLog
+ 4 /* bitCount initialized at 4 */
+ 2 /* first two symbols may use one additional bit each */) / 8)
+ 1 /* round up to whole nb bytes */
+ 2 /* additional two bytes for bitstream flush */;
return maxSymbolValue ? maxHeaderSize : FSE_NCOUNTBOUND; /* maxSymbolValue==0 ? use default */
}
static size_t
FSE_writeNCount_generic (void* header, size_t headerBufferSize,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog,
unsigned writeIsSafe)
{
BYTE* const ostart = (BYTE*) header;
BYTE* out = ostart;
BYTE* const oend = ostart + headerBufferSize;
int nbBits;
const int tableSize = 1 << tableLog;
int remaining;
int threshold;
U32 bitStream = 0;
int bitCount = 0;
unsigned symbol = 0;
unsigned const alphabetSize = maxSymbolValue + 1;
int previousIs0 = 0;
/* Table Size */
bitStream += (tableLog-FSE_MIN_TABLELOG) << bitCount;
bitCount += 4;
/* Init */
remaining = tableSize+1; /* +1 for extra accuracy */
threshold = tableSize;
nbBits = (int)tableLog+1;
while ((symbol < alphabetSize) && (remaining>1)) { /* stops at 1 */
if (previousIs0) {
unsigned start = symbol;
while ((symbol < alphabetSize) && !normalizedCounter[symbol]) symbol++;
if (symbol == alphabetSize) break; /* incorrect distribution */
while (symbol >= start+24) {
start+=24;
bitStream += 0xFFFFU << bitCount;
if ((!writeIsSafe) && (out > oend-2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE) bitStream;
out[1] = (BYTE)(bitStream>>8);
out+=2;
bitStream>>=16;
}
while (symbol >= start+3) {
start+=3;
bitStream += 3U << bitCount;
bitCount += 2;
}
bitStream += (symbol-start) << bitCount;
bitCount += 2;
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
} }
{ int count = normalizedCounter[symbol++];
int const max = (2*threshold-1) - remaining;
remaining -= count < 0 ? -count : count;
count++; /* +1 for extra accuracy */
if (count>=threshold)
count += max; /* [0..max[ [max..threshold[ (...) [threshold+max 2*threshold[ */
bitStream += (U32)count << bitCount;
bitCount += nbBits;
bitCount -= (count<max);
previousIs0 = (count==1);
if (remaining<1) return ERROR(GENERIC);
while (remaining<threshold) { nbBits--; threshold>>=1; }
}
if (bitCount>16) {
if ((!writeIsSafe) && (out > oend - 2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out += 2;
bitStream >>= 16;
bitCount -= 16;
} }
if (remaining != 1)
return ERROR(GENERIC); /* incorrect normalized distribution */
assert(symbol <= alphabetSize);
/* flush remaining bitStream */
if ((!writeIsSafe) && (out > oend - 2))
return ERROR(dstSize_tooSmall); /* Buffer overflow */
out[0] = (BYTE)bitStream;
out[1] = (BYTE)(bitStream>>8);
out+= (bitCount+7) /8;
assert(out >= ostart);
return (size_t)(out-ostart);
}
size_t FSE_writeNCount (void* buffer, size_t bufferSize,
const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog)
{
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported */
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported */
if (bufferSize < FSE_NCountWriteBound(maxSymbolValue, tableLog))
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 0);
return FSE_writeNCount_generic(buffer, bufferSize, normalizedCounter, maxSymbolValue, tableLog, 1 /* write in buffer is safe */);
}
/*-**************************************************************
* FSE Compression Code
****************************************************************/
/* provides the minimum logSize to safely represent a distribution */
static unsigned FSE_minTableLog(size_t srcSize, unsigned maxSymbolValue)
{
U32 minBitsSrc = ZSTD_highbit32((U32)(srcSize)) + 1;
U32 minBitsSymbols = ZSTD_highbit32(maxSymbolValue) + 2;
U32 minBits = minBitsSrc < minBitsSymbols ? minBitsSrc : minBitsSymbols;
assert(srcSize > 1); /* Not supported, RLE should be used instead */
return minBits;
}
unsigned FSE_optimalTableLog_internal(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, unsigned minus)
{
U32 maxBitsSrc = ZSTD_highbit32((U32)(srcSize - 1)) - minus;
U32 tableLog = maxTableLog;
U32 minBits = FSE_minTableLog(srcSize, maxSymbolValue);
assert(srcSize > 1); /* Not supported, RLE should be used instead */
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (maxBitsSrc < tableLog) tableLog = maxBitsSrc; /* Accuracy can be reduced */
if (minBits > tableLog) tableLog = minBits; /* Need a minimum to safely represent all symbol values */
if (tableLog < FSE_MIN_TABLELOG) tableLog = FSE_MIN_TABLELOG;
if (tableLog > FSE_MAX_TABLELOG) tableLog = FSE_MAX_TABLELOG;
return tableLog;
}
unsigned FSE_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue)
{
return FSE_optimalTableLog_internal(maxTableLog, srcSize, maxSymbolValue, 2);
}
/* Secondary normalization method.
To be used when primary method fails. */
static size_t FSE_normalizeM2(short* norm, U32 tableLog, const unsigned* count, size_t total, U32 maxSymbolValue, short lowProbCount)
{
short const NOT_YET_ASSIGNED = -2;
U32 s;
U32 distributed = 0;
U32 ToDistribute;
/* Init */
U32 const lowThreshold = (U32)(total >> tableLog);
U32 lowOne = (U32)((total * 3) >> (tableLog + 1));
for (s=0; s<=maxSymbolValue; s++) {
if (count[s] == 0) {
norm[s]=0;
continue;
}
if (count[s] <= lowThreshold) {
norm[s] = lowProbCount;
distributed++;
total -= count[s];
continue;
}
if (count[s] <= lowOne) {
norm[s] = 1;
distributed++;
total -= count[s];
continue;
}
norm[s]=NOT_YET_ASSIGNED;
}
ToDistribute = (1 << tableLog) - distributed;
if (ToDistribute == 0)
return 0;
if ((total / ToDistribute) > lowOne) {
/* risk of rounding to zero */
lowOne = (U32)((total * 3) / (ToDistribute * 2));
for (s=0; s<=maxSymbolValue; s++) {
if ((norm[s] == NOT_YET_ASSIGNED) && (count[s] <= lowOne)) {
norm[s] = 1;
distributed++;
total -= count[s];
continue;
} }
ToDistribute = (1 << tableLog) - distributed;
}
if (distributed == maxSymbolValue+1) {
/* all values are pretty poor;
probably incompressible data (should have already been detected);
find max, then give all remaining points to max */
U32 maxV = 0, maxC = 0;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > maxC) { maxV=s; maxC=count[s]; }
norm[maxV] += (short)ToDistribute;
return 0;
}
if (total == 0) {
/* all of the symbols were low enough for the lowOne or lowThreshold */
for (s=0; ToDistribute > 0; s = (s+1)%(maxSymbolValue+1))
if (norm[s] > 0) { ToDistribute--; norm[s]++; }
return 0;
}
{ U64 const vStepLog = 62 - tableLog;
U64 const mid = (1ULL << (vStepLog-1)) - 1;
U64 const rStep = ZSTD_div64((((U64)1<<vStepLog) * ToDistribute) + mid, (U32)total); /* scale on remaining */
U64 tmpTotal = mid;
for (s=0; s<=maxSymbolValue; s++) {
if (norm[s]==NOT_YET_ASSIGNED) {
U64 const end = tmpTotal + (count[s] * rStep);
U32 const sStart = (U32)(tmpTotal >> vStepLog);
U32 const sEnd = (U32)(end >> vStepLog);
U32 const weight = sEnd - sStart;
if (weight < 1)
return ERROR(GENERIC);
norm[s] = (short)weight;
tmpTotal = end;
} } }
return 0;
}
size_t FSE_normalizeCount (short* normalizedCounter, unsigned tableLog,
const unsigned* count, size_t total,
unsigned maxSymbolValue, unsigned useLowProbCount)
{
/* Sanity checks */
if (tableLog==0) tableLog = FSE_DEFAULT_TABLELOG;
if (tableLog < FSE_MIN_TABLELOG) return ERROR(GENERIC); /* Unsupported size */
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge); /* Unsupported size */
if (tableLog < FSE_minTableLog(total, maxSymbolValue)) return ERROR(GENERIC); /* Too small tableLog, compression potentially impossible */
{ static U32 const rtbTable[] = { 0, 473195, 504333, 520860, 550000, 700000, 750000, 830000 };
short const lowProbCount = useLowProbCount ? -1 : 1;
U64 const scale = 62 - tableLog;
U64 const step = ZSTD_div64((U64)1<<62, (U32)total); /* <== here, one division ! */
U64 const vStep = 1ULL<<(scale-20);
int stillToDistribute = 1<<tableLog;
unsigned s;
unsigned largest=0;
short largestP=0;
U32 lowThreshold = (U32)(total >> tableLog);
for (s=0; s<=maxSymbolValue; s++) {
if (count[s] == total) return 0; /* rle special case */
if (count[s] == 0) { normalizedCounter[s]=0; continue; }
if (count[s] <= lowThreshold) {
normalizedCounter[s] = lowProbCount;
stillToDistribute--;
} else {
short proba = (short)((count[s]*step) >> scale);
if (proba<8) {
U64 restToBeat = vStep * rtbTable[proba];
proba += (count[s]*step) - ((U64)proba<<scale) > restToBeat;
}
if (proba > largestP) { largestP=proba; largest=s; }
normalizedCounter[s] = proba;
stillToDistribute -= proba;
} }
if (-stillToDistribute >= (normalizedCounter[largest] >> 1)) {
/* corner case, need another normalization method */
size_t const errorCode = FSE_normalizeM2(normalizedCounter, tableLog, count, total, maxSymbolValue, lowProbCount);
if (FSE_isError(errorCode)) return errorCode;
}
else normalizedCounter[largest] += (short)stillToDistribute;
}
#if 0
{ /* Print Table (debug) */
U32 s;
U32 nTotal = 0;
for (s=0; s<=maxSymbolValue; s++)
RAWLOG(2, "%3i: %4i \n", s, normalizedCounter[s]);
for (s=0; s<=maxSymbolValue; s++)
nTotal += abs(normalizedCounter[s]);
if (nTotal != (1U<<tableLog))
RAWLOG(2, "Warning !!! Total == %u != %u !!!", nTotal, 1U<<tableLog);
getchar();
}
#endif
return tableLog;
}
/* fake FSE_CTable, for rle input (always same symbol) */
size_t FSE_buildCTable_rle (FSE_CTable* ct, BYTE symbolValue)
{
void* ptr = ct;
U16* tableU16 = ( (U16*) ptr) + 2;
void* FSCTptr = (U32*)ptr + 2;
FSE_symbolCompressionTransform* symbolTT = (FSE_symbolCompressionTransform*) FSCTptr;
/* header */
tableU16[-2] = (U16) 0;
tableU16[-1] = (U16) symbolValue;
/* Build table */
tableU16[0] = 0;
tableU16[1] = 0; /* just in case */
/* Build Symbol Transformation Table */
symbolTT[symbolValue].deltaNbBits = 0;
symbolTT[symbolValue].deltaFindState = 0;
return 0;
}
static size_t FSE_compress_usingCTable_generic (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct, const unsigned fast)
{
const BYTE* const istart = (const BYTE*) src;
const BYTE* const iend = istart + srcSize;
const BYTE* ip=iend;
BIT_CStream_t bitC;
FSE_CState_t CState1, CState2;
/* init */
if (srcSize <= 2) return 0;
{ size_t const initError = BIT_initCStream(&bitC, dst, dstSize);
if (FSE_isError(initError)) return 0; /* not enough space available to write a bitstream */ }
#define FSE_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
if (srcSize & 1) {
FSE_initCState2(&CState1, ct, *--ip);
FSE_initCState2(&CState2, ct, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_FLUSHBITS(&bitC);
} else {
FSE_initCState2(&CState2, ct, *--ip);
FSE_initCState2(&CState1, ct, *--ip);
}
/* join to mod 4 */
srcSize -= 2;
if ((sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) && (srcSize & 2)) { /* test bit 2 */
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
FSE_FLUSHBITS(&bitC);
}
/* 2 or 4 encoding per loop */
while ( ip>istart ) {
FSE_encodeSymbol(&bitC, &CState2, *--ip);
if (sizeof(bitC.bitContainer)*8 < FSE_MAX_TABLELOG*2+7 ) /* this test must be static */
FSE_FLUSHBITS(&bitC);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
if (sizeof(bitC.bitContainer)*8 > FSE_MAX_TABLELOG*4+7 ) { /* this test must be static */
FSE_encodeSymbol(&bitC, &CState2, *--ip);
FSE_encodeSymbol(&bitC, &CState1, *--ip);
}
FSE_FLUSHBITS(&bitC);
}
FSE_flushCState(&bitC, &CState2);
FSE_flushCState(&bitC, &CState1);
return BIT_closeCStream(&bitC);
}
size_t FSE_compress_usingCTable (void* dst, size_t dstSize,
const void* src, size_t srcSize,
const FSE_CTable* ct)
{
unsigned const fast = (dstSize >= FSE_BLOCKBOUND(srcSize));
if (fast)
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 1);
else
return FSE_compress_usingCTable_generic(dst, dstSize, src, srcSize, ct, 0);
}
size_t FSE_compressBound(size_t size) { return FSE_COMPRESSBOUND(size); }
#endif /* FSE_COMMONDEFS_ONLY */
#endif /* USE_EXTERNAL_ZSTD */

316
vendor/github.com/DataDog/zstd/fse_decompress.c generated vendored Normal file
View File

@ -0,0 +1,316 @@
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* FSE : Finite State Entropy decoder
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* **************************************************************
* Includes
****************************************************************/
#include "debug.h" /* assert */
#include "bitstream.h"
#include "compiler.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "error_private.h"
#include "zstd_deps.h" /* ZSTD_memcpy */
#include "bits.h" /* ZSTD_highbit32 */
/* **************************************************************
* Error Management
****************************************************************/
#define FSE_isError ERR_isError
#define FSE_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c) /* use only *after* variable declarations */
/* **************************************************************
* Templates
****************************************************************/
/*
designed to be included
for type-specific functions (template emulation in C)
Objective is to write these functions only once, for improved maintenance
*/
/* safety checks */
#ifndef FSE_FUNCTION_EXTENSION
# error "FSE_FUNCTION_EXTENSION must be defined"
#endif
#ifndef FSE_FUNCTION_TYPE
# error "FSE_FUNCTION_TYPE must be defined"
#endif
/* Function names */
#define FSE_CAT(X,Y) X##Y
#define FSE_FUNCTION_NAME(X,Y) FSE_CAT(X,Y)
#define FSE_TYPE_NAME(X,Y) FSE_CAT(X,Y)
static size_t FSE_buildDTable_internal(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
void* const tdPtr = dt+1; /* because *dt is unsigned, 32-bits aligned on 32-bits */
FSE_DECODE_TYPE* const tableDecode = (FSE_DECODE_TYPE*) (tdPtr);
U16* symbolNext = (U16*)workSpace;
BYTE* spread = (BYTE*)(symbolNext + maxSymbolValue + 1);
U32 const maxSV1 = maxSymbolValue + 1;
U32 const tableSize = 1 << tableLog;
U32 highThreshold = tableSize-1;
/* Sanity Checks */
if (FSE_BUILD_DTABLE_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(maxSymbolValue_tooLarge);
if (maxSymbolValue > FSE_MAX_SYMBOL_VALUE) return ERROR(maxSymbolValue_tooLarge);
if (tableLog > FSE_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
/* Init, lay down lowprob symbols */
{ FSE_DTableHeader DTableH;
DTableH.tableLog = (U16)tableLog;
DTableH.fastMode = 1;
{ S16 const largeLimit= (S16)(1 << (tableLog-1));
U32 s;
for (s=0; s<maxSV1; s++) {
if (normalizedCounter[s]==-1) {
tableDecode[highThreshold--].symbol = (FSE_FUNCTION_TYPE)s;
symbolNext[s] = 1;
} else {
if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
symbolNext[s] = (U16)normalizedCounter[s];
} } }
ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
}
/* Spread symbols */
if (highThreshold == tableSize - 1) {
size_t const tableMask = tableSize-1;
size_t const step = FSE_TABLESTEP(tableSize);
/* First lay down the symbols in order.
* We use a uint64_t to lay down 8 bytes at a time. This reduces branch
* misses since small blocks generally have small table logs, so nearly
* all symbols have counts <= 8. We ensure we have 8 bytes at the end of
* our buffer to handle the over-write.
*/
{ U64 const add = 0x0101010101010101ull;
size_t pos = 0;
U64 sv = 0;
U32 s;
for (s=0; s<maxSV1; ++s, sv += add) {
int i;
int const n = normalizedCounter[s];
MEM_write64(spread + pos, sv);
for (i = 8; i < n; i += 8) {
MEM_write64(spread + pos + i, sv);
}
pos += (size_t)n;
} }
/* Now we spread those positions across the table.
* The benefit of doing it in two stages is that we avoid the
* variable size inner loop, which caused lots of branch misses.
* Now we can run through all the positions without any branch misses.
* We unroll the loop twice, since that is what empirically worked best.
*/
{
size_t position = 0;
size_t s;
size_t const unroll = 2;
assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
for (s = 0; s < (size_t)tableSize; s += unroll) {
size_t u;
for (u = 0; u < unroll; ++u) {
size_t const uPosition = (position + (u * step)) & tableMask;
tableDecode[uPosition].symbol = spread[s + u];
}
position = (position + (unroll * step)) & tableMask;
}
assert(position == 0);
}
} else {
U32 const tableMask = tableSize-1;
U32 const step = FSE_TABLESTEP(tableSize);
U32 s, position = 0;
for (s=0; s<maxSV1; s++) {
int i;
for (i=0; i<normalizedCounter[s]; i++) {
tableDecode[position].symbol = (FSE_FUNCTION_TYPE)s;
position = (position + step) & tableMask;
while (position > highThreshold) position = (position + step) & tableMask; /* lowprob area */
} }
if (position!=0) return ERROR(GENERIC); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
}
/* Build Decoding table */
{ U32 u;
for (u=0; u<tableSize; u++) {
FSE_FUNCTION_TYPE const symbol = (FSE_FUNCTION_TYPE)(tableDecode[u].symbol);
U32 const nextState = symbolNext[symbol]++;
tableDecode[u].nbBits = (BYTE) (tableLog - ZSTD_highbit32(nextState) );
tableDecode[u].newState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
} }
return 0;
}
size_t FSE_buildDTable_wksp(FSE_DTable* dt, const short* normalizedCounter, unsigned maxSymbolValue, unsigned tableLog, void* workSpace, size_t wkspSize)
{
return FSE_buildDTable_internal(dt, normalizedCounter, maxSymbolValue, tableLog, workSpace, wkspSize);
}
#ifndef FSE_COMMONDEFS_ONLY
/*-*******************************************************
* Decompression (Byte symbols)
*********************************************************/
FORCE_INLINE_TEMPLATE size_t FSE_decompress_usingDTable_generic(
void* dst, size_t maxDstSize,
const void* cSrc, size_t cSrcSize,
const FSE_DTable* dt, const unsigned fast)
{
BYTE* const ostart = (BYTE*) dst;
BYTE* op = ostart;
BYTE* const omax = op + maxDstSize;
BYTE* const olimit = omax-3;
BIT_DStream_t bitD;
FSE_DState_t state1;
FSE_DState_t state2;
/* Init */
CHECK_F(BIT_initDStream(&bitD, cSrc, cSrcSize));
FSE_initDState(&state1, &bitD, dt);
FSE_initDState(&state2, &bitD, dt);
#define FSE_GETSYMBOL(statePtr) fast ? FSE_decodeSymbolFast(statePtr, &bitD) : FSE_decodeSymbol(statePtr, &bitD)
/* 4 symbols per loop */
for ( ; (BIT_reloadDStream(&bitD)==BIT_DStream_unfinished) & (op<olimit) ; op+=4) {
op[0] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[1] = FSE_GETSYMBOL(&state2);
if (FSE_MAX_TABLELOG*4+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
{ if (BIT_reloadDStream(&bitD) > BIT_DStream_unfinished) { op+=2; break; } }
op[2] = FSE_GETSYMBOL(&state1);
if (FSE_MAX_TABLELOG*2+7 > sizeof(bitD.bitContainer)*8) /* This test must be static */
BIT_reloadDStream(&bitD);
op[3] = FSE_GETSYMBOL(&state2);
}
/* tail */
/* note : BIT_reloadDStream(&bitD) >= FSE_DStream_partiallyFilled; Ends at exactly BIT_DStream_completed */
while (1) {
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSE_GETSYMBOL(&state1);
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
*op++ = FSE_GETSYMBOL(&state2);
break;
}
if (op>(omax-2)) return ERROR(dstSize_tooSmall);
*op++ = FSE_GETSYMBOL(&state2);
if (BIT_reloadDStream(&bitD)==BIT_DStream_overflow) {
*op++ = FSE_GETSYMBOL(&state1);
break;
} }
assert(op >= ostart);
return (size_t)(op-ostart);
}
typedef struct {
short ncount[FSE_MAX_SYMBOL_VALUE + 1];
} FSE_DecompressWksp;
FORCE_INLINE_TEMPLATE size_t FSE_decompress_wksp_body(
void* dst, size_t dstCapacity,
const void* cSrc, size_t cSrcSize,
unsigned maxLog, void* workSpace, size_t wkspSize,
int bmi2)
{
const BYTE* const istart = (const BYTE*)cSrc;
const BYTE* ip = istart;
unsigned tableLog;
unsigned maxSymbolValue = FSE_MAX_SYMBOL_VALUE;
FSE_DecompressWksp* const wksp = (FSE_DecompressWksp*)workSpace;
size_t const dtablePos = sizeof(FSE_DecompressWksp) / sizeof(FSE_DTable);
FSE_DTable* const dtable = (FSE_DTable*)workSpace + dtablePos;
FSE_STATIC_ASSERT((FSE_MAX_SYMBOL_VALUE + 1) % 2 == 0);
if (wkspSize < sizeof(*wksp)) return ERROR(GENERIC);
/* correct offset to dtable depends on this property */
FSE_STATIC_ASSERT(sizeof(FSE_DecompressWksp) % sizeof(FSE_DTable) == 0);
/* normal FSE decoding mode */
{ size_t const NCountLength =
FSE_readNCount_bmi2(wksp->ncount, &maxSymbolValue, &tableLog, istart, cSrcSize, bmi2);
if (FSE_isError(NCountLength)) return NCountLength;
if (tableLog > maxLog) return ERROR(tableLog_tooLarge);
assert(NCountLength <= cSrcSize);
ip += NCountLength;
cSrcSize -= NCountLength;
}
if (FSE_DECOMPRESS_WKSP_SIZE(tableLog, maxSymbolValue) > wkspSize) return ERROR(tableLog_tooLarge);
assert(sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog) <= wkspSize);
workSpace = (BYTE*)workSpace + sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);
wkspSize -= sizeof(*wksp) + FSE_DTABLE_SIZE(tableLog);
CHECK_F( FSE_buildDTable_internal(dtable, wksp->ncount, maxSymbolValue, tableLog, workSpace, wkspSize) );
{
const void* ptr = dtable;
const FSE_DTableHeader* DTableH = (const FSE_DTableHeader*)ptr;
const U32 fastMode = DTableH->fastMode;
/* select fast mode (static) */
if (fastMode) return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, dtable, 1);
return FSE_decompress_usingDTable_generic(dst, dstCapacity, ip, cSrcSize, dtable, 0);
}
}
/* Avoids the FORCE_INLINE of the _body() function. */
static size_t FSE_decompress_wksp_body_default(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{
return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 0);
}
#if DYNAMIC_BMI2
BMI2_TARGET_ATTRIBUTE static size_t FSE_decompress_wksp_body_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize)
{
return FSE_decompress_wksp_body(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize, 1);
}
#endif
size_t FSE_decompress_wksp_bmi2(void* dst, size_t dstCapacity, const void* cSrc, size_t cSrcSize, unsigned maxLog, void* workSpace, size_t wkspSize, int bmi2)
{
#if DYNAMIC_BMI2
if (bmi2) {
return FSE_decompress_wksp_body_bmi2(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
}
#endif
(void)bmi2;
return FSE_decompress_wksp_body_default(dst, dstCapacity, cSrc, cSrcSize, maxLog, workSpace, wkspSize);
}
#endif /* FSE_COMMONDEFS_ONLY */
#endif /* USE_EXTERNAL_ZSTD */

184
vendor/github.com/DataDog/zstd/hist.c generated vendored Normal file
View File

@ -0,0 +1,184 @@
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* hist : Histogram functions
* part of Finite State Entropy project
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* --- dependencies --- */
#include "mem.h" /* U32, BYTE, etc. */
#include "debug.h" /* assert, DEBUGLOG */
#include "error_private.h" /* ERROR */
#include "hist.h"
/* --- Error management --- */
unsigned HIST_isError(size_t code) { return ERR_isError(code); }
/*-**************************************************************
* Histogram functions
****************************************************************/
unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
{
const BYTE* ip = (const BYTE*)src;
const BYTE* const end = ip + srcSize;
unsigned maxSymbolValue = *maxSymbolValuePtr;
unsigned largestCount=0;
ZSTD_memset(count, 0, (maxSymbolValue+1) * sizeof(*count));
if (srcSize==0) { *maxSymbolValuePtr = 0; return 0; }
while (ip<end) {
assert(*ip <= maxSymbolValue);
count[*ip++]++;
}
while (!count[maxSymbolValue]) maxSymbolValue--;
*maxSymbolValuePtr = maxSymbolValue;
{ U32 s;
for (s=0; s<=maxSymbolValue; s++)
if (count[s] > largestCount) largestCount = count[s];
}
return largestCount;
}
typedef enum { trustInput, checkMaxSymbolValue } HIST_checkInput_e;
/* HIST_count_parallel_wksp() :
* store histogram into 4 intermediate tables, recombined at the end.
* this design makes better use of OoO cpus,
* and is noticeably faster when some values are heavily repeated.
* But it needs some additional workspace for intermediate tables.
* `workSpace` must be a U32 table of size >= HIST_WKSP_SIZE_U32.
* @return : largest histogram frequency,
* or an error code (notably when histogram's alphabet is larger than *maxSymbolValuePtr) */
static size_t HIST_count_parallel_wksp(
unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
HIST_checkInput_e check,
U32* const workSpace)
{
const BYTE* ip = (const BYTE*)source;
const BYTE* const iend = ip+sourceSize;
size_t const countSize = (*maxSymbolValuePtr + 1) * sizeof(*count);
unsigned max=0;
U32* const Counting1 = workSpace;
U32* const Counting2 = Counting1 + 256;
U32* const Counting3 = Counting2 + 256;
U32* const Counting4 = Counting3 + 256;
/* safety checks */
assert(*maxSymbolValuePtr <= 255);
if (!sourceSize) {
ZSTD_memset(count, 0, countSize);
*maxSymbolValuePtr = 0;
return 0;
}
ZSTD_memset(workSpace, 0, 4*256*sizeof(unsigned));
/* by stripes of 16 bytes */
{ U32 cached = MEM_read32(ip); ip += 4;
while (ip < iend-15) {
U32 c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
c = cached; cached = MEM_read32(ip); ip += 4;
Counting1[(BYTE) c ]++;
Counting2[(BYTE)(c>>8) ]++;
Counting3[(BYTE)(c>>16)]++;
Counting4[ c>>24 ]++;
}
ip-=4;
}
/* finish last symbols */
while (ip<iend) Counting1[*ip++]++;
{ U32 s;
for (s=0; s<256; s++) {
Counting1[s] += Counting2[s] + Counting3[s] + Counting4[s];
if (Counting1[s] > max) max = Counting1[s];
} }
{ unsigned maxSymbolValue = 255;
while (!Counting1[maxSymbolValue]) maxSymbolValue--;
if (check && maxSymbolValue > *maxSymbolValuePtr) return ERROR(maxSymbolValue_tooSmall);
*maxSymbolValuePtr = maxSymbolValue;
ZSTD_memmove(count, Counting1, countSize); /* in case count & Counting1 are overlapping */
}
return (size_t)max;
}
/* HIST_countFast_wksp() :
* Same as HIST_countFast(), but using an externally provided scratch buffer.
* `workSpace` is a writable buffer which must be 4-bytes aligned,
* `workSpaceSize` must be >= HIST_WKSP_SIZE
*/
size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
void* workSpace, size_t workSpaceSize)
{
if (sourceSize < 1500) /* heuristic threshold */
return HIST_count_simple(count, maxSymbolValuePtr, source, sourceSize);
if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall);
return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, trustInput, (U32*)workSpace);
}
/* HIST_count_wksp() :
* Same as HIST_count(), but using an externally provided scratch buffer.
* `workSpace` size must be table of >= HIST_WKSP_SIZE_U32 unsigned */
size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize,
void* workSpace, size_t workSpaceSize)
{
if ((size_t)workSpace & 3) return ERROR(GENERIC); /* must be aligned on 4-bytes boundaries */
if (workSpaceSize < HIST_WKSP_SIZE) return ERROR(workSpace_tooSmall);
if (*maxSymbolValuePtr < 255)
return HIST_count_parallel_wksp(count, maxSymbolValuePtr, source, sourceSize, checkMaxSymbolValue, (U32*)workSpace);
*maxSymbolValuePtr = 255;
return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, workSpace, workSpaceSize);
}
#ifndef ZSTD_NO_UNUSED_FUNCTIONS
/* fast variant (unsafe : won't check if src contains values beyond count[] limit) */
size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
const void* source, size_t sourceSize)
{
unsigned tmpCounters[HIST_WKSP_SIZE_U32];
return HIST_countFast_wksp(count, maxSymbolValuePtr, source, sourceSize, tmpCounters, sizeof(tmpCounters));
}
size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize)
{
unsigned tmpCounters[HIST_WKSP_SIZE_U32];
return HIST_count_wksp(count, maxSymbolValuePtr, src, srcSize, tmpCounters, sizeof(tmpCounters));
}
#endif
#endif /* USE_EXTERNAL_ZSTD */

78
vendor/github.com/DataDog/zstd/hist.h generated vendored Normal file
View File

@ -0,0 +1,78 @@
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* hist : Histogram functions
* part of Finite State Entropy project
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - FSE source repository : https://github.com/Cyan4973/FiniteStateEntropy
* - Public forum : https://groups.google.com/forum/#!forum/lz4c
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
/* --- dependencies --- */
#include "zstd_deps.h" /* size_t */
/* --- simple histogram functions --- */
/*! HIST_count():
* Provides the precise count of each byte within a table 'count'.
* 'count' is a table of unsigned int, of minimum size (*maxSymbolValuePtr+1).
* Updates *maxSymbolValuePtr with actual largest symbol value detected.
* @return : count of the most frequent symbol (which isn't identified).
* or an error code, which can be tested using HIST_isError().
* note : if return == srcSize, there is only one symbol.
*/
size_t HIST_count(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);
unsigned HIST_isError(size_t code); /**< tells if a return value is an error code */
/* --- advanced histogram functions --- */
#define HIST_WKSP_SIZE_U32 1024
#define HIST_WKSP_SIZE (HIST_WKSP_SIZE_U32 * sizeof(unsigned))
/** HIST_count_wksp() :
* Same as HIST_count(), but using an externally provided scratch buffer.
* Benefit is this function will use very little stack space.
* `workSpace` is a writable buffer which must be 4-bytes aligned,
* `workSpaceSize` must be >= HIST_WKSP_SIZE
*/
size_t HIST_count_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize,
void* workSpace, size_t workSpaceSize);
/** HIST_countFast() :
* same as HIST_count(), but blindly trusts that all byte values within src are <= *maxSymbolValuePtr.
* This function is unsafe, and will segfault if any value within `src` is `> *maxSymbolValuePtr`
*/
size_t HIST_countFast(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);
/** HIST_countFast_wksp() :
* Same as HIST_countFast(), but using an externally provided scratch buffer.
* `workSpace` is a writable buffer which must be 4-bytes aligned,
* `workSpaceSize` must be >= HIST_WKSP_SIZE
*/
size_t HIST_countFast_wksp(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize,
void* workSpace, size_t workSpaceSize);
/*! HIST_count_simple() :
* Same as HIST_countFast(), this function is unsafe,
* and will segfault if any value within `src` is `> *maxSymbolValuePtr`.
* It is also a bit slower for large inputs.
* However, it does not need any additional memory (not even on stack).
* @return : count of the most frequent symbol.
* Note this function doesn't produce any error (i.e. it must succeed).
*/
unsigned HIST_count_simple(unsigned* count, unsigned* maxSymbolValuePtr,
const void* src, size_t srcSize);
#endif /* USE_EXTERNAL_ZSTD */

289
vendor/github.com/DataDog/zstd/huf.h generated vendored Normal file
View File

@ -0,0 +1,289 @@
#ifndef USE_EXTERNAL_ZSTD
/* ******************************************************************
* huff0 huffman codec,
* part of Finite State Entropy library
* Copyright (c) Meta Platforms, Inc. and affiliates.
*
* You can contact the author at :
* - Source repository : https://github.com/Cyan4973/FiniteStateEntropy
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
****************************************************************** */
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef HUF_H_298734234
#define HUF_H_298734234
/* *** Dependencies *** */
#include "zstd_deps.h" /* size_t */
#include "mem.h" /* U32 */
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
/* *** Tool functions *** */
#define HUF_BLOCKSIZE_MAX (128 * 1024) /**< maximum input size for a single block compressed with HUF_compress */
size_t HUF_compressBound(size_t size); /**< maximum compressed size (worst case) */
/* Error Management */
unsigned HUF_isError(size_t code); /**< tells if a return value is an error code */
const char* HUF_getErrorName(size_t code); /**< provides error code string (useful for debugging) */
#define HUF_WORKSPACE_SIZE ((8 << 10) + 512 /* sorting scratch space */)
#define HUF_WORKSPACE_SIZE_U64 (HUF_WORKSPACE_SIZE / sizeof(U64))
/* *** Constants *** */
#define HUF_TABLELOG_MAX 12 /* max runtime value of tableLog (due to static allocation); can be modified up to HUF_TABLELOG_ABSOLUTEMAX */
#define HUF_TABLELOG_DEFAULT 11 /* default tableLog value when none specified */
#define HUF_SYMBOLVALUE_MAX 255
#define HUF_TABLELOG_ABSOLUTEMAX 12 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
#if (HUF_TABLELOG_MAX > HUF_TABLELOG_ABSOLUTEMAX)
# error "HUF_TABLELOG_MAX is too large !"
#endif
/* ****************************************
* Static allocation
******************************************/
/* HUF buffer bounds */
#define HUF_CTABLEBOUND 129
#define HUF_BLOCKBOUND(size) (size + (size>>8) + 8) /* only true when incompressible is pre-filtered with fast heuristic */
#define HUF_COMPRESSBOUND(size) (HUF_CTABLEBOUND + HUF_BLOCKBOUND(size)) /* Macro version, useful for static allocation */
/* static allocation of HUF's Compression Table */
/* this is a private definition, just exposed for allocation and strict aliasing purpose. never EVER access its members directly */
typedef size_t HUF_CElt; /* consider it an incomplete type */
#define HUF_CTABLE_SIZE_ST(maxSymbolValue) ((maxSymbolValue)+2) /* Use tables of size_t, for proper alignment */
#define HUF_CTABLE_SIZE(maxSymbolValue) (HUF_CTABLE_SIZE_ST(maxSymbolValue) * sizeof(size_t))
#define HUF_CREATE_STATIC_CTABLE(name, maxSymbolValue) \
HUF_CElt name[HUF_CTABLE_SIZE_ST(maxSymbolValue)] /* no final ; */
/* static allocation of HUF's DTable */
typedef U32 HUF_DTable;
#define HUF_DTABLE_SIZE(maxTableLog) (1 + (1<<(maxTableLog)))
#define HUF_CREATE_STATIC_DTABLEX1(DTable, maxTableLog) \
HUF_DTable DTable[HUF_DTABLE_SIZE((maxTableLog)-1)] = { ((U32)((maxTableLog)-1) * 0x01000001) }
#define HUF_CREATE_STATIC_DTABLEX2(DTable, maxTableLog) \
HUF_DTable DTable[HUF_DTABLE_SIZE(maxTableLog)] = { ((U32)(maxTableLog) * 0x01000001) }
/* ****************************************
* Advanced decompression functions
******************************************/
/**
* Huffman flags bitset.
* For all flags, 0 is the default value.
*/
typedef enum {
/**
* If compiled with DYNAMIC_BMI2: Set flag only if the CPU supports BMI2 at runtime.
* Otherwise: Ignored.
*/
HUF_flags_bmi2 = (1 << 0),
/**
* If set: Test possible table depths to find the one that produces the smallest header + encoded size.
* If unset: Use heuristic to find the table depth.
*/
HUF_flags_optimalDepth = (1 << 1),
/**
* If set: If the previous table can encode the input, always reuse the previous table.
* If unset: If the previous table can encode the input, reuse the previous table if it results in a smaller output.
*/
HUF_flags_preferRepeat = (1 << 2),
/**
* If set: Sample the input and check if the sample is uncompressible, if it is then don't attempt to compress.
* If unset: Always histogram the entire input.
*/
HUF_flags_suspectUncompressible = (1 << 3),
/**
* If set: Don't use assembly implementations
* If unset: Allow using assembly implementations
*/
HUF_flags_disableAsm = (1 << 4),
/**
* If set: Don't use the fast decoding loop, always use the fallback decoding loop.
* If unset: Use the fast decoding loop when possible.
*/
HUF_flags_disableFast = (1 << 5)
} HUF_flags_e;
/* ****************************************
* HUF detailed API
* ****************************************/
#define HUF_OPTIMAL_DEPTH_THRESHOLD ZSTD_btultra
/*! HUF_compress() does the following:
* 1. count symbol occurrence from source[] into table count[] using FSE_count() (exposed within "fse.h")
* 2. (optional) refine tableLog using HUF_optimalTableLog()
* 3. build Huffman table from count using HUF_buildCTable()
* 4. save Huffman table to memory buffer using HUF_writeCTable()
* 5. encode the data stream using HUF_compress4X_usingCTable()
*
* The following API allows targeting specific sub-functions for advanced tasks.
* For example, it's possible to compress several blocks using the same 'CTable',
* or to save and regenerate 'CTable' using external methods.
*/
unsigned HUF_minTableLog(unsigned symbolCardinality);
unsigned HUF_cardinality(const unsigned* count, unsigned maxSymbolValue);
unsigned HUF_optimalTableLog(unsigned maxTableLog, size_t srcSize, unsigned maxSymbolValue, void* workSpace,
size_t wkspSize, HUF_CElt* table, const unsigned* count, int flags); /* table is used as scratch space for building and testing tables, not a return value */
size_t HUF_writeCTable_wksp(void* dst, size_t maxDstSize, const HUF_CElt* CTable, unsigned maxSymbolValue, unsigned huffLog, void* workspace, size_t workspaceSize);
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags);
size_t HUF_estimateCompressedSize(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
int HUF_validateCTable(const HUF_CElt* CTable, const unsigned* count, unsigned maxSymbolValue);
typedef enum {
HUF_repeat_none, /**< Cannot use the previous table */
HUF_repeat_check, /**< Can use the previous table but it must be checked. Note : The previous table must have been constructed by HUF_compress{1, 4}X_repeat */
HUF_repeat_valid /**< Can use the previous table and it is assumed to be valid */
} HUF_repeat;
/** HUF_compress4X_repeat() :
* Same as HUF_compress4X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid.
* If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
size_t HUF_compress4X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
HUF_CElt* hufTable, HUF_repeat* repeat, int flags);
/** HUF_buildCTable_wksp() :
* Same as HUF_buildCTable(), but using externally allocated scratch buffer.
* `workSpace` must be aligned on 4-bytes boundaries, and its size must be >= HUF_CTABLE_WORKSPACE_SIZE.
*/
#define HUF_CTABLE_WORKSPACE_SIZE_U32 ((4 * (HUF_SYMBOLVALUE_MAX + 1)) + 192)
#define HUF_CTABLE_WORKSPACE_SIZE (HUF_CTABLE_WORKSPACE_SIZE_U32 * sizeof(unsigned))
size_t HUF_buildCTable_wksp (HUF_CElt* tree,
const unsigned* count, U32 maxSymbolValue, U32 maxNbBits,
void* workSpace, size_t wkspSize);
/*! HUF_readStats() :
* Read compact Huffman tree, saved by HUF_writeCTable().
* `huffWeight` is destination buffer.
* @return : size read from `src` , or an error Code .
* Note : Needed by HUF_readCTable() and HUF_readDTableXn() . */
size_t HUF_readStats(BYTE* huffWeight, size_t hwSize,
U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize);
/*! HUF_readStats_wksp() :
* Same as HUF_readStats() but takes an external workspace which must be
* 4-byte aligned and its size must be >= HUF_READ_STATS_WORKSPACE_SIZE.
* If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
*/
#define HUF_READ_STATS_WORKSPACE_SIZE_U32 FSE_DECOMPRESS_WKSP_SIZE_U32(6, HUF_TABLELOG_MAX-1)
#define HUF_READ_STATS_WORKSPACE_SIZE (HUF_READ_STATS_WORKSPACE_SIZE_U32 * sizeof(unsigned))
size_t HUF_readStats_wksp(BYTE* huffWeight, size_t hwSize,
U32* rankStats, U32* nbSymbolsPtr, U32* tableLogPtr,
const void* src, size_t srcSize,
void* workspace, size_t wkspSize,
int flags);
/** HUF_readCTable() :
* Loading a CTable saved with HUF_writeCTable() */
size_t HUF_readCTable (HUF_CElt* CTable, unsigned* maxSymbolValuePtr, const void* src, size_t srcSize, unsigned *hasZeroWeights);
/** HUF_getNbBitsFromCTable() :
* Read nbBits from CTable symbolTable, for symbol `symbolValue` presumed <= HUF_SYMBOLVALUE_MAX
* Note 1 : If symbolValue > HUF_readCTableHeader(symbolTable).maxSymbolValue, returns 0
* Note 2 : is not inlined, as HUF_CElt definition is private
*/
U32 HUF_getNbBitsFromCTable(const HUF_CElt* symbolTable, U32 symbolValue);
typedef struct {
BYTE tableLog;
BYTE maxSymbolValue;
BYTE unused[sizeof(size_t) - 2];
} HUF_CTableHeader;
/** HUF_readCTableHeader() :
* @returns The header from the CTable specifying the tableLog and the maxSymbolValue.
*/
HUF_CTableHeader HUF_readCTableHeader(HUF_CElt const* ctable);
/*
* HUF_decompress() does the following:
* 1. select the decompression algorithm (X1, X2) based on pre-computed heuristics
* 2. build Huffman table from save, using HUF_readDTableX?()
* 3. decode 1 or 4 segments in parallel using HUF_decompress?X?_usingDTable()
*/
/** HUF_selectDecoder() :
* Tells which decoder is likely to decode faster,
* based on a set of pre-computed metrics.
* @return : 0==HUF_decompress4X1, 1==HUF_decompress4X2 .
* Assumption : 0 < dstSize <= 128 KB */
U32 HUF_selectDecoder (size_t dstSize, size_t cSrcSize);
/**
* The minimum workspace size for the `workSpace` used in
* HUF_readDTableX1_wksp() and HUF_readDTableX2_wksp().
*
* The space used depends on HUF_TABLELOG_MAX, ranging from ~1500 bytes when
* HUF_TABLE_LOG_MAX=12 to ~1850 bytes when HUF_TABLE_LOG_MAX=15.
* Buffer overflow errors may potentially occur if code modifications result in
* a required workspace size greater than that specified in the following
* macro.
*/
#define HUF_DECOMPRESS_WORKSPACE_SIZE ((2 << 10) + (1 << 9))
#define HUF_DECOMPRESS_WORKSPACE_SIZE_U32 (HUF_DECOMPRESS_WORKSPACE_SIZE / sizeof(U32))
/* ====================== */
/* single stream variants */
/* ====================== */
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable, int flags);
/** HUF_compress1X_repeat() :
* Same as HUF_compress1X_wksp(), but considers using hufTable if *repeat != HUF_repeat_none.
* If it uses hufTable it does not modify hufTable or repeat.
* If it doesn't, it sets *repeat = HUF_repeat_none, and it sets hufTable to the table used.
* If preferRepeat then the old table will always be used if valid.
* If suspectUncompressible then some sampling checks will be run to potentially skip huffman coding */
size_t HUF_compress1X_repeat(void* dst, size_t dstSize,
const void* src, size_t srcSize,
unsigned maxSymbolValue, unsigned tableLog,
void* workSpace, size_t wkspSize, /**< `workSpace` must be aligned on 4-bytes boundaries, `wkspSize` must be >= HUF_WORKSPACE_SIZE */
HUF_CElt* hufTable, HUF_repeat* repeat, int flags);
size_t HUF_decompress1X_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags);
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_decompress1X2_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags); /**< double-symbols decoder */
#endif
/* BMI2 variants.
* If the CPU has BMI2 support, pass bmi2=1, otherwise pass bmi2=0.
*/
size_t HUF_decompress1X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags);
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_decompress1X1_DCtx_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags);
#endif
size_t HUF_decompress4X_usingDTable(void* dst, size_t maxDstSize, const void* cSrc, size_t cSrcSize, const HUF_DTable* DTable, int flags);
size_t HUF_decompress4X_hufOnly_wksp(HUF_DTable* dctx, void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize, void* workSpace, size_t wkspSize, int flags);
#ifndef HUF_FORCE_DECOMPRESS_X2
size_t HUF_readDTableX1_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags);
#endif
#ifndef HUF_FORCE_DECOMPRESS_X1
size_t HUF_readDTableX2_wksp(HUF_DTable* DTable, const void* src, size_t srcSize, void* workSpace, size_t wkspSize, int flags);
#endif
#endif /* HUF_H_298734234 */
#if defined (__cplusplus)
}
#endif
#endif /* USE_EXTERNAL_ZSTD */

1467
vendor/github.com/DataDog/zstd/huf_compress.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

1947
vendor/github.com/DataDog/zstd/huf_decompress.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

595
vendor/github.com/DataDog/zstd/huf_decompress_amd64.S generated vendored Normal file
View File

@ -0,0 +1,595 @@
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "portability_macros.h"
#if defined(__ELF__) && defined(__GNUC__)
/* Stack marking
* ref: https://wiki.gentoo.org/wiki/Hardened/GNU_stack_quickstart
*/
.section .note.GNU-stack,"",%progbits
#if defined(__aarch64__)
/* Mark that this assembly supports BTI & PAC, because it is empty for aarch64.
* See: https://github.com/facebook/zstd/issues/3841
* See: https://gcc.godbolt.org/z/sqr5T4ffK
* See: https://lore.kernel.org/linux-arm-kernel/20200429211641.9279-8-broonie@kernel.org/
* See: https://reviews.llvm.org/D62609
*/
.pushsection .note.gnu.property, "a"
.p2align 3
.long 4 /* size of the name - "GNU\0" */
.long 0x10 /* size of descriptor */
.long 0x5 /* NT_GNU_PROPERTY_TYPE_0 */
.asciz "GNU"
.long 0xc0000000 /* pr_type - GNU_PROPERTY_AARCH64_FEATURE_1_AND */
.long 4 /* pr_datasz - 4 bytes */
.long 3 /* pr_data - GNU_PROPERTY_AARCH64_FEATURE_1_BTI | GNU_PROPERTY_AARCH64_FEATURE_1_PAC */
.p2align 3 /* pr_padding - bring everything to 8 byte alignment */
.popsection
#endif
#endif
#if ZSTD_ENABLE_ASM_X86_64_BMI2
/* Calling convention:
*
* %rdi contains the first argument: HUF_DecompressAsmArgs*.
* %rbp isn't maintained (no frame pointer).
* %rsp contains the stack pointer that grows down.
* No red-zone is assumed, only addresses >= %rsp are used.
* All register contents are preserved.
*
* TODO: Support Windows calling convention.
*/
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X1_usingDTable_internal_fast_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(HUF_decompress4X2_usingDTable_internal_fast_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X2_usingDTable_internal_fast_asm_loop)
ZSTD_HIDE_ASM_FUNCTION(_HUF_decompress4X1_usingDTable_internal_fast_asm_loop)
.global HUF_decompress4X1_usingDTable_internal_fast_asm_loop
.global HUF_decompress4X2_usingDTable_internal_fast_asm_loop
.global _HUF_decompress4X1_usingDTable_internal_fast_asm_loop
.global _HUF_decompress4X2_usingDTable_internal_fast_asm_loop
.text
/* Sets up register mappings for clarity.
* op[], bits[], dtable & ip[0] each get their own register.
* ip[1,2,3] & olimit alias var[].
* %rax is a scratch register.
*/
#define op0 rsi
#define op1 rbx
#define op2 rcx
#define op3 rdi
#define ip0 r8
#define ip1 r9
#define ip2 r10
#define ip3 r11
#define bits0 rbp
#define bits1 rdx
#define bits2 r12
#define bits3 r13
#define dtable r14
#define olimit r15
/* var[] aliases ip[1,2,3] & olimit
* ip[1,2,3] are saved every iteration.
* olimit is only used in compute_olimit.
*/
#define var0 r15
#define var1 r9
#define var2 r10
#define var3 r11
/* 32-bit var registers */
#define vard0 r15d
#define vard1 r9d
#define vard2 r10d
#define vard3 r11d
/* Calls X(N) for each stream 0, 1, 2, 3. */
#define FOR_EACH_STREAM(X) \
X(0); \
X(1); \
X(2); \
X(3)
/* Calls X(N, idx) for each stream 0, 1, 2, 3. */
#define FOR_EACH_STREAM_WITH_INDEX(X, idx) \
X(0, idx); \
X(1, idx); \
X(2, idx); \
X(3, idx)
/* Define both _HUF_* & HUF_* symbols because MacOS
* C symbols are prefixed with '_' & Linux symbols aren't.
*/
_HUF_decompress4X1_usingDTable_internal_fast_asm_loop:
HUF_decompress4X1_usingDTable_internal_fast_asm_loop:
ZSTD_CET_ENDBRANCH
/* Save all registers - even if they are callee saved for simplicity. */
push %rax
push %rbx
push %rcx
push %rdx
push %rbp
push %rsi
push %rdi
push %r8
push %r9
push %r10
push %r11
push %r12
push %r13
push %r14
push %r15
/* Read HUF_DecompressAsmArgs* args from %rax */
movq %rdi, %rax
movq 0(%rax), %ip0
movq 8(%rax), %ip1
movq 16(%rax), %ip2
movq 24(%rax), %ip3
movq 32(%rax), %op0
movq 40(%rax), %op1
movq 48(%rax), %op2
movq 56(%rax), %op3
movq 64(%rax), %bits0
movq 72(%rax), %bits1
movq 80(%rax), %bits2
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax /* argument */
push 104(%rax) /* ilowest */
push 112(%rax) /* oend */
push %olimit /* olimit space */
subq $24, %rsp
.L_4X1_compute_olimit:
/* Computes how many iterations we can do safely
* %r15, %rax may be clobbered
* rbx, rdx must be saved
* op3 & ip0 mustn't be clobbered
*/
movq %rbx, 0(%rsp)
movq %rdx, 8(%rsp)
movq 32(%rsp), %rax /* rax = oend */
subq %op3, %rax /* rax = oend - op3 */
/* r15 = (oend - op3) / 5 */
movabsq $-3689348814741910323, %rdx
mulq %rdx
movq %rdx, %r15
shrq $2, %r15
movq %ip0, %rax /* rax = ip0 */
movq 40(%rsp), %rdx /* rdx = ilowest */
subq %rdx, %rax /* rax = ip0 - ilowest */
movq %rax, %rbx /* rbx = ip0 - ilowest */
/* rdx = (ip0 - ilowest) / 7 */
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %rbx
shrq %rbx
addq %rbx, %rdx
shrq $2, %rdx
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
/* r15 = r15 * 5 */
leaq (%r15, %r15, 4), %r15
/* olimit = op3 + r15 */
addq %op3, %olimit
movq 8(%rsp), %rdx
movq 0(%rsp), %rbx
/* If (op3 + 20 > olimit) */
movq %op3, %rax /* rax = op3 */
cmpq %rax, %olimit /* op3 == olimit */
je .L_4X1_exit
/* If (ip1 < ip0) go to exit */
cmpq %ip0, %ip1
jb .L_4X1_exit
/* If (ip2 < ip1) go to exit */
cmpq %ip1, %ip2
jb .L_4X1_exit
/* If (ip3 < ip2) go to exit */
cmpq %ip2, %ip3
jb .L_4X1_exit
/* Reads top 11 bits from bits[n]
* Loads dt[bits[n]] into var[n]
*/
#define GET_NEXT_DELT(n) \
movq $53, %var##n; \
shrxq %var##n, %bits##n, %var##n; \
movzwl (%dtable,%var##n,2),%vard##n
/* var[n] must contain the DTable entry computed with GET_NEXT_DELT
* Moves var[n] to %rax
* bits[n] <<= var[n] & 63
* op[n][idx] = %rax >> 8
* %ah is a way to access bits [8, 16) of %rax
*/
#define DECODE_FROM_DELT(n, idx) \
movq %var##n, %rax; \
shlxq %var##n, %bits##n, %bits##n; \
movb %ah, idx(%op##n)
/* Assumes GET_NEXT_DELT has been called.
* Calls DECODE_FROM_DELT then GET_NEXT_DELT
*/
#define DECODE_AND_GET_NEXT(n, idx) \
DECODE_FROM_DELT(n, idx); \
GET_NEXT_DELT(n) \
/* // ctz & nbBytes is stored in bits[n]
* // nbBits is stored in %rax
* ctz = CTZ[bits[n]]
* nbBits = ctz & 7
* nbBytes = ctz >> 3
* op[n] += 5
* ip[n] -= nbBytes
* // Note: x86-64 is little-endian ==> no bswap
* bits[n] = MEM_readST(ip[n]) | 1
* bits[n] <<= nbBits
*/
#define RELOAD_BITS(n) \
bsfq %bits##n, %bits##n; \
movq %bits##n, %rax; \
andq $7, %rax; \
shrq $3, %bits##n; \
leaq 5(%op##n), %op##n; \
subq %bits##n, %ip##n; \
movq (%ip##n), %bits##n; \
orq $1, %bits##n; \
shlx %rax, %bits##n, %bits##n
/* Store clobbered variables on the stack */
movq %olimit, 24(%rsp)
movq %ip1, 0(%rsp)
movq %ip2, 8(%rsp)
movq %ip3, 16(%rsp)
/* Call GET_NEXT_DELT for each stream */
FOR_EACH_STREAM(GET_NEXT_DELT)
.p2align 6
.L_4X1_loop_body:
/* Decode 5 symbols in each of the 4 streams (20 total)
* Must have called GET_NEXT_DELT for each stream
*/
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 0)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 1)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 2)
FOR_EACH_STREAM_WITH_INDEX(DECODE_AND_GET_NEXT, 3)
FOR_EACH_STREAM_WITH_INDEX(DECODE_FROM_DELT, 4)
/* Load ip[1,2,3] from stack (var[] aliases them)
* ip[] is needed for RELOAD_BITS
* Each will be stored back to the stack after RELOAD
*/
movq 0(%rsp), %ip1
movq 8(%rsp), %ip2
movq 16(%rsp), %ip3
/* Reload each stream & fetch the next table entry
* to prepare for the next iteration
*/
RELOAD_BITS(0)
GET_NEXT_DELT(0)
RELOAD_BITS(1)
movq %ip1, 0(%rsp)
GET_NEXT_DELT(1)
RELOAD_BITS(2)
movq %ip2, 8(%rsp)
GET_NEXT_DELT(2)
RELOAD_BITS(3)
movq %ip3, 16(%rsp)
GET_NEXT_DELT(3)
/* If op3 < olimit: continue the loop */
cmp %op3, 24(%rsp)
ja .L_4X1_loop_body
/* Reload ip[1,2,3] from stack */
movq 0(%rsp), %ip1
movq 8(%rsp), %ip2
movq 16(%rsp), %ip3
/* Re-compute olimit */
jmp .L_4X1_compute_olimit
#undef GET_NEXT_DELT
#undef DECODE_FROM_DELT
#undef DECODE
#undef RELOAD_BITS
.L_4X1_exit:
addq $24, %rsp
/* Restore stack (oend & olimit) */
pop %rax /* olimit */
pop %rax /* oend */
pop %rax /* ilowest */
pop %rax /* arg */
/* Save ip / op / bits */
movq %ip0, 0(%rax)
movq %ip1, 8(%rax)
movq %ip2, 16(%rax)
movq %ip3, 24(%rax)
movq %op0, 32(%rax)
movq %op1, 40(%rax)
movq %op2, 48(%rax)
movq %op3, 56(%rax)
movq %bits0, 64(%rax)
movq %bits1, 72(%rax)
movq %bits2, 80(%rax)
movq %bits3, 88(%rax)
/* Restore registers */
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %r10
pop %r9
pop %r8
pop %rdi
pop %rsi
pop %rbp
pop %rdx
pop %rcx
pop %rbx
pop %rax
ret
_HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
HUF_decompress4X2_usingDTable_internal_fast_asm_loop:
ZSTD_CET_ENDBRANCH
/* Save all registers - even if they are callee saved for simplicity. */
push %rax
push %rbx
push %rcx
push %rdx
push %rbp
push %rsi
push %rdi
push %r8
push %r9
push %r10
push %r11
push %r12
push %r13
push %r14
push %r15
movq %rdi, %rax
movq 0(%rax), %ip0
movq 8(%rax), %ip1
movq 16(%rax), %ip2
movq 24(%rax), %ip3
movq 32(%rax), %op0
movq 40(%rax), %op1
movq 48(%rax), %op2
movq 56(%rax), %op3
movq 64(%rax), %bits0
movq 72(%rax), %bits1
movq 80(%rax), %bits2
movq 88(%rax), %bits3
movq 96(%rax), %dtable
push %rax /* argument */
push %rax /* olimit */
push 104(%rax) /* ilowest */
movq 112(%rax), %rax
push %rax /* oend3 */
movq %op3, %rax
push %rax /* oend2 */
movq %op2, %rax
push %rax /* oend1 */
movq %op1, %rax
push %rax /* oend0 */
/* Scratch space */
subq $8, %rsp
.L_4X2_compute_olimit:
/* Computes how many iterations we can do safely
* %r15, %rax may be clobbered
* rdx must be saved
* op[1,2,3,4] & ip0 mustn't be clobbered
*/
movq %rdx, 0(%rsp)
/* We can consume up to 7 input bytes each iteration. */
movq %ip0, %rax /* rax = ip0 */
movq 40(%rsp), %rdx /* rdx = ilowest */
subq %rdx, %rax /* rax = ip0 - ilowest */
movq %rax, %r15 /* r15 = ip0 - ilowest */
/* rdx = rax / 7 */
movabsq $2635249153387078803, %rdx
mulq %rdx
subq %rdx, %r15
shrq %r15
addq %r15, %rdx
shrq $2, %rdx
/* r15 = (ip0 - ilowest) / 7 */
movq %rdx, %r15
/* r15 = min(r15, min(oend0 - op0, oend1 - op1, oend2 - op2, oend3 - op3) / 10) */
movq 8(%rsp), %rax /* rax = oend0 */
subq %op0, %rax /* rax = oend0 - op0 */
movq 16(%rsp), %rdx /* rdx = oend1 */
subq %op1, %rdx /* rdx = oend1 - op1 */
cmpq %rax, %rdx
cmova %rax, %rdx /* rdx = min(%rdx, %rax) */
movq 24(%rsp), %rax /* rax = oend2 */
subq %op2, %rax /* rax = oend2 - op2 */
cmpq %rax, %rdx
cmova %rax, %rdx /* rdx = min(%rdx, %rax) */
movq 32(%rsp), %rax /* rax = oend3 */
subq %op3, %rax /* rax = oend3 - op3 */
cmpq %rax, %rdx
cmova %rax, %rdx /* rdx = min(%rdx, %rax) */
movabsq $-3689348814741910323, %rax
mulq %rdx
shrq $3, %rdx /* rdx = rdx / 10 */
/* r15 = min(%rdx, %r15) */
cmpq %rdx, %r15
cmova %rdx, %r15
/* olimit = op3 + 5 * r15 */
movq %r15, %rax
leaq (%op3, %rax, 4), %olimit
addq %rax, %olimit
movq 0(%rsp), %rdx
/* If (op3 + 10 > olimit) */
movq %op3, %rax /* rax = op3 */
cmpq %rax, %olimit /* op3 == olimit */
je .L_4X2_exit
/* If (ip1 < ip0) go to exit */
cmpq %ip0, %ip1
jb .L_4X2_exit
/* If (ip2 < ip1) go to exit */
cmpq %ip1, %ip2
jb .L_4X2_exit
/* If (ip3 < ip2) go to exit */
cmpq %ip2, %ip3
jb .L_4X2_exit
#define DECODE(n, idx) \
movq %bits##n, %rax; \
shrq $53, %rax; \
movzwl 0(%dtable,%rax,4),%r8d; \
movzbl 2(%dtable,%rax,4),%r15d; \
movzbl 3(%dtable,%rax,4),%eax; \
movw %r8w, (%op##n); \
shlxq %r15, %bits##n, %bits##n; \
addq %rax, %op##n
#define RELOAD_BITS(n) \
bsfq %bits##n, %bits##n; \
movq %bits##n, %rax; \
shrq $3, %bits##n; \
andq $7, %rax; \
subq %bits##n, %ip##n; \
movq (%ip##n), %bits##n; \
orq $1, %bits##n; \
shlxq %rax, %bits##n, %bits##n
movq %olimit, 48(%rsp)
.p2align 6
.L_4X2_loop_body:
/* We clobber r8, so store it on the stack */
movq %r8, 0(%rsp)
/* Decode 5 symbols from each of the 4 streams (20 symbols total). */
FOR_EACH_STREAM_WITH_INDEX(DECODE, 0)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 1)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 2)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 3)
FOR_EACH_STREAM_WITH_INDEX(DECODE, 4)
/* Reload r8 */
movq 0(%rsp), %r8
FOR_EACH_STREAM(RELOAD_BITS)
cmp %op3, 48(%rsp)
ja .L_4X2_loop_body
jmp .L_4X2_compute_olimit
#undef DECODE
#undef RELOAD_BITS
.L_4X2_exit:
addq $8, %rsp
/* Restore stack (oend & olimit) */
pop %rax /* oend0 */
pop %rax /* oend1 */
pop %rax /* oend2 */
pop %rax /* oend3 */
pop %rax /* ilowest */
pop %rax /* olimit */
pop %rax /* arg */
/* Save ip / op / bits */
movq %ip0, 0(%rax)
movq %ip1, 8(%rax)
movq %ip2, 16(%rax)
movq %ip3, 24(%rax)
movq %op0, 32(%rax)
movq %op1, 40(%rax)
movq %op2, 48(%rax)
movq %op3, 56(%rax)
movq %bits0, 64(%rax)
movq %bits1, 72(%rax)
movq %bits2, 80(%rax)
movq %bits3, 88(%rax)
/* Restore registers */
pop %r15
pop %r14
pop %r13
pop %r12
pop %r11
pop %r10
pop %r9
pop %r8
pop %rdi
pop %rsi
pop %rbp
pop %rdx
pop %rcx
pop %rbx
pop %rax
ret
#endif

429
vendor/github.com/DataDog/zstd/mem.h generated vendored Normal file
View File

@ -0,0 +1,429 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef MEM_H_MODULE
#define MEM_H_MODULE
#if defined (__cplusplus)
extern "C" {
#endif
/*-****************************************
* Dependencies
******************************************/
#include <stddef.h> /* size_t, ptrdiff_t */
#include "compiler.h" /* __has_builtin */
#include "debug.h" /* DEBUG_STATIC_ASSERT */
#include "zstd_deps.h" /* ZSTD_memcpy */
/*-****************************************
* Compiler specifics
******************************************/
#if defined(_MSC_VER) /* Visual Studio */
# include <stdlib.h> /* _byteswap_ulong */
# include <intrin.h> /* _byteswap_* */
#endif
/*-**************************************************************
* Basic Types
*****************************************************************/
#if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# if defined(_AIX)
# include <inttypes.h>
# else
# include <stdint.h> /* intptr_t */
# endif
typedef uint8_t BYTE;
typedef uint8_t U8;
typedef int8_t S8;
typedef uint16_t U16;
typedef int16_t S16;
typedef uint32_t U32;
typedef int32_t S32;
typedef uint64_t U64;
typedef int64_t S64;
#else
# include <limits.h>
#if CHAR_BIT != 8
# error "this implementation requires char to be exactly 8-bit type"
#endif
typedef unsigned char BYTE;
typedef unsigned char U8;
typedef signed char S8;
#if USHRT_MAX != 65535
# error "this implementation requires short to be exactly 16-bit type"
#endif
typedef unsigned short U16;
typedef signed short S16;
#if UINT_MAX != 4294967295
# error "this implementation requires int to be exactly 32-bit type"
#endif
typedef unsigned int U32;
typedef signed int S32;
/* note : there are no limits defined for long long type in C90.
* limits exist in C99, however, in such case, <stdint.h> is preferred */
typedef unsigned long long U64;
typedef signed long long S64;
#endif
/*-**************************************************************
* Memory I/O API
*****************************************************************/
/*=== Static platform detection ===*/
MEM_STATIC unsigned MEM_32bits(void);
MEM_STATIC unsigned MEM_64bits(void);
MEM_STATIC unsigned MEM_isLittleEndian(void);
/*=== Native unaligned read/write ===*/
MEM_STATIC U16 MEM_read16(const void* memPtr);
MEM_STATIC U32 MEM_read32(const void* memPtr);
MEM_STATIC U64 MEM_read64(const void* memPtr);
MEM_STATIC size_t MEM_readST(const void* memPtr);
MEM_STATIC void MEM_write16(void* memPtr, U16 value);
MEM_STATIC void MEM_write32(void* memPtr, U32 value);
MEM_STATIC void MEM_write64(void* memPtr, U64 value);
/*=== Little endian unaligned read/write ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr);
MEM_STATIC U32 MEM_readLE24(const void* memPtr);
MEM_STATIC U32 MEM_readLE32(const void* memPtr);
MEM_STATIC U64 MEM_readLE64(const void* memPtr);
MEM_STATIC size_t MEM_readLEST(const void* memPtr);
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val);
MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val);
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32);
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64);
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val);
/*=== Big endian unaligned read/write ===*/
MEM_STATIC U32 MEM_readBE32(const void* memPtr);
MEM_STATIC U64 MEM_readBE64(const void* memPtr);
MEM_STATIC size_t MEM_readBEST(const void* memPtr);
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32);
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64);
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val);
/*=== Byteswap ===*/
MEM_STATIC U32 MEM_swap32(U32 in);
MEM_STATIC U64 MEM_swap64(U64 in);
MEM_STATIC size_t MEM_swapST(size_t in);
/*-**************************************************************
* Memory I/O Implementation
*****************************************************************/
/* MEM_FORCE_MEMORY_ACCESS : For accessing unaligned memory:
* Method 0 : always use `memcpy()`. Safe and portable.
* Method 1 : Use compiler extension to set unaligned access.
* Method 2 : direct access. This method is portable but violate C standard.
* It can generate buggy code on targets depending on alignment.
* Default : method 1 if supported, else method 0
*/
#ifndef MEM_FORCE_MEMORY_ACCESS /* can be defined externally, on command line for example */
# ifdef __GNUC__
# define MEM_FORCE_MEMORY_ACCESS 1
# endif
#endif
MEM_STATIC unsigned MEM_32bits(void) { return sizeof(size_t)==4; }
MEM_STATIC unsigned MEM_64bits(void) { return sizeof(size_t)==8; }
MEM_STATIC unsigned MEM_isLittleEndian(void)
{
#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
return 1;
#elif defined(__BYTE_ORDER__) && defined(__ORDER_BIG_ENDIAN__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
return 0;
#elif defined(__clang__) && __LITTLE_ENDIAN__
return 1;
#elif defined(__clang__) && __BIG_ENDIAN__
return 0;
#elif defined(_MSC_VER) && (_M_AMD64 || _M_IX86)
return 1;
#elif defined(__DMC__) && defined(_M_IX86)
return 1;
#else
const union { U32 u; BYTE c[4]; } one = { 1 }; /* don't use static : performance detrimental */
return one.c[0];
#endif
}
#if defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==2)
/* violates C standard, by lying on structure alignment.
Only use if no other choice to achieve best performance on target platform */
MEM_STATIC U16 MEM_read16(const void* memPtr) { return *(const U16*) memPtr; }
MEM_STATIC U32 MEM_read32(const void* memPtr) { return *(const U32*) memPtr; }
MEM_STATIC U64 MEM_read64(const void* memPtr) { return *(const U64*) memPtr; }
MEM_STATIC size_t MEM_readST(const void* memPtr) { return *(const size_t*) memPtr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(U16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(U32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(U64*)memPtr = value; }
#elif defined(MEM_FORCE_MEMORY_ACCESS) && (MEM_FORCE_MEMORY_ACCESS==1)
typedef __attribute__((aligned(1))) U16 unalign16;
typedef __attribute__((aligned(1))) U32 unalign32;
typedef __attribute__((aligned(1))) U64 unalign64;
typedef __attribute__((aligned(1))) size_t unalignArch;
MEM_STATIC U16 MEM_read16(const void* ptr) { return *(const unalign16*)ptr; }
MEM_STATIC U32 MEM_read32(const void* ptr) { return *(const unalign32*)ptr; }
MEM_STATIC U64 MEM_read64(const void* ptr) { return *(const unalign64*)ptr; }
MEM_STATIC size_t MEM_readST(const void* ptr) { return *(const unalignArch*)ptr; }
MEM_STATIC void MEM_write16(void* memPtr, U16 value) { *(unalign16*)memPtr = value; }
MEM_STATIC void MEM_write32(void* memPtr, U32 value) { *(unalign32*)memPtr = value; }
MEM_STATIC void MEM_write64(void* memPtr, U64 value) { *(unalign64*)memPtr = value; }
#else
/* default method, safe and standard.
can sometimes prove slower */
MEM_STATIC U16 MEM_read16(const void* memPtr)
{
U16 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U32 MEM_read32(const void* memPtr)
{
U32 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC U64 MEM_read64(const void* memPtr)
{
U64 val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC size_t MEM_readST(const void* memPtr)
{
size_t val; ZSTD_memcpy(&val, memPtr, sizeof(val)); return val;
}
MEM_STATIC void MEM_write16(void* memPtr, U16 value)
{
ZSTD_memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write32(void* memPtr, U32 value)
{
ZSTD_memcpy(memPtr, &value, sizeof(value));
}
MEM_STATIC void MEM_write64(void* memPtr, U64 value)
{
ZSTD_memcpy(memPtr, &value, sizeof(value));
}
#endif /* MEM_FORCE_MEMORY_ACCESS */
MEM_STATIC U32 MEM_swap32_fallback(U32 in)
{
return ((in << 24) & 0xff000000 ) |
((in << 8) & 0x00ff0000 ) |
((in >> 8) & 0x0000ff00 ) |
((in >> 24) & 0x000000ff );
}
MEM_STATIC U32 MEM_swap32(U32 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_ulong(in);
#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
|| (defined(__clang__) && __has_builtin(__builtin_bswap32))
return __builtin_bswap32(in);
#else
return MEM_swap32_fallback(in);
#endif
}
MEM_STATIC U64 MEM_swap64_fallback(U64 in)
{
return ((in << 56) & 0xff00000000000000ULL) |
((in << 40) & 0x00ff000000000000ULL) |
((in << 24) & 0x0000ff0000000000ULL) |
((in << 8) & 0x000000ff00000000ULL) |
((in >> 8) & 0x00000000ff000000ULL) |
((in >> 24) & 0x0000000000ff0000ULL) |
((in >> 40) & 0x000000000000ff00ULL) |
((in >> 56) & 0x00000000000000ffULL);
}
MEM_STATIC U64 MEM_swap64(U64 in)
{
#if defined(_MSC_VER) /* Visual Studio */
return _byteswap_uint64(in);
#elif (defined (__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 403)) \
|| (defined(__clang__) && __has_builtin(__builtin_bswap64))
return __builtin_bswap64(in);
#else
return MEM_swap64_fallback(in);
#endif
}
MEM_STATIC size_t MEM_swapST(size_t in)
{
if (MEM_32bits())
return (size_t)MEM_swap32((U32)in);
else
return (size_t)MEM_swap64((U64)in);
}
/*=== Little endian r/w ===*/
MEM_STATIC U16 MEM_readLE16(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read16(memPtr);
else {
const BYTE* p = (const BYTE*)memPtr;
return (U16)(p[0] + (p[1]<<8));
}
}
MEM_STATIC void MEM_writeLE16(void* memPtr, U16 val)
{
if (MEM_isLittleEndian()) {
MEM_write16(memPtr, val);
} else {
BYTE* p = (BYTE*)memPtr;
p[0] = (BYTE)val;
p[1] = (BYTE)(val>>8);
}
}
MEM_STATIC U32 MEM_readLE24(const void* memPtr)
{
return (U32)MEM_readLE16(memPtr) + ((U32)(((const BYTE*)memPtr)[2]) << 16);
}
MEM_STATIC void MEM_writeLE24(void* memPtr, U32 val)
{
MEM_writeLE16(memPtr, (U16)val);
((BYTE*)memPtr)[2] = (BYTE)(val>>16);
}
MEM_STATIC U32 MEM_readLE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read32(memPtr);
else
return MEM_swap32(MEM_read32(memPtr));
}
MEM_STATIC void MEM_writeLE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, val32);
else
MEM_write32(memPtr, MEM_swap32(val32));
}
MEM_STATIC U64 MEM_readLE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_read64(memPtr);
else
return MEM_swap64(MEM_read64(memPtr));
}
MEM_STATIC void MEM_writeLE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, val64);
else
MEM_write64(memPtr, MEM_swap64(val64));
}
MEM_STATIC size_t MEM_readLEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readLE32(memPtr);
else
return (size_t)MEM_readLE64(memPtr);
}
MEM_STATIC void MEM_writeLEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeLE32(memPtr, (U32)val);
else
MEM_writeLE64(memPtr, (U64)val);
}
/*=== Big endian r/w ===*/
MEM_STATIC U32 MEM_readBE32(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap32(MEM_read32(memPtr));
else
return MEM_read32(memPtr);
}
MEM_STATIC void MEM_writeBE32(void* memPtr, U32 val32)
{
if (MEM_isLittleEndian())
MEM_write32(memPtr, MEM_swap32(val32));
else
MEM_write32(memPtr, val32);
}
MEM_STATIC U64 MEM_readBE64(const void* memPtr)
{
if (MEM_isLittleEndian())
return MEM_swap64(MEM_read64(memPtr));
else
return MEM_read64(memPtr);
}
MEM_STATIC void MEM_writeBE64(void* memPtr, U64 val64)
{
if (MEM_isLittleEndian())
MEM_write64(memPtr, MEM_swap64(val64));
else
MEM_write64(memPtr, val64);
}
MEM_STATIC size_t MEM_readBEST(const void* memPtr)
{
if (MEM_32bits())
return (size_t)MEM_readBE32(memPtr);
else
return (size_t)MEM_readBE64(memPtr);
}
MEM_STATIC void MEM_writeBEST(void* memPtr, size_t val)
{
if (MEM_32bits())
MEM_writeBE32(memPtr, (U32)val);
else
MEM_writeBE64(memPtr, (U64)val);
}
/* code only tested on 32 and 64 bits systems */
MEM_STATIC void MEM_check(void) { DEBUG_STATIC_ASSERT((sizeof(size_t)==4) || (sizeof(size_t)==8)); }
#if defined (__cplusplus)
}
#endif
#endif /* MEM_H_MODULE */
#endif /* USE_EXTERNAL_ZSTD */

374
vendor/github.com/DataDog/zstd/pool.c generated vendored Normal file
View File

@ -0,0 +1,374 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ====== Dependencies ======= */
#include "allocations.h" /* ZSTD_customCalloc, ZSTD_customFree */
#include "zstd_deps.h" /* size_t */
#include "debug.h" /* assert */
#include "pool.h"
/* ====== Compiler specifics ====== */
#if defined(_MSC_VER)
# pragma warning(disable : 4204) /* disable: C4204: non-constant aggregate initializer */
#endif
#ifdef ZSTD_MULTITHREAD
#include "threading.h" /* pthread adaptation */
/* A job is a function and an opaque argument */
typedef struct POOL_job_s {
POOL_function function;
void *opaque;
} POOL_job;
struct POOL_ctx_s {
ZSTD_customMem customMem;
/* Keep track of the threads */
ZSTD_pthread_t* threads;
size_t threadCapacity;
size_t threadLimit;
/* The queue is a circular buffer */
POOL_job *queue;
size_t queueHead;
size_t queueTail;
size_t queueSize;
/* The number of threads working on jobs */
size_t numThreadsBusy;
/* Indicates if the queue is empty */
int queueEmpty;
/* The mutex protects the queue */
ZSTD_pthread_mutex_t queueMutex;
/* Condition variable for pushers to wait on when the queue is full */
ZSTD_pthread_cond_t queuePushCond;
/* Condition variables for poppers to wait on when the queue is empty */
ZSTD_pthread_cond_t queuePopCond;
/* Indicates if the queue is shutting down */
int shutdown;
};
/* POOL_thread() :
* Work thread for the thread pool.
* Waits for jobs and executes them.
* @returns : NULL on failure else non-null.
*/
static void* POOL_thread(void* opaque) {
POOL_ctx* const ctx = (POOL_ctx*)opaque;
if (!ctx) { return NULL; }
for (;;) {
/* Lock the mutex and wait for a non-empty queue or until shutdown */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
while ( ctx->queueEmpty
|| (ctx->numThreadsBusy >= ctx->threadLimit) ) {
if (ctx->shutdown) {
/* even if !queueEmpty, (possible if numThreadsBusy >= threadLimit),
* a few threads will be shutdown while !queueEmpty,
* but enough threads will remain active to finish the queue */
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return opaque;
}
ZSTD_pthread_cond_wait(&ctx->queuePopCond, &ctx->queueMutex);
}
/* Pop a job off the queue */
{ POOL_job const job = ctx->queue[ctx->queueHead];
ctx->queueHead = (ctx->queueHead + 1) % ctx->queueSize;
ctx->numThreadsBusy++;
ctx->queueEmpty = (ctx->queueHead == ctx->queueTail);
/* Unlock the mutex, signal a pusher, and run the job */
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
job.function(job.opaque);
/* If the intended queue size was 0, signal after finishing job */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
ctx->numThreadsBusy--;
ZSTD_pthread_cond_signal(&ctx->queuePushCond);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
} /* for (;;) */
assert(0); /* Unreachable */
}
/* ZSTD_createThreadPool() : public access point */
POOL_ctx* ZSTD_createThreadPool(size_t numThreads) {
return POOL_create (numThreads, 0);
}
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
}
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
ZSTD_customMem customMem)
{
POOL_ctx* ctx;
/* Check parameters */
if (!numThreads) { return NULL; }
/* Allocate the context and zero initialize */
ctx = (POOL_ctx*)ZSTD_customCalloc(sizeof(POOL_ctx), customMem);
if (!ctx) { return NULL; }
/* Initialize the job queue.
* It needs one extra space since one space is wasted to differentiate
* empty and full queues.
*/
ctx->queueSize = queueSize + 1;
ctx->queue = (POOL_job*)ZSTD_customCalloc(ctx->queueSize * sizeof(POOL_job), customMem);
ctx->queueHead = 0;
ctx->queueTail = 0;
ctx->numThreadsBusy = 0;
ctx->queueEmpty = 1;
{
int error = 0;
error |= ZSTD_pthread_mutex_init(&ctx->queueMutex, NULL);
error |= ZSTD_pthread_cond_init(&ctx->queuePushCond, NULL);
error |= ZSTD_pthread_cond_init(&ctx->queuePopCond, NULL);
if (error) { POOL_free(ctx); return NULL; }
}
ctx->shutdown = 0;
/* Allocate space for the thread handles */
ctx->threads = (ZSTD_pthread_t*)ZSTD_customCalloc(numThreads * sizeof(ZSTD_pthread_t), customMem);
ctx->threadCapacity = 0;
ctx->customMem = customMem;
/* Check for errors */
if (!ctx->threads || !ctx->queue) { POOL_free(ctx); return NULL; }
/* Initialize the threads */
{ size_t i;
for (i = 0; i < numThreads; ++i) {
if (ZSTD_pthread_create(&ctx->threads[i], NULL, &POOL_thread, ctx)) {
ctx->threadCapacity = i;
POOL_free(ctx);
return NULL;
} }
ctx->threadCapacity = numThreads;
ctx->threadLimit = numThreads;
}
return ctx;
}
/*! POOL_join() :
Shutdown the queue, wake any sleeping threads, and join all of the threads.
*/
static void POOL_join(POOL_ctx* ctx) {
/* Shut down the queue */
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
ctx->shutdown = 1;
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
/* Wake up sleeping threads */
ZSTD_pthread_cond_broadcast(&ctx->queuePushCond);
ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
/* Join all of the threads */
{ size_t i;
for (i = 0; i < ctx->threadCapacity; ++i) {
ZSTD_pthread_join(ctx->threads[i]); /* note : could fail */
} }
}
void POOL_free(POOL_ctx *ctx) {
if (!ctx) { return; }
POOL_join(ctx);
ZSTD_pthread_mutex_destroy(&ctx->queueMutex);
ZSTD_pthread_cond_destroy(&ctx->queuePushCond);
ZSTD_pthread_cond_destroy(&ctx->queuePopCond);
ZSTD_customFree(ctx->queue, ctx->customMem);
ZSTD_customFree(ctx->threads, ctx->customMem);
ZSTD_customFree(ctx, ctx->customMem);
}
/*! POOL_joinJobs() :
* Waits for all queued jobs to finish executing.
*/
void POOL_joinJobs(POOL_ctx* ctx) {
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
while(!ctx->queueEmpty || ctx->numThreadsBusy > 0) {
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
}
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
void ZSTD_freeThreadPool (ZSTD_threadPool* pool) {
POOL_free (pool);
}
size_t POOL_sizeof(const POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
return sizeof(*ctx)
+ ctx->queueSize * sizeof(POOL_job)
+ ctx->threadCapacity * sizeof(ZSTD_pthread_t);
}
/* @return : 0 on success, 1 on error */
static int POOL_resize_internal(POOL_ctx* ctx, size_t numThreads)
{
if (numThreads <= ctx->threadCapacity) {
if (!numThreads) return 1;
ctx->threadLimit = numThreads;
return 0;
}
/* numThreads > threadCapacity */
{ ZSTD_pthread_t* const threadPool = (ZSTD_pthread_t*)ZSTD_customCalloc(numThreads * sizeof(ZSTD_pthread_t), ctx->customMem);
if (!threadPool) return 1;
/* replace existing thread pool */
ZSTD_memcpy(threadPool, ctx->threads, ctx->threadCapacity * sizeof(ZSTD_pthread_t));
ZSTD_customFree(ctx->threads, ctx->customMem);
ctx->threads = threadPool;
/* Initialize additional threads */
{ size_t threadId;
for (threadId = ctx->threadCapacity; threadId < numThreads; ++threadId) {
if (ZSTD_pthread_create(&threadPool[threadId], NULL, &POOL_thread, ctx)) {
ctx->threadCapacity = threadId;
return 1;
} }
} }
/* successfully expanded */
ctx->threadCapacity = numThreads;
ctx->threadLimit = numThreads;
return 0;
}
/* @return : 0 on success, 1 on error */
int POOL_resize(POOL_ctx* ctx, size_t numThreads)
{
int result;
if (ctx==NULL) return 1;
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
result = POOL_resize_internal(ctx, numThreads);
ZSTD_pthread_cond_broadcast(&ctx->queuePopCond);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return result;
}
/**
* Returns 1 if the queue is full and 0 otherwise.
*
* When queueSize is 1 (pool was created with an intended queueSize of 0),
* then a queue is empty if there is a thread free _and_ no job is waiting.
*/
static int isQueueFull(POOL_ctx const* ctx) {
if (ctx->queueSize > 1) {
return ctx->queueHead == ((ctx->queueTail + 1) % ctx->queueSize);
} else {
return (ctx->numThreadsBusy == ctx->threadLimit) ||
!ctx->queueEmpty;
}
}
static void
POOL_add_internal(POOL_ctx* ctx, POOL_function function, void *opaque)
{
POOL_job job;
job.function = function;
job.opaque = opaque;
assert(ctx != NULL);
if (ctx->shutdown) return;
ctx->queueEmpty = 0;
ctx->queue[ctx->queueTail] = job;
ctx->queueTail = (ctx->queueTail + 1) % ctx->queueSize;
ZSTD_pthread_cond_signal(&ctx->queuePopCond);
}
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque)
{
assert(ctx != NULL);
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
/* Wait until there is space in the queue for the new job */
while (isQueueFull(ctx) && (!ctx->shutdown)) {
ZSTD_pthread_cond_wait(&ctx->queuePushCond, &ctx->queueMutex);
}
POOL_add_internal(ctx, function, opaque);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
}
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque)
{
assert(ctx != NULL);
ZSTD_pthread_mutex_lock(&ctx->queueMutex);
if (isQueueFull(ctx)) {
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return 0;
}
POOL_add_internal(ctx, function, opaque);
ZSTD_pthread_mutex_unlock(&ctx->queueMutex);
return 1;
}
#else /* ZSTD_MULTITHREAD not defined */
/* ========================== */
/* No multi-threading support */
/* ========================== */
/* We don't need any data, but if it is empty, malloc() might return NULL. */
struct POOL_ctx_s {
int dummy;
};
static POOL_ctx g_poolCtx;
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize) {
return POOL_create_advanced(numThreads, queueSize, ZSTD_defaultCMem);
}
POOL_ctx*
POOL_create_advanced(size_t numThreads, size_t queueSize, ZSTD_customMem customMem)
{
(void)numThreads;
(void)queueSize;
(void)customMem;
return &g_poolCtx;
}
void POOL_free(POOL_ctx* ctx) {
assert(!ctx || ctx == &g_poolCtx);
(void)ctx;
}
void POOL_joinJobs(POOL_ctx* ctx){
assert(!ctx || ctx == &g_poolCtx);
(void)ctx;
}
int POOL_resize(POOL_ctx* ctx, size_t numThreads) {
(void)ctx; (void)numThreads;
return 0;
}
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
}
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque) {
(void)ctx;
function(opaque);
return 1;
}
size_t POOL_sizeof(const POOL_ctx* ctx) {
if (ctx==NULL) return 0; /* supports sizeof NULL */
assert(ctx == &g_poolCtx);
return sizeof(*ctx);
}
#endif /* ZSTD_MULTITHREAD */
#endif /* USE_EXTERNAL_ZSTD */

93
vendor/github.com/DataDog/zstd/pool.h generated vendored Normal file
View File

@ -0,0 +1,93 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef POOL_H
#define POOL_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_deps.h"
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_customMem */
#include "zstd.h"
typedef struct POOL_ctx_s POOL_ctx;
/*! POOL_create() :
* Create a thread pool with at most `numThreads` threads.
* `numThreads` must be at least 1.
* The maximum number of queued jobs before blocking is `queueSize`.
* @return : POOL_ctx pointer on success, else NULL.
*/
POOL_ctx* POOL_create(size_t numThreads, size_t queueSize);
POOL_ctx* POOL_create_advanced(size_t numThreads, size_t queueSize,
ZSTD_customMem customMem);
/*! POOL_free() :
* Free a thread pool returned by POOL_create().
*/
void POOL_free(POOL_ctx* ctx);
/*! POOL_joinJobs() :
* Waits for all queued jobs to finish executing.
*/
void POOL_joinJobs(POOL_ctx* ctx);
/*! POOL_resize() :
* Expands or shrinks pool's number of threads.
* This is more efficient than releasing + creating a new context,
* since it tries to preserve and reuse existing threads.
* `numThreads` must be at least 1.
* @return : 0 when resize was successful,
* !0 (typically 1) if there is an error.
* note : only numThreads can be resized, queueSize remains unchanged.
*/
int POOL_resize(POOL_ctx* ctx, size_t numThreads);
/*! POOL_sizeof() :
* @return threadpool memory usage
* note : compatible with NULL (returns 0 in this case)
*/
size_t POOL_sizeof(const POOL_ctx* ctx);
/*! POOL_function :
* The function type that can be added to a thread pool.
*/
typedef void (*POOL_function)(void*);
/*! POOL_add() :
* Add the job `function(opaque)` to the thread pool. `ctx` must be valid.
* Possibly blocks until there is room in the queue.
* Note : The function may be executed asynchronously,
* therefore, `opaque` must live until function has been completed.
*/
void POOL_add(POOL_ctx* ctx, POOL_function function, void* opaque);
/*! POOL_tryAdd() :
* Add the job `function(opaque)` to thread pool _if_ a queue slot is available.
* Returns immediately even if not (does not block).
* @return : 1 if successful, 0 if not.
*/
int POOL_tryAdd(POOL_ctx* ctx, POOL_function function, void* opaque);
#if defined (__cplusplus)
}
#endif
#endif
#endif /* USE_EXTERNAL_ZSTD */

161
vendor/github.com/DataDog/zstd/portability_macros.h generated vendored Normal file
View File

@ -0,0 +1,161 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_PORTABILITY_MACROS_H
#define ZSTD_PORTABILITY_MACROS_H
/**
* This header file contains macro definitions to support portability.
* This header is shared between C and ASM code, so it MUST only
* contain macro definitions. It MUST not contain any C code.
*
* This header ONLY defines macros to detect platforms/feature support.
*
*/
/* compat. with non-clang compilers */
#ifndef __has_attribute
#define __has_attribute(x) 0
#endif
/* compat. with non-clang compilers */
#ifndef __has_builtin
# define __has_builtin(x) 0
#endif
/* compat. with non-clang compilers */
#ifndef __has_feature
# define __has_feature(x) 0
#endif
/* detects whether we are being compiled under msan */
#ifndef ZSTD_MEMORY_SANITIZER
# if __has_feature(memory_sanitizer)
# define ZSTD_MEMORY_SANITIZER 1
# else
# define ZSTD_MEMORY_SANITIZER 0
# endif
#endif
/* detects whether we are being compiled under asan */
#ifndef ZSTD_ADDRESS_SANITIZER
# if __has_feature(address_sanitizer)
# define ZSTD_ADDRESS_SANITIZER 1
# elif defined(__SANITIZE_ADDRESS__)
# define ZSTD_ADDRESS_SANITIZER 1
# else
# define ZSTD_ADDRESS_SANITIZER 0
# endif
#endif
/* detects whether we are being compiled under dfsan */
#ifndef ZSTD_DATAFLOW_SANITIZER
# if __has_feature(dataflow_sanitizer)
# define ZSTD_DATAFLOW_SANITIZER 1
# else
# define ZSTD_DATAFLOW_SANITIZER 0
# endif
#endif
/* Mark the internal assembly functions as hidden */
#ifdef __ELF__
# define ZSTD_HIDE_ASM_FUNCTION(func) .hidden func
#elif defined(__APPLE__)
# define ZSTD_HIDE_ASM_FUNCTION(func) .private_extern func
#else
# define ZSTD_HIDE_ASM_FUNCTION(func)
#endif
/* Enable runtime BMI2 dispatch based on the CPU.
* Enabled for clang & gcc >=4.8 on x86 when BMI2 isn't enabled by default.
*/
#ifndef DYNAMIC_BMI2
#if ((defined(__clang__) && __has_attribute(__target__)) \
|| (defined(__GNUC__) \
&& (__GNUC__ >= 5 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)))) \
&& (defined(__x86_64__) || defined(_M_X64)) \
&& !defined(__BMI2__)
# define DYNAMIC_BMI2 1
#else
# define DYNAMIC_BMI2 0
#endif
#endif
/**
* Only enable assembly for GNUC compatible compilers,
* because other platforms may not support GAS assembly syntax.
*
* Only enable assembly for Linux / MacOS, other platforms may
* work, but they haven't been tested. This could likely be
* extended to BSD systems.
*
* Disable assembly when MSAN is enabled, because MSAN requires
* 100% of code to be instrumented to work.
*/
#if defined(__GNUC__)
# if defined(__linux__) || defined(__linux) || defined(__APPLE__)
# if ZSTD_MEMORY_SANITIZER
# define ZSTD_ASM_SUPPORTED 0
# elif ZSTD_DATAFLOW_SANITIZER
# define ZSTD_ASM_SUPPORTED 0
# else
# define ZSTD_ASM_SUPPORTED 1
# endif
# else
# define ZSTD_ASM_SUPPORTED 0
# endif
#else
# define ZSTD_ASM_SUPPORTED 0
#endif
/**
* Determines whether we should enable assembly for x86-64
* with BMI2.
*
* Enable if all of the following conditions hold:
* - ASM hasn't been explicitly disabled by defining ZSTD_DISABLE_ASM
* - Assembly is supported
* - We are compiling for x86-64 and either:
* - DYNAMIC_BMI2 is enabled
* - BMI2 is supported at compile time
*/
#if !defined(ZSTD_DISABLE_ASM) && \
ZSTD_ASM_SUPPORTED && \
defined(__x86_64__) && \
(DYNAMIC_BMI2 || defined(__BMI2__))
# define ZSTD_ENABLE_ASM_X86_64_BMI2 1
#else
# define ZSTD_ENABLE_ASM_X86_64_BMI2 0
#endif
/*
* For x86 ELF targets, add .note.gnu.property section for Intel CET in
* assembly sources when CET is enabled.
*
* Additionally, any function that may be called indirectly must begin
* with ZSTD_CET_ENDBRANCH.
*/
#if defined(__ELF__) && (defined(__x86_64__) || defined(__i386__)) \
&& defined(__has_include)
# if __has_include(<cet.h>)
# include <cet.h>
# define ZSTD_CET_ENDBRANCH _CET_ENDBR
# endif
#endif
#ifndef ZSTD_CET_ENDBRANCH
# define ZSTD_CET_ENDBRANCH
#endif
#endif /* ZSTD_PORTABILITY_MACROS_H */
#endif /* USE_EXTERNAL_ZSTD */

185
vendor/github.com/DataDog/zstd/threading.c generated vendored Normal file
View File

@ -0,0 +1,185 @@
#ifndef USE_EXTERNAL_ZSTD
/**
* Copyright (c) 2016 Tino Reichardt
* All rights reserved.
*
* You can contact the author at:
* - zstdmt source repository: https://github.com/mcmilk/zstdmt
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/**
* This file will hold wrapper for systems, which do not support pthreads
*/
#include "threading.h"
/* create fake symbol to avoid empty translation unit warning */
int g_ZSTD_threading_useless_symbol;
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
/**
* Windows minimalist Pthread Wrapper
*/
/* === Dependencies === */
#include <process.h>
#include <errno.h>
/* === Implementation === */
typedef struct {
void* (*start_routine)(void*);
void* arg;
int initialized;
ZSTD_pthread_cond_t initialized_cond;
ZSTD_pthread_mutex_t initialized_mutex;
} ZSTD_thread_params_t;
static unsigned __stdcall worker(void *arg)
{
void* (*start_routine)(void*);
void* thread_arg;
/* Initialized thread_arg and start_routine and signal main thread that we don't need it
* to wait any longer.
*/
{
ZSTD_thread_params_t* thread_param = (ZSTD_thread_params_t*)arg;
thread_arg = thread_param->arg;
start_routine = thread_param->start_routine;
/* Signal main thread that we are running and do not depend on its memory anymore */
ZSTD_pthread_mutex_lock(&thread_param->initialized_mutex);
thread_param->initialized = 1;
ZSTD_pthread_cond_signal(&thread_param->initialized_cond);
ZSTD_pthread_mutex_unlock(&thread_param->initialized_mutex);
}
start_routine(thread_arg);
return 0;
}
int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
void* (*start_routine) (void*), void* arg)
{
ZSTD_thread_params_t thread_param;
(void)unused;
if (thread==NULL) return -1;
*thread = NULL;
thread_param.start_routine = start_routine;
thread_param.arg = arg;
thread_param.initialized = 0;
/* Setup thread initialization synchronization */
if(ZSTD_pthread_cond_init(&thread_param.initialized_cond, NULL)) {
/* Should never happen on Windows */
return -1;
}
if(ZSTD_pthread_mutex_init(&thread_param.initialized_mutex, NULL)) {
/* Should never happen on Windows */
ZSTD_pthread_cond_destroy(&thread_param.initialized_cond);
return -1;
}
/* Spawn thread */
*thread = (HANDLE)_beginthreadex(NULL, 0, worker, &thread_param, 0, NULL);
if (*thread==NULL) {
ZSTD_pthread_mutex_destroy(&thread_param.initialized_mutex);
ZSTD_pthread_cond_destroy(&thread_param.initialized_cond);
return errno;
}
/* Wait for thread to be initialized */
ZSTD_pthread_mutex_lock(&thread_param.initialized_mutex);
while(!thread_param.initialized) {
ZSTD_pthread_cond_wait(&thread_param.initialized_cond, &thread_param.initialized_mutex);
}
ZSTD_pthread_mutex_unlock(&thread_param.initialized_mutex);
ZSTD_pthread_mutex_destroy(&thread_param.initialized_mutex);
ZSTD_pthread_cond_destroy(&thread_param.initialized_cond);
return 0;
}
int ZSTD_pthread_join(ZSTD_pthread_t thread)
{
DWORD result;
if (!thread) return 0;
result = WaitForSingleObject(thread, INFINITE);
CloseHandle(thread);
switch (result) {
case WAIT_OBJECT_0:
return 0;
case WAIT_ABANDONED:
return EINVAL;
default:
return GetLastError();
}
}
#endif /* ZSTD_MULTITHREAD */
#if defined(ZSTD_MULTITHREAD) && DEBUGLEVEL >= 1 && !defined(_WIN32)
#define ZSTD_DEPS_NEED_MALLOC
#include "zstd_deps.h"
int ZSTD_pthread_mutex_init(ZSTD_pthread_mutex_t* mutex, pthread_mutexattr_t const* attr)
{
assert(mutex != NULL);
*mutex = (pthread_mutex_t*)ZSTD_malloc(sizeof(pthread_mutex_t));
if (!*mutex)
return 1;
return pthread_mutex_init(*mutex, attr);
}
int ZSTD_pthread_mutex_destroy(ZSTD_pthread_mutex_t* mutex)
{
assert(mutex != NULL);
if (!*mutex)
return 0;
{
int const ret = pthread_mutex_destroy(*mutex);
ZSTD_free(*mutex);
return ret;
}
}
int ZSTD_pthread_cond_init(ZSTD_pthread_cond_t* cond, pthread_condattr_t const* attr)
{
assert(cond != NULL);
*cond = (pthread_cond_t*)ZSTD_malloc(sizeof(pthread_cond_t));
if (!*cond)
return 1;
return pthread_cond_init(*cond, attr);
}
int ZSTD_pthread_cond_destroy(ZSTD_pthread_cond_t* cond)
{
assert(cond != NULL);
if (!*cond)
return 0;
{
int const ret = pthread_cond_destroy(*cond);
ZSTD_free(*cond);
return ret;
}
}
#endif
#endif /* USE_EXTERNAL_ZSTD */

153
vendor/github.com/DataDog/zstd/threading.h generated vendored Normal file
View File

@ -0,0 +1,153 @@
#ifndef USE_EXTERNAL_ZSTD
/**
* Copyright (c) 2016 Tino Reichardt
* All rights reserved.
*
* You can contact the author at:
* - zstdmt source repository: https://github.com/mcmilk/zstdmt
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef THREADING_H_938743
#define THREADING_H_938743
#include "debug.h"
#if defined (__cplusplus)
extern "C" {
#endif
#if defined(ZSTD_MULTITHREAD) && defined(_WIN32)
/**
* Windows minimalist Pthread Wrapper
*/
#ifdef WINVER
# undef WINVER
#endif
#define WINVER 0x0600
#ifdef _WIN32_WINNT
# undef _WIN32_WINNT
#endif
#define _WIN32_WINNT 0x0600
#ifndef WIN32_LEAN_AND_MEAN
# define WIN32_LEAN_AND_MEAN
#endif
#undef ERROR /* reported already defined on VS 2015 (Rich Geldreich) */
#include <windows.h>
#undef ERROR
#define ERROR(name) ZSTD_ERROR(name)
/* mutex */
#define ZSTD_pthread_mutex_t CRITICAL_SECTION
#define ZSTD_pthread_mutex_init(a, b) ((void)(b), InitializeCriticalSection((a)), 0)
#define ZSTD_pthread_mutex_destroy(a) DeleteCriticalSection((a))
#define ZSTD_pthread_mutex_lock(a) EnterCriticalSection((a))
#define ZSTD_pthread_mutex_unlock(a) LeaveCriticalSection((a))
/* condition variable */
#define ZSTD_pthread_cond_t CONDITION_VARIABLE
#define ZSTD_pthread_cond_init(a, b) ((void)(b), InitializeConditionVariable((a)), 0)
#define ZSTD_pthread_cond_destroy(a) ((void)(a))
#define ZSTD_pthread_cond_wait(a, b) SleepConditionVariableCS((a), (b), INFINITE)
#define ZSTD_pthread_cond_signal(a) WakeConditionVariable((a))
#define ZSTD_pthread_cond_broadcast(a) WakeAllConditionVariable((a))
/* ZSTD_pthread_create() and ZSTD_pthread_join() */
typedef HANDLE ZSTD_pthread_t;
int ZSTD_pthread_create(ZSTD_pthread_t* thread, const void* unused,
void* (*start_routine) (void*), void* arg);
int ZSTD_pthread_join(ZSTD_pthread_t thread);
/**
* add here more wrappers as required
*/
#elif defined(ZSTD_MULTITHREAD) /* posix assumed ; need a better detection method */
/* === POSIX Systems === */
# include <pthread.h>
#if DEBUGLEVEL < 1
#define ZSTD_pthread_mutex_t pthread_mutex_t
#define ZSTD_pthread_mutex_init(a, b) pthread_mutex_init((a), (b))
#define ZSTD_pthread_mutex_destroy(a) pthread_mutex_destroy((a))
#define ZSTD_pthread_mutex_lock(a) pthread_mutex_lock((a))
#define ZSTD_pthread_mutex_unlock(a) pthread_mutex_unlock((a))
#define ZSTD_pthread_cond_t pthread_cond_t
#define ZSTD_pthread_cond_init(a, b) pthread_cond_init((a), (b))
#define ZSTD_pthread_cond_destroy(a) pthread_cond_destroy((a))
#define ZSTD_pthread_cond_wait(a, b) pthread_cond_wait((a), (b))
#define ZSTD_pthread_cond_signal(a) pthread_cond_signal((a))
#define ZSTD_pthread_cond_broadcast(a) pthread_cond_broadcast((a))
#define ZSTD_pthread_t pthread_t
#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d))
#define ZSTD_pthread_join(a) pthread_join((a),NULL)
#else /* DEBUGLEVEL >= 1 */
/* Debug implementation of threading.
* In this implementation we use pointers for mutexes and condition variables.
* This way, if we forget to init/destroy them the program will crash or ASAN
* will report leaks.
*/
#define ZSTD_pthread_mutex_t pthread_mutex_t*
int ZSTD_pthread_mutex_init(ZSTD_pthread_mutex_t* mutex, pthread_mutexattr_t const* attr);
int ZSTD_pthread_mutex_destroy(ZSTD_pthread_mutex_t* mutex);
#define ZSTD_pthread_mutex_lock(a) pthread_mutex_lock(*(a))
#define ZSTD_pthread_mutex_unlock(a) pthread_mutex_unlock(*(a))
#define ZSTD_pthread_cond_t pthread_cond_t*
int ZSTD_pthread_cond_init(ZSTD_pthread_cond_t* cond, pthread_condattr_t const* attr);
int ZSTD_pthread_cond_destroy(ZSTD_pthread_cond_t* cond);
#define ZSTD_pthread_cond_wait(a, b) pthread_cond_wait(*(a), *(b))
#define ZSTD_pthread_cond_signal(a) pthread_cond_signal(*(a))
#define ZSTD_pthread_cond_broadcast(a) pthread_cond_broadcast(*(a))
#define ZSTD_pthread_t pthread_t
#define ZSTD_pthread_create(a, b, c, d) pthread_create((a), (b), (c), (d))
#define ZSTD_pthread_join(a) pthread_join((a),NULL)
#endif
#else /* ZSTD_MULTITHREAD not defined */
/* No multithreading support */
typedef int ZSTD_pthread_mutex_t;
#define ZSTD_pthread_mutex_init(a, b) ((void)(a), (void)(b), 0)
#define ZSTD_pthread_mutex_destroy(a) ((void)(a))
#define ZSTD_pthread_mutex_lock(a) ((void)(a))
#define ZSTD_pthread_mutex_unlock(a) ((void)(a))
typedef int ZSTD_pthread_cond_t;
#define ZSTD_pthread_cond_init(a, b) ((void)(a), (void)(b), 0)
#define ZSTD_pthread_cond_destroy(a) ((void)(a))
#define ZSTD_pthread_cond_wait(a, b) ((void)(a), (void)(b))
#define ZSTD_pthread_cond_signal(a) ((void)(a))
#define ZSTD_pthread_cond_broadcast(a) ((void)(a))
/* do not use ZSTD_pthread_t */
#endif /* ZSTD_MULTITHREAD */
#if defined (__cplusplus)
}
#endif
#endif /* THREADING_H_938743 */
#endif /* USE_EXTERNAL_ZSTD */

19
vendor/github.com/DataDog/zstd/travis_test_32.sh generated vendored Normal file
View File

@ -0,0 +1,19 @@
#!/bin/bash
# Get utilities
#yum -y -q -e 0 install wget tar unzip gcc
apt-get update
apt-get -y install wget tar unzip gcc
# Get Go
wget -q https://dl.google.com/go/go1.13.linux-386.tar.gz
tar -C /usr/local -xzf go1.13.linux-386.tar.gz
export PATH=$PATH:/usr/local/go/bin
# Get payload
wget -q https://github.com/DataDog/zstd/files/2246767/mr.zip
unzip mr.zip
# Build and run tests
go build
DISABLE_BIG_TESTS=1 PAYLOAD=$(pwd)/mr go test -v
DISABLE_BIG_TESTS=1 PAYLOAD=$(pwd)/mr go test -bench .

56
vendor/github.com/DataDog/zstd/update.txt generated vendored Normal file
View File

@ -0,0 +1,56 @@
./lib/common/bitstream.h
./lib/common/compiler.h
./lib/compress/zstd_compress_internal.h
./lib/compress/zstd_fast.h
./lib/compress/zstd_double_fast.h
./lib/compress/zstd_lazy.h
./lib/compress/zstd_ldm.h
./lib/dictBuilder/cover.c
./lib/dictBuilder/divsufsort.c
./lib/dictBuilder/divsufsort.h
./lib/common/entropy_common.c
./lib/common/error_private.c
./lib/common/error_private.h
./lib/compress/fse_compress.c
./lib/common/fse_decompress.c
./lib/common/fse.h
./lib/compress/huf_compress.c
./lib/decompress/huf_decompress.c
./lib/common/huf.h
./lib/common/mem.h
./lib/common/pool.c
./lib/common/pool.h
./lib/common/threading.c
./lib/common/threading.h
./lib/common/xxhash.c
./lib/common/xxhash.h
./lib/deprecated/zbuff_common.c
./lib/deprecated/zbuff_compress.c
./lib/deprecated/zbuff_decompress.c
./lib/deprecated/zbuff.h
./lib/dictBuilder/zdict.c
./lib/dictBuilder/zdict.h
./lib/common/zstd_common.c
./lib/compress/zstd_compress.c
./lib/decompress/zstd_decompress.c
./lib/common/zstd_errors.h
./lib/zstd.h
./lib/common/zstd_internal.h
./lib/legacy/zstd_legacy.h
./lib/compress/zstd_opt.c
./lib/compress/zstd_opt.h
./lib/legacy/zstd_v01.c
./lib/legacy/zstd_v01.h
./lib/legacy/zstd_v02.c
./lib/legacy/zstd_v02.h
./lib/legacy/zstd_v03.c
./lib/legacy/zstd_v03.h
./lib/legacy/zstd_v04.c
./lib/legacy/zstd_v04.h
./lib/legacy/zstd_v05.c
./lib/legacy/zstd_v05.h
./lib/legacy/zstd_v06.c
./lib/legacy/zstd_v06.h
./lib/legacy/zstd_v07.c
./lib/legacy/zstd_v07.h

21
vendor/github.com/DataDog/zstd/xxhash.c generated vendored Normal file
View File

@ -0,0 +1,21 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* xxHash - Extremely Fast Hash algorithm
* Copyright (c) Yann Collet - Meta Platforms, Inc
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*
* xxhash.c instantiates functions defined in xxhash.h
*/
#define XXH_STATIC_LINKING_ONLY /* access advanced declarations */
#define XXH_IMPLEMENTATION /* access definitions */
#include "xxhash.h"
#endif /* USE_EXTERNAL_ZSTD */

7023
vendor/github.com/DataDog/zstd/xxhash.h generated vendored Normal file

File diff suppressed because it is too large Load Diff

217
vendor/github.com/DataDog/zstd/zbuff.h generated vendored Normal file
View File

@ -0,0 +1,217 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* ***************************************************************
* NOTES/WARNINGS
******************************************************************/
/* The streaming API defined here is deprecated.
* Consider migrating towards ZSTD_compressStream() API in `zstd.h`
* See 'lib/README.md'.
*****************************************************************/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef ZSTD_BUFFERED_H_23987
#define ZSTD_BUFFERED_H_23987
/* *************************************
* Dependencies
***************************************/
#include <stddef.h> /* size_t */
#include "zstd.h" /* ZSTD_CStream, ZSTD_DStream, ZSTDLIB_API */
/* ***************************************************************
* Compiler specifics
*****************************************************************/
/* Deprecation warnings */
/* Should these warnings be a problem,
* it is generally possible to disable them,
* typically with -Wno-deprecated-declarations for gcc
* or _CRT_SECURE_NO_WARNINGS in Visual.
* Otherwise, it's also possible to define ZBUFF_DISABLE_DEPRECATE_WARNINGS
*/
#ifdef ZBUFF_DISABLE_DEPRECATE_WARNINGS
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API /* disable deprecation warnings */
#else
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define ZBUFF_DEPRECATED(message) [[deprecated(message)]] ZSTDLIB_API
# elif (defined(GNUC) && (GNUC > 4 || (GNUC == 4 && GNUC_MINOR >= 5))) || defined(__clang__)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated(message)))
# elif defined(__GNUC__) && (__GNUC__ >= 3)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __attribute__((deprecated))
# elif defined(_MSC_VER)
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API __declspec(deprecated(message))
# else
# pragma message("WARNING: You need to implement ZBUFF_DEPRECATED for this compiler")
# define ZBUFF_DEPRECATED(message) ZSTDLIB_API
# endif
#endif /* ZBUFF_DISABLE_DEPRECATE_WARNINGS */
/* *************************************
* Streaming functions
***************************************/
/* This is the easier "buffered" streaming API,
* using an internal buffer to lift all restrictions on user-provided buffers
* which can be any size, any place, for both input and output.
* ZBUFF and ZSTD are 100% interoperable,
* frames created by one can be decoded by the other one */
typedef ZSTD_CStream ZBUFF_CCtx;
ZBUFF_DEPRECATED("use ZSTD_createCStream") ZBUFF_CCtx* ZBUFF_createCCtx(void);
ZBUFF_DEPRECATED("use ZSTD_freeCStream") size_t ZBUFF_freeCCtx(ZBUFF_CCtx* cctx);
ZBUFF_DEPRECATED("use ZSTD_initCStream") size_t ZBUFF_compressInit(ZBUFF_CCtx* cctx, int compressionLevel);
ZBUFF_DEPRECATED("use ZSTD_initCStream_usingDict") size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* cctx, const void* dict, size_t dictSize, int compressionLevel);
ZBUFF_DEPRECATED("use ZSTD_compressStream") size_t ZBUFF_compressContinue(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr, const void* src, size_t* srcSizePtr);
ZBUFF_DEPRECATED("use ZSTD_flushStream") size_t ZBUFF_compressFlush(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
ZBUFF_DEPRECATED("use ZSTD_endStream") size_t ZBUFF_compressEnd(ZBUFF_CCtx* cctx, void* dst, size_t* dstCapacityPtr);
/*-*************************************************
* Streaming compression - howto
*
* A ZBUFF_CCtx object is required to track streaming operation.
* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
* ZBUFF_CCtx objects can be reused multiple times.
*
* Start by initializing ZBUF_CCtx.
* Use ZBUFF_compressInit() to start a new compression operation.
* Use ZBUFF_compressInitDictionary() for a compression which requires a dictionary.
*
* Use ZBUFF_compressContinue() repetitively to consume input stream.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written within *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present again remaining data.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each call, so save its content if it matters or change @dst .
* @return : a hint to preferred nb of bytes to use as input for next function call (it's just a hint, to improve latency)
* or an error code, which can be tested using ZBUFF_isError().
*
* At any moment, it's possible to flush whatever data remains within buffer, using ZBUFF_compressFlush().
* The nb of bytes written into `dst` will be reported into *dstCapacityPtr.
* Note that the function cannot output more than *dstCapacityPtr,
* therefore, some content might still be left into internal buffer if *dstCapacityPtr is too small.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* ZBUFF_compressEnd() instructs to finish a frame.
* It will perform a flush and write frame epilogue.
* The epilogue is required for decoders to consider a frame completed.
* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
* In which case, call again ZBUFF_compressFlush() to complete the flush.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : _recommended buffer_ sizes (not compulsory) : ZBUFF_recommendedCInSize() / ZBUFF_recommendedCOutSize()
* input : ZBUFF_recommendedCInSize==128 KB block size is the internal unit, use this value to reduce intermediate stages (better latency)
* output : ZBUFF_recommendedCOutSize==ZSTD_compressBound(128 KB) + 3 + 3 : ensures it's always possible to write/flush/end a full block. Skip some buffering.
* By using both, it ensures that input will be entirely consumed, and output will always contain the result, reducing intermediate buffering.
* **************************************************/
typedef ZSTD_DStream ZBUFF_DCtx;
ZBUFF_DEPRECATED("use ZSTD_createDStream") ZBUFF_DCtx* ZBUFF_createDCtx(void);
ZBUFF_DEPRECATED("use ZSTD_freeDStream") size_t ZBUFF_freeDCtx(ZBUFF_DCtx* dctx);
ZBUFF_DEPRECATED("use ZSTD_initDStream") size_t ZBUFF_decompressInit(ZBUFF_DCtx* dctx);
ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* dctx, const void* dict, size_t dictSize);
ZBUFF_DEPRECATED("use ZSTD_decompressStream") size_t ZBUFF_decompressContinue(ZBUFF_DCtx* dctx,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr);
/*-***************************************************************************
* Streaming decompression howto
*
* A ZBUFF_DCtx object is required to track streaming operations.
* Use ZBUFF_createDCtx() and ZBUFF_freeDCtx() to create/release resources.
* Use ZBUFF_decompressInit() to start a new decompression operation,
* or ZBUFF_decompressInitDictionary() if decompression requires a dictionary.
* Note that ZBUFF_DCtx objects can be re-init multiple times.
*
* Use ZBUFF_decompressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to present remaining input again.
* The content of `dst` will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters, or change `dst`.
* @return : 0 when a frame is completely decoded and fully flushed,
* 1 when there is still some data left within internal buffer to flush,
* >1 when more data is expected, with value being a suggested next input size (it's just a hint, which helps latency),
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : recommended buffer sizes (not compulsory) : ZBUFF_recommendedDInSize() and ZBUFF_recommendedDOutSize()
* output : ZBUFF_recommendedDOutSize== 128 KB block size is the internal unit, it ensures it's always possible to write a full block when decoded.
* input : ZBUFF_recommendedDInSize == 128KB + 3;
* just follow indications from ZBUFF_decompressContinue() to minimize latency. It should always be <= 128 KB + 3 .
* *******************************************************************************/
/* *************************************
* Tool functions
***************************************/
ZBUFF_DEPRECATED("use ZSTD_isError") unsigned ZBUFF_isError(size_t errorCode);
ZBUFF_DEPRECATED("use ZSTD_getErrorName") const char* ZBUFF_getErrorName(size_t errorCode);
/** Functions below provide recommended buffer sizes for Compression or Decompression operations.
* These sizes are just hints, they tend to offer better latency */
ZBUFF_DEPRECATED("use ZSTD_CStreamInSize") size_t ZBUFF_recommendedCInSize(void);
ZBUFF_DEPRECATED("use ZSTD_CStreamOutSize") size_t ZBUFF_recommendedCOutSize(void);
ZBUFF_DEPRECATED("use ZSTD_DStreamInSize") size_t ZBUFF_recommendedDInSize(void);
ZBUFF_DEPRECATED("use ZSTD_DStreamOutSize") size_t ZBUFF_recommendedDOutSize(void);
#endif /* ZSTD_BUFFERED_H_23987 */
#ifdef ZBUFF_STATIC_LINKING_ONLY
#ifndef ZBUFF_STATIC_H_30298098432
#define ZBUFF_STATIC_H_30298098432
/* ====================================================================================
* The definitions in this section are considered experimental.
* They should never be used in association with a dynamic library, as they may change in the future.
* They are provided for advanced usages.
* Use them only in association with static linking.
* ==================================================================================== */
/*--- Dependency ---*/
#define ZSTD_STATIC_LINKING_ONLY /* ZSTD_parameters, ZSTD_customMem */
#include "zstd.h"
/*--- Custom memory allocator ---*/
/*! ZBUFF_createCCtx_advanced() :
* Create a ZBUFF compression context using external alloc and free functions */
ZBUFF_DEPRECATED("use ZSTD_createCStream_advanced") ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem);
/*! ZBUFF_createDCtx_advanced() :
* Create a ZBUFF decompression context using external alloc and free functions */
ZBUFF_DEPRECATED("use ZSTD_createDStream_advanced") ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem);
/*--- Advanced Streaming Initialization ---*/
ZBUFF_DEPRECATED("use ZSTD_initDStream_usingDict") size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize);
#endif /* ZBUFF_STATIC_H_30298098432 */
#endif /* ZBUFF_STATIC_LINKING_ONLY */
#if defined (__cplusplus)
}
#endif
#endif /* USE_EXTERNAL_ZSTD */

29
vendor/github.com/DataDog/zstd/zbuff_common.c generated vendored Normal file
View File

@ -0,0 +1,29 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "error_private.h"
#include "zbuff.h"
/*-****************************************
* ZBUFF Error Management (deprecated)
******************************************/
/*! ZBUFF_isError() :
* tells if a return value is an error code */
unsigned ZBUFF_isError(size_t errorCode) { return ERR_isError(errorCode); }
/*! ZBUFF_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZBUFF_getErrorName(size_t errorCode) { return ERR_getErrorName(errorCode); }
#endif /* USE_EXTERNAL_ZSTD */

170
vendor/github.com/DataDog/zstd/zbuff_compress.c generated vendored Normal file
View File

@ -0,0 +1,170 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* *************************************
* Dependencies
***************************************/
#define ZBUFF_STATIC_LINKING_ONLY
#include "zbuff.h"
#include "error_private.h"
/*-***********************************************************
* Streaming compression
*
* A ZBUFF_CCtx object is required to track streaming operation.
* Use ZBUFF_createCCtx() and ZBUFF_freeCCtx() to create/release resources.
* Use ZBUFF_compressInit() to start a new compression operation.
* ZBUFF_CCtx objects can be reused multiple times.
*
* Use ZBUFF_compressContinue() repetitively to consume your input.
* *srcSizePtr and *dstCapacityPtr can be any size.
* The function will report how many bytes were read or written by modifying *srcSizePtr and *dstCapacityPtr.
* Note that it may not consume the entire input, in which case it's up to the caller to call again the function with remaining input.
* The content of dst will be overwritten (up to *dstCapacityPtr) at each function call, so save its content if it matters or change dst .
* @return : a hint to preferred nb of bytes to use as input for next function call (it's only a hint, to improve latency)
* or an error code, which can be tested using ZBUFF_isError().
*
* ZBUFF_compressFlush() can be used to instruct ZBUFF to compress and output whatever remains within its buffer.
* Note that it will not output more than *dstCapacityPtr.
* Therefore, some content might still be left into its internal buffer if dst buffer is too small.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* ZBUFF_compressEnd() instructs to finish a frame.
* It will perform a flush and write frame epilogue.
* Similar to ZBUFF_compressFlush(), it may not be able to output the entire internal buffer content if *dstCapacityPtr is too small.
* @return : nb of bytes still present into internal buffer (0 if it's empty)
* or an error code, which can be tested using ZBUFF_isError().
*
* Hint : recommended buffer sizes (not compulsory)
* input : ZSTD_BLOCKSIZE_MAX (128 KB), internal unit size, it improves latency to use this value.
* output : ZSTD_compressBound(ZSTD_BLOCKSIZE_MAX) + ZSTD_blockHeaderSize + ZBUFF_endFrameSize : ensures it's always possible to write/flush/end a full block at best speed.
* ***********************************************************/
ZBUFF_CCtx* ZBUFF_createCCtx(void)
{
return ZSTD_createCStream();
}
ZBUFF_CCtx* ZBUFF_createCCtx_advanced(ZSTD_customMem customMem)
{
return ZSTD_createCStream_advanced(customMem);
}
size_t ZBUFF_freeCCtx(ZBUFF_CCtx* zbc)
{
return ZSTD_freeCStream(zbc);
}
/* ====== Initialization ====== */
size_t ZBUFF_compressInit_advanced(ZBUFF_CCtx* zbc,
const void* dict, size_t dictSize,
ZSTD_parameters params, unsigned long long pledgedSrcSize)
{
if (pledgedSrcSize==0) pledgedSrcSize = ZSTD_CONTENTSIZE_UNKNOWN; /* preserve "0 == unknown" behavior */
FORWARD_IF_ERROR(ZSTD_CCtx_reset(zbc, ZSTD_reset_session_only), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setPledgedSrcSize(zbc, pledgedSrcSize), "");
FORWARD_IF_ERROR(ZSTD_checkCParams(params.cParams), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_windowLog, params.cParams.windowLog), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_hashLog, params.cParams.hashLog), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_chainLog, params.cParams.chainLog), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_searchLog, params.cParams.searchLog), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_minMatch, params.cParams.minMatch), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_targetLength, params.cParams.targetLength), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_strategy, params.cParams.strategy), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_contentSizeFlag, params.fParams.contentSizeFlag), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_checksumFlag, params.fParams.checksumFlag), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_dictIDFlag, params.fParams.noDictIDFlag), "");
FORWARD_IF_ERROR(ZSTD_CCtx_loadDictionary(zbc, dict, dictSize), "");
return 0;
}
size_t ZBUFF_compressInitDictionary(ZBUFF_CCtx* zbc, const void* dict, size_t dictSize, int compressionLevel)
{
FORWARD_IF_ERROR(ZSTD_CCtx_reset(zbc, ZSTD_reset_session_only), "");
FORWARD_IF_ERROR(ZSTD_CCtx_setParameter(zbc, ZSTD_c_compressionLevel, compressionLevel), "");
FORWARD_IF_ERROR(ZSTD_CCtx_loadDictionary(zbc, dict, dictSize), "");
return 0;
}
size_t ZBUFF_compressInit(ZBUFF_CCtx* zbc, int compressionLevel)
{
return ZSTD_initCStream(zbc, compressionLevel);
}
/* ====== Compression ====== */
size_t ZBUFF_compressContinue(ZBUFF_CCtx* zbc,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr)
{
size_t result;
ZSTD_outBuffer outBuff;
ZSTD_inBuffer inBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
inBuff.src = src;
inBuff.pos = 0;
inBuff.size = *srcSizePtr;
result = ZSTD_compressStream(zbc, &outBuff, &inBuff);
*dstCapacityPtr = outBuff.pos;
*srcSizePtr = inBuff.pos;
return result;
}
/* ====== Finalize ====== */
size_t ZBUFF_compressFlush(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
{
size_t result;
ZSTD_outBuffer outBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
result = ZSTD_flushStream(zbc, &outBuff);
*dstCapacityPtr = outBuff.pos;
return result;
}
size_t ZBUFF_compressEnd(ZBUFF_CCtx* zbc, void* dst, size_t* dstCapacityPtr)
{
size_t result;
ZSTD_outBuffer outBuff;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
result = ZSTD_endStream(zbc, &outBuff);
*dstCapacityPtr = outBuff.pos;
return result;
}
/* *************************************
* Tool functions
***************************************/
size_t ZBUFF_recommendedCInSize(void) { return ZSTD_CStreamInSize(); }
size_t ZBUFF_recommendedCOutSize(void) { return ZSTD_CStreamOutSize(); }
#endif /* USE_EXTERNAL_ZSTD */

80
vendor/github.com/DataDog/zstd/zbuff_decompress.c generated vendored Normal file
View File

@ -0,0 +1,80 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* *************************************
* Dependencies
***************************************/
#define ZSTD_DISABLE_DEPRECATE_WARNINGS /* suppress warning on ZSTD_initDStream_usingDict */
#include "zstd.h" /* ZSTD_CStream, ZSTD_DStream, ZSTDLIB_API */
#define ZBUFF_STATIC_LINKING_ONLY
#include "zbuff.h"
ZBUFF_DCtx* ZBUFF_createDCtx(void)
{
return ZSTD_createDStream();
}
ZBUFF_DCtx* ZBUFF_createDCtx_advanced(ZSTD_customMem customMem)
{
return ZSTD_createDStream_advanced(customMem);
}
size_t ZBUFF_freeDCtx(ZBUFF_DCtx* zbd)
{
return ZSTD_freeDStream(zbd);
}
/* *** Initialization *** */
size_t ZBUFF_decompressInitDictionary(ZBUFF_DCtx* zbd, const void* dict, size_t dictSize)
{
return ZSTD_initDStream_usingDict(zbd, dict, dictSize);
}
size_t ZBUFF_decompressInit(ZBUFF_DCtx* zbd)
{
return ZSTD_initDStream(zbd);
}
/* *** Decompression *** */
size_t ZBUFF_decompressContinue(ZBUFF_DCtx* zbd,
void* dst, size_t* dstCapacityPtr,
const void* src, size_t* srcSizePtr)
{
ZSTD_outBuffer outBuff;
ZSTD_inBuffer inBuff;
size_t result;
outBuff.dst = dst;
outBuff.pos = 0;
outBuff.size = *dstCapacityPtr;
inBuff.src = src;
inBuff.pos = 0;
inBuff.size = *srcSizePtr;
result = ZSTD_decompressStream(zbd, &outBuff, &inBuff);
*dstCapacityPtr = outBuff.pos;
*srcSizePtr = inBuff.pos;
return result;
}
/* *************************************
* Tool functions
***************************************/
size_t ZBUFF_recommendedDInSize(void) { return ZSTD_DStreamInSize(); }
size_t ZBUFF_recommendedDOutSize(void) { return ZSTD_DStreamOutSize(); }
#endif /* USE_EXTERNAL_ZSTD */

1136
vendor/github.com/DataDog/zstd/zdict.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

477
vendor/github.com/DataDog/zstd/zdict.h generated vendored Normal file
View File

@ -0,0 +1,477 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#if defined (__cplusplus)
extern "C" {
#endif
#ifndef ZSTD_ZDICT_H
#define ZSTD_ZDICT_H
/*====== Dependencies ======*/
#include <stddef.h> /* size_t */
/* ===== ZDICTLIB_API : control library symbols visibility ===== */
#ifndef ZDICTLIB_VISIBLE
/* Backwards compatibility with old macro name */
# ifdef ZDICTLIB_VISIBILITY
# define ZDICTLIB_VISIBLE ZDICTLIB_VISIBILITY
# elif defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
# define ZDICTLIB_VISIBLE __attribute__ ((visibility ("default")))
# else
# define ZDICTLIB_VISIBLE
# endif
#endif
#ifndef ZDICTLIB_HIDDEN
# if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
# define ZDICTLIB_HIDDEN __attribute__ ((visibility ("hidden")))
# else
# define ZDICTLIB_HIDDEN
# endif
#endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZDICTLIB_API __declspec(dllexport) ZDICTLIB_VISIBLE
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZDICTLIB_API __declspec(dllimport) ZDICTLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define ZDICTLIB_API ZDICTLIB_VISIBLE
#endif
/*******************************************************************************
* Zstd dictionary builder
*
* FAQ
* ===
* Why should I use a dictionary?
* ------------------------------
*
* Zstd can use dictionaries to improve compression ratio of small data.
* Traditionally small files don't compress well because there is very little
* repetition in a single sample, since it is small. But, if you are compressing
* many similar files, like a bunch of JSON records that share the same
* structure, you can train a dictionary on ahead of time on some samples of
* these files. Then, zstd can use the dictionary to find repetitions that are
* present across samples. This can vastly improve compression ratio.
*
* When is a dictionary useful?
* ----------------------------
*
* Dictionaries are useful when compressing many small files that are similar.
* The larger a file is, the less benefit a dictionary will have. Generally,
* we don't expect dictionary compression to be effective past 100KB. And the
* smaller a file is, the more we would expect the dictionary to help.
*
* How do I use a dictionary?
* --------------------------
*
* Simply pass the dictionary to the zstd compressor with
* `ZSTD_CCtx_loadDictionary()`. The same dictionary must then be passed to
* the decompressor, using `ZSTD_DCtx_loadDictionary()`. There are other
* more advanced functions that allow selecting some options, see zstd.h for
* complete documentation.
*
* What is a zstd dictionary?
* --------------------------
*
* A zstd dictionary has two pieces: Its header, and its content. The header
* contains a magic number, the dictionary ID, and entropy tables. These
* entropy tables allow zstd to save on header costs in the compressed file,
* which really matters for small data. The content is just bytes, which are
* repeated content that is common across many samples.
*
* What is a raw content dictionary?
* ---------------------------------
*
* A raw content dictionary is just bytes. It doesn't have a zstd dictionary
* header, a dictionary ID, or entropy tables. Any buffer is a valid raw
* content dictionary.
*
* How do I train a dictionary?
* ----------------------------
*
* Gather samples from your use case. These samples should be similar to each
* other. If you have several use cases, you could try to train one dictionary
* per use case.
*
* Pass those samples to `ZDICT_trainFromBuffer()` and that will train your
* dictionary. There are a few advanced versions of this function, but this
* is a great starting point. If you want to further tune your dictionary
* you could try `ZDICT_optimizeTrainFromBuffer_cover()`. If that is too slow
* you can try `ZDICT_optimizeTrainFromBuffer_fastCover()`.
*
* If the dictionary training function fails, that is likely because you
* either passed too few samples, or a dictionary would not be effective
* for your data. Look at the messages that the dictionary trainer printed,
* if it doesn't say too few samples, then a dictionary would not be effective.
*
* How large should my dictionary be?
* ----------------------------------
*
* A reasonable dictionary size, the `dictBufferCapacity`, is about 100KB.
* The zstd CLI defaults to a 110KB dictionary. You likely don't need a
* dictionary larger than that. But, most use cases can get away with a
* smaller dictionary. The advanced dictionary builders can automatically
* shrink the dictionary for you, and select the smallest size that doesn't
* hurt compression ratio too much. See the `shrinkDict` parameter.
* A smaller dictionary can save memory, and potentially speed up
* compression.
*
* How many samples should I provide to the dictionary builder?
* ------------------------------------------------------------
*
* We generally recommend passing ~100x the size of the dictionary
* in samples. A few thousand should suffice. Having too few samples
* can hurt the dictionaries effectiveness. Having more samples will
* only improve the dictionaries effectiveness. But having too many
* samples can slow down the dictionary builder.
*
* How do I determine if a dictionary will be effective?
* -----------------------------------------------------
*
* Simply train a dictionary and try it out. You can use zstd's built in
* benchmarking tool to test the dictionary effectiveness.
*
* # Benchmark levels 1-3 without a dictionary
* zstd -b1e3 -r /path/to/my/files
* # Benchmark levels 1-3 with a dictionary
* zstd -b1e3 -r /path/to/my/files -D /path/to/my/dictionary
*
* When should I retrain a dictionary?
* -----------------------------------
*
* You should retrain a dictionary when its effectiveness drops. Dictionary
* effectiveness drops as the data you are compressing changes. Generally, we do
* expect dictionaries to "decay" over time, as your data changes, but the rate
* at which they decay depends on your use case. Internally, we regularly
* retrain dictionaries, and if the new dictionary performs significantly
* better than the old dictionary, we will ship the new dictionary.
*
* I have a raw content dictionary, how do I turn it into a zstd dictionary?
* -------------------------------------------------------------------------
*
* If you have a raw content dictionary, e.g. by manually constructing it, or
* using a third-party dictionary builder, you can turn it into a zstd
* dictionary by using `ZDICT_finalizeDictionary()`. You'll also have to
* provide some samples of the data. It will add the zstd header to the
* raw content, which contains a dictionary ID and entropy tables, which
* will improve compression ratio, and allow zstd to write the dictionary ID
* into the frame, if you so choose.
*
* Do I have to use zstd's dictionary builder?
* -------------------------------------------
*
* No! You can construct dictionary content however you please, it is just
* bytes. It will always be valid as a raw content dictionary. If you want
* a zstd dictionary, which can improve compression ratio, use
* `ZDICT_finalizeDictionary()`.
*
* What is the attack surface of a zstd dictionary?
* ------------------------------------------------
*
* Zstd is heavily fuzz tested, including loading fuzzed dictionaries, so
* zstd should never crash, or access out-of-bounds memory no matter what
* the dictionary is. However, if an attacker can control the dictionary
* during decompression, they can cause zstd to generate arbitrary bytes,
* just like if they controlled the compressed data.
*
******************************************************************************/
/*! ZDICT_trainFromBuffer():
* Train a dictionary from an array of samples.
* Redirect towards ZDICT_optimizeTrainFromBuffer_fastCover() single-threaded, with d=8, steps=4,
* f=20, and accel=1.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* Note: Dictionary training will fail if there are not enough samples to construct a
* dictionary, or if most of the samples are too small (< 8 bytes being the lower limit).
* If dictionary training fails, you should use zstd without a dictionary, as the dictionary
* would've been ineffective anyways. If you believe your samples would benefit from a dictionary
* please open an issue with details, and we can look into it.
* Note: ZDICT_trainFromBuffer()'s memory usage is about 6 MB.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_API size_t ZDICT_trainFromBuffer(void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples);
typedef struct {
int compressionLevel; /**< optimize for a specific zstd compression level; 0 means default */
unsigned notificationLevel; /**< Write log to stderr; 0 = none (default); 1 = errors; 2 = progression; 3 = details; 4 = debug; */
unsigned dictID; /**< force dictID value; 0 means auto mode (32-bits random value)
* NOTE: The zstd format reserves some dictionary IDs for future use.
* You may use them in private settings, but be warned that they
* may be used by zstd in a public dictionary registry in the future.
* These dictionary IDs are:
* - low range : <= 32767
* - high range : >= (2^31)
*/
} ZDICT_params_t;
/*! ZDICT_finalizeDictionary():
* Given a custom content as a basis for dictionary, and a set of samples,
* finalize dictionary by adding headers and statistics according to the zstd
* dictionary format.
*
* Samples must be stored concatenated in a flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each
* sample in order. The samples are used to construct the statistics, so they
* should be representative of what you will compress with this dictionary.
*
* The compression level can be set in `parameters`. You should pass the
* compression level you expect to use in production. The statistics for each
* compression level differ, so tuning the dictionary for the compression level
* can help quite a bit.
*
* You can set an explicit dictionary ID in `parameters`, or allow us to pick
* a random dictionary ID for you, but we can't guarantee no collisions.
*
* The dstDictBuffer and the dictContent may overlap, and the content will be
* appended to the end of the header. If the header + the content doesn't fit in
* maxDictSize the beginning of the content is truncated to make room, since it
* is presumed that the most profitable content is at the end of the dictionary,
* since that is the cheapest to reference.
*
* `maxDictSize` must be >= max(dictContentSize, ZSTD_DICTSIZE_MIN).
*
* @return: size of dictionary stored into `dstDictBuffer` (<= `maxDictSize`),
* or an error code, which can be tested by ZDICT_isError().
* Note: ZDICT_finalizeDictionary() will push notifications into stderr if
* instructed to, using notificationLevel>0.
* NOTE: This function currently may fail in several edge cases including:
* * Not enough samples
* * Samples are uncompressible
* * Samples are all exactly the same
*/
ZDICTLIB_API size_t ZDICT_finalizeDictionary(void* dstDictBuffer, size_t maxDictSize,
const void* dictContent, size_t dictContentSize,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_params_t parameters);
/*====== Helper functions ======*/
ZDICTLIB_API unsigned ZDICT_getDictID(const void* dictBuffer, size_t dictSize); /**< extracts dictID; @return zero if error (not a valid dictionary) */
ZDICTLIB_API size_t ZDICT_getDictHeaderSize(const void* dictBuffer, size_t dictSize); /* returns dict header size; returns a ZSTD error code on failure */
ZDICTLIB_API unsigned ZDICT_isError(size_t errorCode);
ZDICTLIB_API const char* ZDICT_getErrorName(size_t errorCode);
#endif /* ZSTD_ZDICT_H */
#if defined(ZDICT_STATIC_LINKING_ONLY) && !defined(ZSTD_ZDICT_H_STATIC)
#define ZSTD_ZDICT_H_STATIC
/* This can be overridden externally to hide static symbols. */
#ifndef ZDICTLIB_STATIC_API
# if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZDICTLIB_STATIC_API __declspec(dllexport) ZDICTLIB_VISIBLE
# elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZDICTLIB_STATIC_API __declspec(dllimport) ZDICTLIB_VISIBLE
# else
# define ZDICTLIB_STATIC_API ZDICTLIB_VISIBLE
# endif
#endif
/* ====================================================================================
* The definitions in this section are considered experimental.
* They should never be used with a dynamic library, as they may change in the future.
* They are provided for advanced usages.
* Use them only in association with static linking.
* ==================================================================================== */
#define ZDICT_DICTSIZE_MIN 256
/* Deprecated: Remove in v1.6.0 */
#define ZDICT_CONTENTSIZE_MIN 128
/*! ZDICT_cover_params_t:
* k and d are the only required parameters.
* For others, value 0 means default.
*/
typedef struct {
unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */
unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */
unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */
unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (1.0), 1.0 when all samples are used for both training and testing */
unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */
unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */
ZDICT_params_t zParams;
} ZDICT_cover_params_t;
typedef struct {
unsigned k; /* Segment size : constraint: 0 < k : Reasonable range [16, 2048+] */
unsigned d; /* dmer size : constraint: 0 < d <= k : Reasonable range [6, 16] */
unsigned f; /* log of size of frequency array : constraint: 0 < f <= 31 : 1 means default(20)*/
unsigned steps; /* Number of steps : Only used for optimization : 0 means default (40) : Higher means more parameters checked */
unsigned nbThreads; /* Number of threads : constraint: 0 < nbThreads : 1 means single-threaded : Only used for optimization : Ignored if ZSTD_MULTITHREAD is not defined */
double splitPoint; /* Percentage of samples used for training: Only used for optimization : the first nbSamples * splitPoint samples will be used to training, the last nbSamples * (1 - splitPoint) samples will be used for testing, 0 means default (0.75), 1.0 when all samples are used for both training and testing */
unsigned accel; /* Acceleration level: constraint: 0 < accel <= 10, higher means faster and less accurate, 0 means default(1) */
unsigned shrinkDict; /* Train dictionaries to shrink in size starting from the minimum size and selects the smallest dictionary that is shrinkDictMaxRegression% worse than the largest dictionary. 0 means no shrinking and 1 means shrinking */
unsigned shrinkDictMaxRegression; /* Sets shrinkDictMaxRegression so that a smaller dictionary can be at worse shrinkDictMaxRegression% worse than the max dict size dictionary. */
ZDICT_params_t zParams;
} ZDICT_fastCover_params_t;
/*! ZDICT_trainFromBuffer_cover():
* Train a dictionary from an array of samples using the COVER algorithm.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_trainFromBuffer_cover() requires about 9 bytes of memory for each input byte.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_cover(
void *dictBuffer, size_t dictBufferCapacity,
const void *samplesBuffer, const size_t *samplesSizes, unsigned nbSamples,
ZDICT_cover_params_t parameters);
/*! ZDICT_optimizeTrainFromBuffer_cover():
* The same requirements as above hold for all the parameters except `parameters`.
* This function tries many parameter combinations and picks the best parameters.
* `*parameters` is filled with the best parameters found,
* dictionary constructed with those parameters is stored in `dictBuffer`.
*
* All of the parameters d, k, steps are optional.
* If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}.
* if steps is zero it defaults to its default value.
* If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000].
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_optimizeTrainFromBuffer_cover() requires about 8 bytes of memory for each input byte and additionally another 5 bytes of memory for each byte of memory for each thread.
*/
ZDICTLIB_STATIC_API size_t ZDICT_optimizeTrainFromBuffer_cover(
void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_cover_params_t* parameters);
/*! ZDICT_trainFromBuffer_fastCover():
* Train a dictionary from an array of samples using a modified version of COVER algorithm.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* d and k are required.
* All other parameters are optional, will use default values if not provided
* The resulting dictionary will be saved into `dictBuffer`.
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_trainFromBuffer_fastCover() requires 6 * 2^f bytes of memory.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
*/
ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_fastCover(void *dictBuffer,
size_t dictBufferCapacity, const void *samplesBuffer,
const size_t *samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t parameters);
/*! ZDICT_optimizeTrainFromBuffer_fastCover():
* The same requirements as above hold for all the parameters except `parameters`.
* This function tries many parameter combinations (specifically, k and d combinations)
* and picks the best parameters. `*parameters` is filled with the best parameters found,
* dictionary constructed with those parameters is stored in `dictBuffer`.
* All of the parameters d, k, steps, f, and accel are optional.
* If d is non-zero then we don't check multiple values of d, otherwise we check d = {6, 8}.
* if steps is zero it defaults to its default value.
* If k is non-zero then we don't check multiple values of k, otherwise we check steps values in [50, 2000].
* If f is zero, default value of 20 is used.
* If accel is zero, default value of 1 is used.
*
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* On success `*parameters` contains the parameters selected.
* See ZDICT_trainFromBuffer() for details on failure modes.
* Note: ZDICT_optimizeTrainFromBuffer_fastCover() requires about 6 * 2^f bytes of memory for each thread.
*/
ZDICTLIB_STATIC_API size_t ZDICT_optimizeTrainFromBuffer_fastCover(void* dictBuffer,
size_t dictBufferCapacity, const void* samplesBuffer,
const size_t* samplesSizes, unsigned nbSamples,
ZDICT_fastCover_params_t* parameters);
typedef struct {
unsigned selectivityLevel; /* 0 means default; larger => select more => larger dictionary */
ZDICT_params_t zParams;
} ZDICT_legacy_params_t;
/*! ZDICT_trainFromBuffer_legacy():
* Train a dictionary from an array of samples.
* Samples must be stored concatenated in a single flat buffer `samplesBuffer`,
* supplied with an array of sizes `samplesSizes`, providing the size of each sample, in order.
* The resulting dictionary will be saved into `dictBuffer`.
* `parameters` is optional and can be provided with values set to 0 to mean "default".
* @return: size of dictionary stored into `dictBuffer` (<= `dictBufferCapacity`)
* or an error code, which can be tested with ZDICT_isError().
* See ZDICT_trainFromBuffer() for details on failure modes.
* Tips: In general, a reasonable dictionary has a size of ~ 100 KB.
* It's possible to select smaller or larger size, just by specifying `dictBufferCapacity`.
* In general, it's recommended to provide a few thousands samples, though this can vary a lot.
* It's recommended that total size of all samples be about ~x100 times the target size of dictionary.
* Note: ZDICT_trainFromBuffer_legacy() will send notifications into stderr if instructed to, using notificationLevel>0.
*/
ZDICTLIB_STATIC_API size_t ZDICT_trainFromBuffer_legacy(
void* dictBuffer, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples,
ZDICT_legacy_params_t parameters);
/* Deprecation warnings */
/* It is generally possible to disable deprecation warnings from compiler,
for example with -Wno-deprecated-declarations for gcc
or _CRT_SECURE_NO_WARNINGS in Visual.
Otherwise, it's also possible to manually define ZDICT_DISABLE_DEPRECATE_WARNINGS */
#ifdef ZDICT_DISABLE_DEPRECATE_WARNINGS
# define ZDICT_DEPRECATED(message) /* disable deprecation warnings */
#else
# define ZDICT_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
# if defined (__cplusplus) && (__cplusplus >= 201402) /* C++14 or greater */
# define ZDICT_DEPRECATED(message) [[deprecated(message)]]
# elif defined(__clang__) || (ZDICT_GCC_VERSION >= 405)
# define ZDICT_DEPRECATED(message) __attribute__((deprecated(message)))
# elif (ZDICT_GCC_VERSION >= 301)
# define ZDICT_DEPRECATED(message) __attribute__((deprecated))
# elif defined(_MSC_VER)
# define ZDICT_DEPRECATED(message) __declspec(deprecated(message))
# else
# pragma message("WARNING: You need to implement ZDICT_DEPRECATED for this compiler")
# define ZDICT_DEPRECATED(message)
# endif
#endif /* ZDICT_DISABLE_DEPRECATE_WARNINGS */
ZDICT_DEPRECATED("use ZDICT_finalizeDictionary() instead")
ZDICTLIB_STATIC_API
size_t ZDICT_addEntropyTablesFromBuffer(void* dictBuffer, size_t dictContentSize, size_t dictBufferCapacity,
const void* samplesBuffer, const size_t* samplesSizes, unsigned nbSamples);
#endif /* ZSTD_ZDICT_H_STATIC */
#if defined (__cplusplus)
}
#endif
#endif /* USE_EXTERNAL_ZSTD */

174
vendor/github.com/DataDog/zstd/zstd.go generated vendored Normal file
View File

@ -0,0 +1,174 @@
package zstd
/*
// support decoding of "legacy" zstd payloads from versions [0.4, 0.8], matching the
// default configuration of the zstd command line tool:
// https://github.com/facebook/zstd/blob/dev/programs/README.md
#cgo CFLAGS: -DZSTD_LEGACY_SUPPORT=4 -DZSTD_MULTITHREAD=1
#include "zstd.h"
*/
import "C"
import (
"bytes"
"errors"
"io/ioutil"
"unsafe"
)
// Defines best and standard values for zstd cli
const (
BestSpeed = 1
BestCompression = 20
DefaultCompression = 5
)
var (
// ErrEmptySlice is returned when there is nothing to compress
ErrEmptySlice = errors.New("Bytes slice is empty")
)
const (
// decompressSizeBufferLimit is the limit we set on creating a decompression buffer for the Decompress API
// This is made to prevent DOS from maliciously-created payloads (aka zipbomb).
// For large payloads with a compression ratio > 10, you can do your own allocation and pass it to the method:
// dst := make([]byte, 1GB)
// decompressed, err := zstd.Decompress(dst, src)
decompressSizeBufferLimit = 1000 * 1000
zstdFrameHeaderSizeMin = 2 // From zstd.h. Since it's experimental API, hardcoding it
)
// CompressBound returns the worst case size needed for a destination buffer,
// which can be used to preallocate a destination buffer or select a previously
// allocated buffer from a pool.
// See zstd.h to mirror implementation of ZSTD_COMPRESSBOUND
func CompressBound(srcSize int) int {
lowLimit := 128 << 10 // 128 kB
var margin int
if srcSize < lowLimit {
margin = (lowLimit - srcSize) >> 11
}
return srcSize + (srcSize >> 8) + margin
}
// cCompressBound is a cgo call to check the go implementation above against the c code.
func cCompressBound(srcSize int) int {
return int(C.ZSTD_compressBound(C.size_t(srcSize)))
}
// decompressSizeHint tries to give a hint on how much of the output buffer size we should have
// based on zstd frame descriptors. To prevent DOS from maliciously-created payloads, limit the size
func decompressSizeHint(src []byte) int {
// 1 MB or 50x input size
upperBound := 50 * len(src)
if upperBound < decompressSizeBufferLimit {
upperBound = decompressSizeBufferLimit
}
hint := upperBound
if len(src) >= zstdFrameHeaderSizeMin {
hint = int(C.ZSTD_getFrameContentSize(unsafe.Pointer(&src[0]), C.size_t(len(src))))
if hint < 0 { // On error, just use upperBound
hint = upperBound
}
if hint == 0 { // When compressing the empty slice, we need an output of at least 1 to pass down to the C lib
hint = 1
}
}
// Take the minimum of both
if hint > upperBound {
return upperBound
}
return hint
}
// Compress src into dst. If you have a buffer to use, you can pass it to
// prevent allocation. If it is too small, or if nil is passed, a new buffer
// will be allocated and returned.
func Compress(dst, src []byte) ([]byte, error) {
return CompressLevel(dst, src, DefaultCompression)
}
// CompressLevel is the same as Compress but you can pass a compression level
func CompressLevel(dst, src []byte, level int) ([]byte, error) {
bound := CompressBound(len(src))
if cap(dst) >= bound {
dst = dst[0:bound] // Reuse dst buffer
} else {
dst = make([]byte, bound)
}
// We need unsafe.Pointer(&src[0]) in the Cgo call to avoid "Go pointer to Go pointer" panics.
// This means we need to special case empty input. See:
// https://github.com/golang/go/issues/14210#issuecomment-346402945
var cWritten C.size_t
if len(src) == 0 {
cWritten = C.ZSTD_compress(
unsafe.Pointer(&dst[0]),
C.size_t(len(dst)),
unsafe.Pointer(nil),
C.size_t(0),
C.int(level))
} else {
cWritten = C.ZSTD_compress(
unsafe.Pointer(&dst[0]),
C.size_t(len(dst)),
unsafe.Pointer(&src[0]),
C.size_t(len(src)),
C.int(level))
}
written := int(cWritten)
// Check if the return is an Error code
if err := getError(written); err != nil {
return nil, err
}
return dst[:written], nil
}
// Decompress src into dst. If you have a buffer to use, you can pass it to
// prevent allocation. If it is too small, or if nil is passed, a new buffer
// will be allocated and returned.
func Decompress(dst, src []byte) ([]byte, error) {
if len(src) == 0 {
return []byte{}, ErrEmptySlice
}
bound := decompressSizeHint(src)
if cap(dst) >= bound {
dst = dst[0:cap(dst)]
} else {
dst = make([]byte, bound)
}
written, err := DecompressInto(dst, src)
if err == nil {
return dst[:written], nil
}
if !IsDstSizeTooSmallError(err) {
return nil, err
}
// We failed getting a dst buffer of correct size, use stream API
r := NewReader(bytes.NewReader(src))
defer r.Close()
return ioutil.ReadAll(r)
}
// DecompressInto decompresses src into dst. Unlike Decompress, DecompressInto
// requires that dst be sufficiently large to hold the decompressed payload.
// DecompressInto may be used when the caller knows the size of the decompressed
// payload before attempting decompression.
//
// It returns the number of bytes copied and an error if any is encountered. If
// dst is too small, DecompressInto errors.
func DecompressInto(dst, src []byte) (int, error) {
written := int(C.ZSTD_decompress(
unsafe.Pointer(&dst[0]),
C.size_t(len(dst)),
unsafe.Pointer(&src[0]),
C.size_t(len(src))))
return written, getError(written)
}

3094
vendor/github.com/DataDog/zstd/zstd.h generated vendored Normal file

File diff suppressed because it is too large Load Diff

151
vendor/github.com/DataDog/zstd/zstd_bulk.go generated vendored Normal file
View File

@ -0,0 +1,151 @@
package zstd
/*
#include "zstd.h"
*/
import "C"
import (
"errors"
"runtime"
"unsafe"
)
var (
// ErrEmptyDictionary is returned when the given dictionary is empty
ErrEmptyDictionary = errors.New("Dictionary is empty")
// ErrBadDictionary is returned when cannot load the given dictionary
ErrBadDictionary = errors.New("Cannot load dictionary")
)
// BulkProcessor implements Bulk processing dictionary API.
// When compressing multiple messages or blocks using the same dictionary,
// it's recommended to digest the dictionary only once, since it's a costly operation.
// NewBulkProcessor() will create a state from digesting a dictionary.
// The resulting state can be used for future compression/decompression operations with very limited startup cost.
// BulkProcessor can be created once and shared by multiple threads concurrently, since its usage is read-only.
// The state will be freed when gc cleans up BulkProcessor.
type BulkProcessor struct {
cDict *C.struct_ZSTD_CDict_s
dDict *C.struct_ZSTD_DDict_s
}
// NewBulkProcessor creates a new BulkProcessor with a pre-trained dictionary and compression level
func NewBulkProcessor(dictionary []byte, compressionLevel int) (*BulkProcessor, error) {
if len(dictionary) < 1 {
return nil, ErrEmptyDictionary
}
p := &BulkProcessor{}
runtime.SetFinalizer(p, finalizeBulkProcessor)
p.cDict = C.ZSTD_createCDict(
unsafe.Pointer(&dictionary[0]),
C.size_t(len(dictionary)),
C.int(compressionLevel),
)
if p.cDict == nil {
return nil, ErrBadDictionary
}
p.dDict = C.ZSTD_createDDict(
unsafe.Pointer(&dictionary[0]),
C.size_t(len(dictionary)),
)
if p.dDict == nil {
return nil, ErrBadDictionary
}
return p, nil
}
// Compress compresses `src` into `dst` with the dictionary given when creating the BulkProcessor.
// If you have a buffer to use, you can pass it to prevent allocation.
// If it is too small, or if nil is passed, a new buffer will be allocated and returned.
func (p *BulkProcessor) Compress(dst, src []byte) ([]byte, error) {
bound := CompressBound(len(src))
if cap(dst) >= bound {
dst = dst[0:bound]
} else {
dst = make([]byte, bound)
}
cctx := C.ZSTD_createCCtx()
// We need unsafe.Pointer(&src[0]) in the Cgo call to avoid "Go pointer to Go pointer" panics.
// This means we need to special case empty input. See:
// https://github.com/golang/go/issues/14210#issuecomment-346402945
var cWritten C.size_t
if len(src) == 0 {
cWritten = C.ZSTD_compress_usingCDict(
cctx,
unsafe.Pointer(&dst[0]),
C.size_t(len(dst)),
unsafe.Pointer(nil),
C.size_t(len(src)),
p.cDict,
)
} else {
cWritten = C.ZSTD_compress_usingCDict(
cctx,
unsafe.Pointer(&dst[0]),
C.size_t(len(dst)),
unsafe.Pointer(&src[0]),
C.size_t(len(src)),
p.cDict,
)
}
C.ZSTD_freeCCtx(cctx)
written := int(cWritten)
if err := getError(written); err != nil {
return nil, err
}
return dst[:written], nil
}
// Decompress decompresses `src` into `dst` with the dictionary given when creating the BulkProcessor.
// If you have a buffer to use, you can pass it to prevent allocation.
// If it is too small, or if nil is passed, a new buffer will be allocated and returned.
func (p *BulkProcessor) Decompress(dst, src []byte) ([]byte, error) {
if len(src) == 0 {
return nil, ErrEmptySlice
}
contentSize := decompressSizeHint(src)
if cap(dst) >= contentSize {
dst = dst[0:cap(dst)]
} else {
dst = make([]byte, contentSize)
}
if len(dst) == 0 {
return dst, nil
}
dctx := C.ZSTD_createDCtx()
cWritten := C.ZSTD_decompress_usingDDict(
dctx,
unsafe.Pointer(&dst[0]),
C.size_t(len(dst)),
unsafe.Pointer(&src[0]),
C.size_t(len(src)),
p.dDict,
)
C.ZSTD_freeDCtx(dctx)
written := int(cWritten)
if err := getError(written); err != nil {
return nil, err
}
return dst[:written], nil
}
// finalizeBulkProcessor frees compression and decompression dictionaries from memory
func finalizeBulkProcessor(p *BulkProcessor) {
if p.cDict != nil {
C.ZSTD_freeCDict(p.cDict)
}
if p.dDict != nil {
C.ZSTD_freeDDict(p.dDict)
}
}

51
vendor/github.com/DataDog/zstd/zstd_common.c generated vendored Normal file
View File

@ -0,0 +1,51 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#define ZSTD_DEPS_NEED_MALLOC
#include "error_private.h"
#include "zstd_internal.h"
/*-****************************************
* Version
******************************************/
unsigned ZSTD_versionNumber(void) { return ZSTD_VERSION_NUMBER; }
const char* ZSTD_versionString(void) { return ZSTD_VERSION_STRING; }
/*-****************************************
* ZSTD Error Management
******************************************/
#undef ZSTD_isError /* defined within zstd_internal.h */
/*! ZSTD_isError() :
* tells if a return value is an error code
* symbol is required for external callers */
unsigned ZSTD_isError(size_t code) { return ERR_isError(code); }
/*! ZSTD_getErrorName() :
* provides error code string from function result (useful for debugging) */
const char* ZSTD_getErrorName(size_t code) { return ERR_getErrorName(code); }
/*! ZSTD_getError() :
* convert a `size_t` function result into a proper ZSTD_errorCode enum */
ZSTD_ErrorCode ZSTD_getErrorCode(size_t code) { return ERR_getErrorCode(code); }
/*! ZSTD_getErrorString() :
* provides error code string from enum */
const char* ZSTD_getErrorString(ZSTD_ErrorCode code) { return ERR_getErrorString(code); }
#endif /* USE_EXTERNAL_ZSTD */

7156
vendor/github.com/DataDog/zstd/zstd_compress.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

1537
vendor/github.com/DataDog/zstd/zstd_compress_internal.h generated vendored Normal file

File diff suppressed because it is too large Load Diff

238
vendor/github.com/DataDog/zstd/zstd_compress_literals.c generated vendored Normal file
View File

@ -0,0 +1,238 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_literals.h"
/* **************************************************************
* Debug Traces
****************************************************************/
#if DEBUGLEVEL >= 2
static size_t showHexa(const void* src, size_t srcSize)
{
const BYTE* const ip = (const BYTE*)src;
size_t u;
for (u=0; u<srcSize; u++) {
RAWLOG(5, " %02X", ip[u]); (void)ip;
}
RAWLOG(5, " \n");
return srcSize;
}
#endif
/* **************************************************************
* Literals compression - special cases
****************************************************************/
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE*)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
DEBUGLOG(5, "ZSTD_noCompressLiterals: srcSize=%zu, dstCapacity=%zu", srcSize, dstCapacity);
RETURN_ERROR_IF(srcSize + flSize > dstCapacity, dstSize_tooSmall, "");
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_basic + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_basic + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_basic + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
ZSTD_memcpy(ostart + flSize, src, srcSize);
DEBUGLOG(5, "Raw (uncompressed) literals: %u -> %u", (U32)srcSize, (U32)(srcSize + flSize));
return srcSize + flSize;
}
static int allBytesIdentical(const void* src, size_t srcSize)
{
assert(srcSize >= 1);
assert(src != NULL);
{ const BYTE b = ((const BYTE*)src)[0];
size_t p;
for (p=1; p<srcSize; p++) {
if (((const BYTE*)src)[p] != b) return 0;
}
return 1;
}
}
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
BYTE* const ostart = (BYTE*)dst;
U32 const flSize = 1 + (srcSize>31) + (srcSize>4095);
assert(dstCapacity >= 4); (void)dstCapacity;
assert(allBytesIdentical(src, srcSize));
switch(flSize)
{
case 1: /* 2 - 1 - 5 */
ostart[0] = (BYTE)((U32)set_rle + (srcSize<<3));
break;
case 2: /* 2 - 2 - 12 */
MEM_writeLE16(ostart, (U16)((U32)set_rle + (1<<2) + (srcSize<<4)));
break;
case 3: /* 2 - 2 - 20 */
MEM_writeLE32(ostart, (U32)((U32)set_rle + (3<<2) + (srcSize<<4)));
break;
default: /* not necessary : flSize is {1,2,3} */
assert(0);
}
ostart[flSize] = *(const BYTE*)src;
DEBUGLOG(5, "RLE : Repeated Literal (%02X: %u times) -> %u bytes encoded", ((const BYTE*)src)[0], (U32)srcSize, (U32)flSize + 1);
return flSize+1;
}
/* ZSTD_minLiteralsToCompress() :
* returns minimal amount of literals
* for literal compression to even be attempted.
* Minimum is made tighter as compression strategy increases.
*/
static size_t
ZSTD_minLiteralsToCompress(ZSTD_strategy strategy, HUF_repeat huf_repeat)
{
assert((int)strategy >= 0);
assert((int)strategy <= 9);
/* btultra2 : min 8 bytes;
* then 2x larger for each successive compression strategy
* max threshold 64 bytes */
{ int const shift = MIN(9-(int)strategy, 3);
size_t const mintc = (huf_repeat == HUF_repeat_valid) ? 6 : (size_t)8 << shift;
DEBUGLOG(7, "minLiteralsToCompress = %zu", mintc);
return mintc;
}
}
size_t ZSTD_compressLiterals (
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize,
const ZSTD_hufCTables_t* prevHuf,
ZSTD_hufCTables_t* nextHuf,
ZSTD_strategy strategy,
int disableLiteralCompression,
int suspectUncompressible,
int bmi2)
{
size_t const lhSize = 3 + (srcSize >= 1 KB) + (srcSize >= 16 KB);
BYTE* const ostart = (BYTE*)dst;
U32 singleStream = srcSize < 256;
symbolEncodingType_e hType = set_compressed;
size_t cLitSize;
DEBUGLOG(5,"ZSTD_compressLiterals (disableLiteralCompression=%i, srcSize=%u, dstCapacity=%zu)",
disableLiteralCompression, (U32)srcSize, dstCapacity);
DEBUGLOG(6, "Completed literals listing (%zu bytes)", showHexa(src, srcSize));
/* Prepare nextEntropy assuming reusing the existing table */
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
if (disableLiteralCompression)
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
/* if too small, don't even attempt compression (speed opt) */
if (srcSize < ZSTD_minLiteralsToCompress(strategy, prevHuf->repeatMode))
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
RETURN_ERROR_IF(dstCapacity < lhSize+1, dstSize_tooSmall, "not enough space for compression");
{ HUF_repeat repeat = prevHuf->repeatMode;
int const flags = 0
| (bmi2 ? HUF_flags_bmi2 : 0)
| (strategy < ZSTD_lazy && srcSize <= 1024 ? HUF_flags_preferRepeat : 0)
| (strategy >= HUF_OPTIMAL_DEPTH_THRESHOLD ? HUF_flags_optimalDepth : 0)
| (suspectUncompressible ? HUF_flags_suspectUncompressible : 0);
typedef size_t (*huf_compress_f)(void*, size_t, const void*, size_t, unsigned, unsigned, void*, size_t, HUF_CElt*, HUF_repeat*, int);
huf_compress_f huf_compress;
if (repeat == HUF_repeat_valid && lhSize == 3) singleStream = 1;
huf_compress = singleStream ? HUF_compress1X_repeat : HUF_compress4X_repeat;
cLitSize = huf_compress(ostart+lhSize, dstCapacity-lhSize,
src, srcSize,
HUF_SYMBOLVALUE_MAX, LitHufLog,
entropyWorkspace, entropyWorkspaceSize,
(HUF_CElt*)nextHuf->CTable,
&repeat, flags);
DEBUGLOG(5, "%zu literals compressed into %zu bytes (before header)", srcSize, cLitSize);
if (repeat != HUF_repeat_none) {
/* reused the existing table */
DEBUGLOG(5, "reusing statistics from previous huffman block");
hType = set_repeat;
}
}
{ size_t const minGain = ZSTD_minGain(srcSize, strategy);
if ((cLitSize==0) || (cLitSize >= srcSize - minGain) || ERR_isError(cLitSize)) {
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
return ZSTD_noCompressLiterals(dst, dstCapacity, src, srcSize);
} }
if (cLitSize==1) {
/* A return value of 1 signals that the alphabet consists of a single symbol.
* However, in some rare circumstances, it could be the compressed size (a single byte).
* For that outcome to have a chance to happen, it's necessary that `srcSize < 8`.
* (it's also necessary to not generate statistics).
* Therefore, in such a case, actively check that all bytes are identical. */
if ((srcSize >= 8) || allBytesIdentical(src, srcSize)) {
ZSTD_memcpy(nextHuf, prevHuf, sizeof(*prevHuf));
return ZSTD_compressRleLiteralsBlock(dst, dstCapacity, src, srcSize);
} }
if (hType == set_compressed) {
/* using a newly constructed table */
nextHuf->repeatMode = HUF_repeat_check;
}
/* Build header */
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
if (!singleStream) assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS);
{ U32 const lhc = hType + ((U32)(!singleStream) << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS);
{ U32 const lhc = hType + (2 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<18);
MEM_writeLE32(ostart, lhc);
break;
}
case 5: /* 2 - 2 - 18 - 18 */
assert(srcSize >= MIN_LITERALS_FOR_4_STREAMS);
{ U32 const lhc = hType + (3 << 2) + ((U32)srcSize<<4) + ((U32)cLitSize<<22);
MEM_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
default: /* not possible : lhSize is {3,4,5} */
assert(0);
}
DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)srcSize, (U32)(lhSize+cLitSize));
return lhSize+cLitSize;
}
#endif /* USE_EXTERNAL_ZSTD */

View File

@ -0,0 +1,42 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_LITERALS_H
#define ZSTD_COMPRESS_LITERALS_H
#include "zstd_compress_internal.h" /* ZSTD_hufCTables_t, ZSTD_minGain() */
size_t ZSTD_noCompressLiterals (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/* ZSTD_compressRleLiteralsBlock() :
* Conditions :
* - All bytes in @src are identical
* - dstCapacity >= 4 */
size_t ZSTD_compressRleLiteralsBlock (void* dst, size_t dstCapacity, const void* src, size_t srcSize);
/* ZSTD_compressLiterals():
* @entropyWorkspace: must be aligned on 4-bytes boundaries
* @entropyWorkspaceSize : must be >= HUF_WORKSPACE_SIZE
* @suspectUncompressible: sampling checks, to potentially skip huffman coding
*/
size_t ZSTD_compressLiterals (void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
void* entropyWorkspace, size_t entropyWorkspaceSize,
const ZSTD_hufCTables_t* prevHuf,
ZSTD_hufCTables_t* nextHuf,
ZSTD_strategy strategy, int disableLiteralCompression,
int suspectUncompressible,
int bmi2);
#endif /* ZSTD_COMPRESS_LITERALS_H */
#endif /* USE_EXTERNAL_ZSTD */

View File

@ -0,0 +1,445 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_sequences.h"
/**
* -log2(x / 256) lookup table for x in [0, 256).
* If x == 0: Return 0
* Else: Return floor(-log2(x / 256) * 256)
*/
static unsigned const kInverseProbabilityLog256[256] = {
0, 2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
1130, 1100, 1073, 1047, 1024, 1001, 980, 960, 941, 923, 906, 889,
874, 859, 844, 830, 817, 804, 791, 779, 768, 756, 745, 734,
724, 714, 704, 694, 685, 676, 667, 658, 650, 642, 633, 626,
618, 610, 603, 595, 588, 581, 574, 567, 561, 554, 548, 542,
535, 529, 523, 517, 512, 506, 500, 495, 489, 484, 478, 473,
468, 463, 458, 453, 448, 443, 438, 434, 429, 424, 420, 415,
411, 407, 402, 398, 394, 390, 386, 382, 377, 373, 370, 366,
362, 358, 354, 350, 347, 343, 339, 336, 332, 329, 325, 322,
318, 315, 311, 308, 305, 302, 298, 295, 292, 289, 286, 282,
279, 276, 273, 270, 267, 264, 261, 258, 256, 253, 250, 247,
244, 241, 239, 236, 233, 230, 228, 225, 222, 220, 217, 215,
212, 209, 207, 204, 202, 199, 197, 194, 192, 190, 187, 185,
182, 180, 178, 175, 173, 171, 168, 166, 164, 162, 159, 157,
155, 153, 151, 149, 146, 144, 142, 140, 138, 136, 134, 132,
130, 128, 126, 123, 121, 119, 117, 115, 114, 112, 110, 108,
106, 104, 102, 100, 98, 96, 94, 93, 91, 89, 87, 85,
83, 82, 80, 78, 76, 74, 73, 71, 69, 67, 66, 64,
62, 61, 59, 57, 55, 54, 52, 50, 49, 47, 46, 44,
42, 41, 39, 37, 36, 34, 33, 31, 30, 28, 26, 25,
23, 22, 20, 19, 17, 16, 14, 13, 11, 10, 8, 7,
5, 4, 2, 1,
};
static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
void const* ptr = ctable;
U16 const* u16ptr = (U16 const*)ptr;
U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
return maxSymbolValue;
}
/**
* Returns true if we should use ncount=-1 else we should
* use ncount=1 for low probability symbols instead.
*/
static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
{
/* Heuristic: This should cover most blocks <= 16K and
* start to fade out after 16K to about 32K depending on
* compressibility.
*/
return nbSeq >= 2048;
}
/**
* Returns the cost in bytes of encoding the normalized count header.
* Returns an error if any of the helper functions return an error.
*/
static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
size_t const nbSeq, unsigned const FSELog)
{
BYTE wksp[FSE_NCOUNTBOUND];
S16 norm[MaxSeq + 1];
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
}
/**
* Returns the cost in bits of encoding the distribution described by count
* using the entropy bound.
*/
static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
{
unsigned cost = 0;
unsigned s;
assert(total > 0);
for (s = 0; s <= max; ++s) {
unsigned norm = (unsigned)((256 * count[s]) / total);
if (count[s] != 0 && norm == 0)
norm = 1;
assert(count[s] < total);
cost += count[s] * kInverseProbabilityLog256[norm];
}
return cost >> 8;
}
/**
* Returns the cost in bits of encoding the distribution in count using ctable.
* Returns an error if ctable cannot represent all the symbols in count.
*/
size_t ZSTD_fseBitCost(
FSE_CTable const* ctable,
unsigned const* count,
unsigned const max)
{
unsigned const kAccuracyLog = 8;
size_t cost = 0;
unsigned s;
FSE_CState_t cstate;
FSE_initCState(&cstate, ctable);
if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
ZSTD_getFSEMaxSymbolValue(ctable), max);
return ERROR(GENERIC);
}
for (s = 0; s <= max; ++s) {
unsigned const tableLog = cstate.stateLog;
unsigned const badCost = (tableLog + 1) << kAccuracyLog;
unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
if (count[s] == 0)
continue;
if (bitCost >= badCost) {
DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
return ERROR(GENERIC);
}
cost += (size_t)count[s] * bitCost;
}
return cost >> kAccuracyLog;
}
/**
* Returns the cost in bits of encoding the distribution in count using the
* table described by norm. The max symbol support by norm is assumed >= max.
* norm must be valid for every symbol with non-zero probability in count.
*/
size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
unsigned const* count, unsigned const max)
{
unsigned const shift = 8 - accuracyLog;
size_t cost = 0;
unsigned s;
assert(accuracyLog <= 8);
for (s = 0; s <= max; ++s) {
unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
unsigned const norm256 = normAcc << shift;
assert(norm256 > 0);
assert(norm256 < 256);
cost += count[s] * kInverseProbabilityLog256[norm256];
}
return cost >> 8;
}
symbolEncodingType_e
ZSTD_selectEncodingType(
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
FSE_CTable const* prevCTable,
short const* defaultNorm, U32 defaultNormLog,
ZSTD_defaultPolicy_e const isDefaultAllowed,
ZSTD_strategy const strategy)
{
ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
if (mostFrequent == nbSeq) {
*repeatMode = FSE_repeat_none;
if (isDefaultAllowed && nbSeq <= 2) {
/* Prefer set_basic over set_rle when there are 2 or fewer symbols,
* since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
* If basic encoding isn't possible, always choose RLE.
*/
DEBUGLOG(5, "Selected set_basic");
return set_basic;
}
DEBUGLOG(5, "Selected set_rle");
return set_rle;
}
if (strategy < ZSTD_lazy) {
if (isDefaultAllowed) {
size_t const staticFse_nbSeq_max = 1000;
size_t const mult = 10 - strategy;
size_t const baseLog = 3;
size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog; /* 28-36 for offset, 56-72 for lengths */
assert(defaultNormLog >= 5 && defaultNormLog <= 6); /* xx_DEFAULTNORMLOG */
assert(mult <= 9 && mult >= 7);
if ( (*repeatMode == FSE_repeat_valid)
&& (nbSeq < staticFse_nbSeq_max) ) {
DEBUGLOG(5, "Selected set_repeat");
return set_repeat;
}
if ( (nbSeq < dynamicFse_nbSeq_min)
|| (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
DEBUGLOG(5, "Selected set_basic");
/* The format allows default tables to be repeated, but it isn't useful.
* When using simple heuristics to select encoding type, we don't want
* to confuse these tables with dictionaries. When running more careful
* analysis, we don't need to waste time checking both repeating tables
* and default tables.
*/
*repeatMode = FSE_repeat_none;
return set_basic;
}
}
} else {
size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);
if (isDefaultAllowed) {
assert(!ZSTD_isError(basicCost));
assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
}
assert(!ZSTD_isError(NCountCost));
assert(compressedCost < ERROR(maxCode));
DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
(unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
if (basicCost <= repeatCost && basicCost <= compressedCost) {
DEBUGLOG(5, "Selected set_basic");
assert(isDefaultAllowed);
*repeatMode = FSE_repeat_none;
return set_basic;
}
if (repeatCost <= compressedCost) {
DEBUGLOG(5, "Selected set_repeat");
assert(!ZSTD_isError(repeatCost));
return set_repeat;
}
assert(compressedCost < basicCost && compressedCost < repeatCost);
}
DEBUGLOG(5, "Selected set_compressed");
*repeatMode = FSE_repeat_check;
return set_compressed;
}
typedef struct {
S16 norm[MaxSeq + 1];
U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
} ZSTD_BuildCTableWksp;
size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
unsigned* count, U32 max,
const BYTE* codeTable, size_t nbSeq,
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
const FSE_CTable* prevCTable, size_t prevCTableSize,
void* entropyWorkspace, size_t entropyWorkspaceSize)
{
BYTE* op = (BYTE*)dst;
const BYTE* const oend = op + dstCapacity;
DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);
switch (type) {
case set_rle:
FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
*op = codeTable[0];
return 1;
case set_repeat:
ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
return 0;
case set_basic:
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), ""); /* note : could be pre-calculated */
return 0;
case set_compressed: {
ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
size_t nbSeq_1 = nbSeq;
const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
if (count[codeTable[nbSeq-1]] > 1) {
count[codeTable[nbSeq-1]]--;
nbSeq_1--;
}
assert(nbSeq_1 > 1);
assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
(void)entropyWorkspaceSize;
FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed");
assert(oend >= op);
{ size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog); /* overflow protected */
FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed");
return NCountSize;
}
}
default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
}
}
FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
BIT_CStream_t blockStream;
FSE_CState_t stateMatchLength;
FSE_CState_t stateOffsetBits;
FSE_CState_t stateLitLength;
RETURN_ERROR_IF(
ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
dstSize_tooSmall, "not enough space remaining");
DEBUGLOG(6, "available space for bitstream : %i (dstCapacity=%u)",
(int)(blockStream.endPtr - blockStream.startPtr),
(unsigned)dstCapacity);
/* first symbols */
FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
FSE_initCState2(&stateOffsetBits, CTable_OffsetBits, ofCodeTable[nbSeq-1]);
FSE_initCState2(&stateLitLength, CTable_LitLength, llCodeTable[nbSeq-1]);
BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]);
if (MEM_32bits()) BIT_flushBits(&blockStream);
if (longOffsets) {
U32 const ofBits = ofCodeTable[nbSeq-1];
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits);
BIT_flushBits(&blockStream);
}
BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits,
ofBits - extraBits);
} else {
BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]);
}
BIT_flushBits(&blockStream);
{ size_t n;
for (n=nbSeq-2 ; n<nbSeq ; n--) { /* intentional underflow */
BYTE const llCode = llCodeTable[n];
BYTE const ofCode = ofCodeTable[n];
BYTE const mlCode = mlCodeTable[n];
U32 const llBits = LL_bits[llCode];
U32 const ofBits = ofCode;
U32 const mlBits = ML_bits[mlCode];
DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
(unsigned)sequences[n].litLength,
(unsigned)sequences[n].mlBase + MINMATCH,
(unsigned)sequences[n].offBase);
/* 32b*/ /* 64b*/
/* (7)*/ /* (7)*/
FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode); /* 15 */ /* 15 */
FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode); /* 24 */ /* 24 */
if (MEM_32bits()) BIT_flushBits(&blockStream); /* (7)*/
FSE_encodeSymbol(&blockStream, &stateLitLength, llCode); /* 16 */ /* 33 */
if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
BIT_flushBits(&blockStream); /* (7)*/
BIT_addBits(&blockStream, sequences[n].litLength, llBits);
if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
BIT_addBits(&blockStream, sequences[n].mlBase, mlBits);
if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
if (longOffsets) {
unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
if (extraBits) {
BIT_addBits(&blockStream, sequences[n].offBase, extraBits);
BIT_flushBits(&blockStream); /* (7)*/
}
BIT_addBits(&blockStream, sequences[n].offBase >> extraBits,
ofBits - extraBits); /* 31 */
} else {
BIT_addBits(&blockStream, sequences[n].offBase, ofBits); /* 31 */
}
BIT_flushBits(&blockStream); /* (7)*/
DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
} }
DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
FSE_flushCState(&blockStream, &stateMatchLength);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
FSE_flushCState(&blockStream, &stateOffsetBits);
DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
FSE_flushCState(&blockStream, &stateLitLength);
{ size_t const streamSize = BIT_closeCStream(&blockStream);
RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
return streamSize;
}
}
static size_t
ZSTD_encodeSequences_default(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#if DYNAMIC_BMI2
static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_encodeSequences_bmi2(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets)
{
return ZSTD_encodeSequences_body(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
{
DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
#if DYNAMIC_BMI2
if (bmi2) {
return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif
(void)bmi2;
return ZSTD_encodeSequences_default(dst, dstCapacity,
CTable_MatchLength, mlCodeTable,
CTable_OffsetBits, ofCodeTable,
CTable_LitLength, llCodeTable,
sequences, nbSeq, longOffsets);
}
#endif /* USE_EXTERNAL_ZSTD */

View File

@ -0,0 +1,57 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_SEQUENCES_H
#define ZSTD_COMPRESS_SEQUENCES_H
#include "fse.h" /* FSE_repeat, FSE_CTable */
#include "zstd_internal.h" /* symbolEncodingType_e, ZSTD_strategy */
typedef enum {
ZSTD_defaultDisallowed = 0,
ZSTD_defaultAllowed = 1
} ZSTD_defaultPolicy_e;
symbolEncodingType_e
ZSTD_selectEncodingType(
FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
FSE_CTable const* prevCTable,
short const* defaultNorm, U32 defaultNormLog,
ZSTD_defaultPolicy_e const isDefaultAllowed,
ZSTD_strategy const strategy);
size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
unsigned* count, U32 max,
const BYTE* codeTable, size_t nbSeq,
const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
const FSE_CTable* prevCTable, size_t prevCTableSize,
void* entropyWorkspace, size_t entropyWorkspaceSize);
size_t ZSTD_encodeSequences(
void* dst, size_t dstCapacity,
FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2);
size_t ZSTD_fseBitCost(
FSE_CTable const* ctable,
unsigned const* count,
unsigned const max);
size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
unsigned const* count, unsigned const max);
#endif /* ZSTD_COMPRESS_SEQUENCES_H */
#endif /* USE_EXTERNAL_ZSTD */

View File

@ -0,0 +1,691 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/*-*************************************
* Dependencies
***************************************/
#include "zstd_compress_superblock.h"
#include "zstd_internal.h" /* ZSTD_getSequenceLength */
#include "hist.h" /* HIST_countFast_wksp */
#include "zstd_compress_internal.h" /* ZSTD_[huf|fse|entropy]CTablesMetadata_t */
#include "zstd_compress_sequences.h"
#include "zstd_compress_literals.h"
/** ZSTD_compressSubBlock_literal() :
* Compresses literals section for a sub-block.
* When we have to write the Huffman table we will sometimes choose a header
* size larger than necessary. This is because we have to pick the header size
* before we know the table size + compressed size, so we have a bound on the
* table size. If we guessed incorrectly, we fall back to uncompressed literals.
*
* We write the header when writeEntropy=1 and set entropyWritten=1 when we succeeded
* in writing the header, otherwise it is set to 0.
*
* hufMetadata->hType has literals block type info.
* If it is set_basic, all sub-blocks literals section will be Raw_Literals_Block.
* If it is set_rle, all sub-blocks literals section will be RLE_Literals_Block.
* If it is set_compressed, first sub-block's literals section will be Compressed_Literals_Block
* If it is set_compressed, first sub-block's literals section will be Treeless_Literals_Block
* and the following sub-blocks' literals sections will be Treeless_Literals_Block.
* @return : compressed size of literals section of a sub-block
* Or 0 if unable to compress.
* Or error code */
static size_t
ZSTD_compressSubBlock_literal(const HUF_CElt* hufTable,
const ZSTD_hufCTablesMetadata_t* hufMetadata,
const BYTE* literals, size_t litSize,
void* dst, size_t dstSize,
const int bmi2, int writeEntropy, int* entropyWritten)
{
size_t const header = writeEntropy ? 200 : 0;
size_t const lhSize = 3 + (litSize >= (1 KB - header)) + (litSize >= (16 KB - header));
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstSize;
BYTE* op = ostart + lhSize;
U32 const singleStream = lhSize == 3;
symbolEncodingType_e hType = writeEntropy ? hufMetadata->hType : set_repeat;
size_t cLitSize = 0;
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (litSize=%zu, lhSize=%zu, writeEntropy=%d)", litSize, lhSize, writeEntropy);
*entropyWritten = 0;
if (litSize == 0 || hufMetadata->hType == set_basic) {
DEBUGLOG(5, "ZSTD_compressSubBlock_literal using raw literal");
return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
} else if (hufMetadata->hType == set_rle) {
DEBUGLOG(5, "ZSTD_compressSubBlock_literal using rle literal");
return ZSTD_compressRleLiteralsBlock(dst, dstSize, literals, litSize);
}
assert(litSize > 0);
assert(hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat);
if (writeEntropy && hufMetadata->hType == set_compressed) {
ZSTD_memcpy(op, hufMetadata->hufDesBuffer, hufMetadata->hufDesSize);
op += hufMetadata->hufDesSize;
cLitSize += hufMetadata->hufDesSize;
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (hSize=%zu)", hufMetadata->hufDesSize);
}
{ int const flags = bmi2 ? HUF_flags_bmi2 : 0;
const size_t cSize = singleStream ? HUF_compress1X_usingCTable(op, (size_t)(oend-op), literals, litSize, hufTable, flags)
: HUF_compress4X_usingCTable(op, (size_t)(oend-op), literals, litSize, hufTable, flags);
op += cSize;
cLitSize += cSize;
if (cSize == 0 || ERR_isError(cSize)) {
DEBUGLOG(5, "Failed to write entropy tables %s", ZSTD_getErrorName(cSize));
return 0;
}
/* If we expand and we aren't writing a header then emit uncompressed */
if (!writeEntropy && cLitSize >= litSize) {
DEBUGLOG(5, "ZSTD_compressSubBlock_literal using raw literal because uncompressible");
return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
}
/* If we are writing headers then allow expansion that doesn't change our header size. */
if (lhSize < (size_t)(3 + (cLitSize >= 1 KB) + (cLitSize >= 16 KB))) {
assert(cLitSize > litSize);
DEBUGLOG(5, "Literals expanded beyond allowed header size");
return ZSTD_noCompressLiterals(dst, dstSize, literals, litSize);
}
DEBUGLOG(5, "ZSTD_compressSubBlock_literal (cSize=%zu)", cSize);
}
/* Build header */
switch(lhSize)
{
case 3: /* 2 - 2 - 10 - 10 */
{ U32 const lhc = hType + ((U32)(!singleStream) << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<14);
MEM_writeLE24(ostart, lhc);
break;
}
case 4: /* 2 - 2 - 14 - 14 */
{ U32 const lhc = hType + (2 << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<18);
MEM_writeLE32(ostart, lhc);
break;
}
case 5: /* 2 - 2 - 18 - 18 */
{ U32 const lhc = hType + (3 << 2) + ((U32)litSize<<4) + ((U32)cLitSize<<22);
MEM_writeLE32(ostart, lhc);
ostart[4] = (BYTE)(cLitSize >> 10);
break;
}
default: /* not possible : lhSize is {3,4,5} */
assert(0);
}
*entropyWritten = 1;
DEBUGLOG(5, "Compressed literals: %u -> %u", (U32)litSize, (U32)(op-ostart));
return (size_t)(op-ostart);
}
static size_t
ZSTD_seqDecompressedSize(seqStore_t const* seqStore,
const seqDef* sequences, size_t nbSeqs,
size_t litSize, int lastSubBlock)
{
size_t matchLengthSum = 0;
size_t litLengthSum = 0;
size_t n;
for (n=0; n<nbSeqs; n++) {
const ZSTD_sequenceLength seqLen = ZSTD_getSequenceLength(seqStore, sequences+n);
litLengthSum += seqLen.litLength;
matchLengthSum += seqLen.matchLength;
}
DEBUGLOG(5, "ZSTD_seqDecompressedSize: %u sequences from %p: %u literals + %u matchlength",
(unsigned)nbSeqs, (const void*)sequences,
(unsigned)litLengthSum, (unsigned)matchLengthSum);
if (!lastSubBlock)
assert(litLengthSum == litSize);
else
assert(litLengthSum <= litSize);
(void)litLengthSum;
return matchLengthSum + litSize;
}
/** ZSTD_compressSubBlock_sequences() :
* Compresses sequences section for a sub-block.
* fseMetadata->llType, fseMetadata->ofType, and fseMetadata->mlType have
* symbol compression modes for the super-block.
* The first successfully compressed block will have these in its header.
* We set entropyWritten=1 when we succeed in compressing the sequences.
* The following sub-blocks will always have repeat mode.
* @return : compressed size of sequences section of a sub-block
* Or 0 if it is unable to compress
* Or error code. */
static size_t
ZSTD_compressSubBlock_sequences(const ZSTD_fseCTables_t* fseTables,
const ZSTD_fseCTablesMetadata_t* fseMetadata,
const seqDef* sequences, size_t nbSeq,
const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
const int bmi2, int writeEntropy, int* entropyWritten)
{
const int longOffsets = cctxParams->cParams.windowLog > STREAM_ACCUMULATOR_MIN;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
BYTE* seqHead;
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (nbSeq=%zu, writeEntropy=%d, longOffsets=%d)", nbSeq, writeEntropy, longOffsets);
*entropyWritten = 0;
/* Sequences Header */
RETURN_ERROR_IF((oend-op) < 3 /*max nbSeq Size*/ + 1 /*seqHead*/,
dstSize_tooSmall, "");
if (nbSeq < 128)
*op++ = (BYTE)nbSeq;
else if (nbSeq < LONGNBSEQ)
op[0] = (BYTE)((nbSeq>>8) + 0x80), op[1] = (BYTE)nbSeq, op+=2;
else
op[0]=0xFF, MEM_writeLE16(op+1, (U16)(nbSeq - LONGNBSEQ)), op+=3;
if (nbSeq==0) {
return (size_t)(op - ostart);
}
/* seqHead : flags for FSE encoding type */
seqHead = op++;
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (seqHeadSize=%u)", (unsigned)(op-ostart));
if (writeEntropy) {
const U32 LLtype = fseMetadata->llType;
const U32 Offtype = fseMetadata->ofType;
const U32 MLtype = fseMetadata->mlType;
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (fseTablesSize=%zu)", fseMetadata->fseTablesSize);
*seqHead = (BYTE)((LLtype<<6) + (Offtype<<4) + (MLtype<<2));
ZSTD_memcpy(op, fseMetadata->fseTablesBuffer, fseMetadata->fseTablesSize);
op += fseMetadata->fseTablesSize;
} else {
const U32 repeat = set_repeat;
*seqHead = (BYTE)((repeat<<6) + (repeat<<4) + (repeat<<2));
}
{ size_t const bitstreamSize = ZSTD_encodeSequences(
op, (size_t)(oend - op),
fseTables->matchlengthCTable, mlCode,
fseTables->offcodeCTable, ofCode,
fseTables->litlengthCTable, llCode,
sequences, nbSeq,
longOffsets, bmi2);
FORWARD_IF_ERROR(bitstreamSize, "ZSTD_encodeSequences failed");
op += bitstreamSize;
/* zstd versions <= 1.3.4 mistakenly report corruption when
* FSE_readNCount() receives a buffer < 4 bytes.
* Fixed by https://github.com/facebook/zstd/pull/1146.
* This can happen when the last set_compressed table present is 2
* bytes and the bitstream is only one byte.
* In this exceedingly rare case, we will simply emit an uncompressed
* block, since it isn't worth optimizing.
*/
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (writeEntropy && fseMetadata->lastCountSize && fseMetadata->lastCountSize + bitstreamSize < 4) {
/* NCountSize >= 2 && bitstreamSize > 0 ==> lastCountSize == 3 */
assert(fseMetadata->lastCountSize + bitstreamSize == 3);
DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.3.4 by "
"emitting an uncompressed block.");
return 0;
}
#endif
DEBUGLOG(5, "ZSTD_compressSubBlock_sequences (bitstreamSize=%zu)", bitstreamSize);
}
/* zstd versions <= 1.4.0 mistakenly report error when
* sequences section body size is less than 3 bytes.
* Fixed by https://github.com/facebook/zstd/pull/1664.
* This can happen when the previous sequences section block is compressed
* with rle mode and the current block's sequences section is compressed
* with repeat mode where sequences section body size can be 1 byte.
*/
#ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
if (op-seqHead < 4) {
DEBUGLOG(5, "Avoiding bug in zstd decoder in versions <= 1.4.0 by emitting "
"an uncompressed block when sequences are < 4 bytes");
return 0;
}
#endif
*entropyWritten = 1;
return (size_t)(op - ostart);
}
/** ZSTD_compressSubBlock() :
* Compresses a single sub-block.
* @return : compressed size of the sub-block
* Or 0 if it failed to compress. */
static size_t ZSTD_compressSubBlock(const ZSTD_entropyCTables_t* entropy,
const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
const seqDef* sequences, size_t nbSeq,
const BYTE* literals, size_t litSize,
const BYTE* llCode, const BYTE* mlCode, const BYTE* ofCode,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
const int bmi2,
int writeLitEntropy, int writeSeqEntropy,
int* litEntropyWritten, int* seqEntropyWritten,
U32 lastBlock)
{
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart + ZSTD_blockHeaderSize;
DEBUGLOG(5, "ZSTD_compressSubBlock (litSize=%zu, nbSeq=%zu, writeLitEntropy=%d, writeSeqEntropy=%d, lastBlock=%d)",
litSize, nbSeq, writeLitEntropy, writeSeqEntropy, lastBlock);
{ size_t cLitSize = ZSTD_compressSubBlock_literal((const HUF_CElt*)entropy->huf.CTable,
&entropyMetadata->hufMetadata, literals, litSize,
op, (size_t)(oend-op),
bmi2, writeLitEntropy, litEntropyWritten);
FORWARD_IF_ERROR(cLitSize, "ZSTD_compressSubBlock_literal failed");
if (cLitSize == 0) return 0;
op += cLitSize;
}
{ size_t cSeqSize = ZSTD_compressSubBlock_sequences(&entropy->fse,
&entropyMetadata->fseMetadata,
sequences, nbSeq,
llCode, mlCode, ofCode,
cctxParams,
op, (size_t)(oend-op),
bmi2, writeSeqEntropy, seqEntropyWritten);
FORWARD_IF_ERROR(cSeqSize, "ZSTD_compressSubBlock_sequences failed");
if (cSeqSize == 0) return 0;
op += cSeqSize;
}
/* Write block header */
{ size_t cSize = (size_t)(op-ostart) - ZSTD_blockHeaderSize;
U32 const cBlockHeader24 = lastBlock + (((U32)bt_compressed)<<1) + (U32)(cSize << 3);
MEM_writeLE24(ostart, cBlockHeader24);
}
return (size_t)(op-ostart);
}
static size_t ZSTD_estimateSubBlockSize_literal(const BYTE* literals, size_t litSize,
const ZSTD_hufCTables_t* huf,
const ZSTD_hufCTablesMetadata_t* hufMetadata,
void* workspace, size_t wkspSize,
int writeEntropy)
{
unsigned* const countWksp = (unsigned*)workspace;
unsigned maxSymbolValue = 255;
size_t literalSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */
if (hufMetadata->hType == set_basic) return litSize;
else if (hufMetadata->hType == set_rle) return 1;
else if (hufMetadata->hType == set_compressed || hufMetadata->hType == set_repeat) {
size_t const largest = HIST_count_wksp (countWksp, &maxSymbolValue, (const BYTE*)literals, litSize, workspace, wkspSize);
if (ZSTD_isError(largest)) return litSize;
{ size_t cLitSizeEstimate = HUF_estimateCompressedSize((const HUF_CElt*)huf->CTable, countWksp, maxSymbolValue);
if (writeEntropy) cLitSizeEstimate += hufMetadata->hufDesSize;
return cLitSizeEstimate + literalSectionHeaderSize;
} }
assert(0); /* impossible */
return 0;
}
static size_t ZSTD_estimateSubBlockSize_symbolType(symbolEncodingType_e type,
const BYTE* codeTable, unsigned maxCode,
size_t nbSeq, const FSE_CTable* fseCTable,
const U8* additionalBits,
short const* defaultNorm, U32 defaultNormLog, U32 defaultMax,
void* workspace, size_t wkspSize)
{
unsigned* const countWksp = (unsigned*)workspace;
const BYTE* ctp = codeTable;
const BYTE* const ctStart = ctp;
const BYTE* const ctEnd = ctStart + nbSeq;
size_t cSymbolTypeSizeEstimateInBits = 0;
unsigned max = maxCode;
HIST_countFast_wksp(countWksp, &max, codeTable, nbSeq, workspace, wkspSize); /* can't fail */
if (type == set_basic) {
/* We selected this encoding type, so it must be valid. */
assert(max <= defaultMax);
cSymbolTypeSizeEstimateInBits = max <= defaultMax
? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, countWksp, max)
: ERROR(GENERIC);
} else if (type == set_rle) {
cSymbolTypeSizeEstimateInBits = 0;
} else if (type == set_compressed || type == set_repeat) {
cSymbolTypeSizeEstimateInBits = ZSTD_fseBitCost(fseCTable, countWksp, max);
}
if (ZSTD_isError(cSymbolTypeSizeEstimateInBits)) return nbSeq * 10;
while (ctp < ctEnd) {
if (additionalBits) cSymbolTypeSizeEstimateInBits += additionalBits[*ctp];
else cSymbolTypeSizeEstimateInBits += *ctp; /* for offset, offset code is also the number of additional bits */
ctp++;
}
return cSymbolTypeSizeEstimateInBits / 8;
}
static size_t ZSTD_estimateSubBlockSize_sequences(const BYTE* ofCodeTable,
const BYTE* llCodeTable,
const BYTE* mlCodeTable,
size_t nbSeq,
const ZSTD_fseCTables_t* fseTables,
const ZSTD_fseCTablesMetadata_t* fseMetadata,
void* workspace, size_t wkspSize,
int writeEntropy)
{
size_t const sequencesSectionHeaderSize = 3; /* Use hard coded size of 3 bytes */
size_t cSeqSizeEstimate = 0;
if (nbSeq == 0) return sequencesSectionHeaderSize;
cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->ofType, ofCodeTable, MaxOff,
nbSeq, fseTables->offcodeCTable, NULL,
OF_defaultNorm, OF_defaultNormLog, DefaultMaxOff,
workspace, wkspSize);
cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->llType, llCodeTable, MaxLL,
nbSeq, fseTables->litlengthCTable, LL_bits,
LL_defaultNorm, LL_defaultNormLog, MaxLL,
workspace, wkspSize);
cSeqSizeEstimate += ZSTD_estimateSubBlockSize_symbolType(fseMetadata->mlType, mlCodeTable, MaxML,
nbSeq, fseTables->matchlengthCTable, ML_bits,
ML_defaultNorm, ML_defaultNormLog, MaxML,
workspace, wkspSize);
if (writeEntropy) cSeqSizeEstimate += fseMetadata->fseTablesSize;
return cSeqSizeEstimate + sequencesSectionHeaderSize;
}
typedef struct {
size_t estLitSize;
size_t estBlockSize;
} EstimatedBlockSize;
static EstimatedBlockSize ZSTD_estimateSubBlockSize(const BYTE* literals, size_t litSize,
const BYTE* ofCodeTable,
const BYTE* llCodeTable,
const BYTE* mlCodeTable,
size_t nbSeq,
const ZSTD_entropyCTables_t* entropy,
const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
void* workspace, size_t wkspSize,
int writeLitEntropy, int writeSeqEntropy)
{
EstimatedBlockSize ebs;
ebs.estLitSize = ZSTD_estimateSubBlockSize_literal(literals, litSize,
&entropy->huf, &entropyMetadata->hufMetadata,
workspace, wkspSize, writeLitEntropy);
ebs.estBlockSize = ZSTD_estimateSubBlockSize_sequences(ofCodeTable, llCodeTable, mlCodeTable,
nbSeq, &entropy->fse, &entropyMetadata->fseMetadata,
workspace, wkspSize, writeSeqEntropy);
ebs.estBlockSize += ebs.estLitSize + ZSTD_blockHeaderSize;
return ebs;
}
static int ZSTD_needSequenceEntropyTables(ZSTD_fseCTablesMetadata_t const* fseMetadata)
{
if (fseMetadata->llType == set_compressed || fseMetadata->llType == set_rle)
return 1;
if (fseMetadata->mlType == set_compressed || fseMetadata->mlType == set_rle)
return 1;
if (fseMetadata->ofType == set_compressed || fseMetadata->ofType == set_rle)
return 1;
return 0;
}
static size_t countLiterals(seqStore_t const* seqStore, const seqDef* sp, size_t seqCount)
{
size_t n, total = 0;
assert(sp != NULL);
for (n=0; n<seqCount; n++) {
total += ZSTD_getSequenceLength(seqStore, sp+n).litLength;
}
DEBUGLOG(6, "countLiterals for %zu sequences from %p => %zu bytes", seqCount, (const void*)sp, total);
return total;
}
#define BYTESCALE 256
static size_t sizeBlockSequences(const seqDef* sp, size_t nbSeqs,
size_t targetBudget, size_t avgLitCost, size_t avgSeqCost,
int firstSubBlock)
{
size_t n, budget = 0, inSize=0;
/* entropy headers */
size_t const headerSize = (size_t)firstSubBlock * 120 * BYTESCALE; /* generous estimate */
assert(firstSubBlock==0 || firstSubBlock==1);
budget += headerSize;
/* first sequence => at least one sequence*/
budget += sp[0].litLength * avgLitCost + avgSeqCost;
if (budget > targetBudget) return 1;
inSize = sp[0].litLength + (sp[0].mlBase+MINMATCH);
/* loop over sequences */
for (n=1; n<nbSeqs; n++) {
size_t currentCost = sp[n].litLength * avgLitCost + avgSeqCost;
budget += currentCost;
inSize += sp[n].litLength + (sp[n].mlBase+MINMATCH);
/* stop when sub-block budget is reached */
if ( (budget > targetBudget)
/* though continue to expand until the sub-block is deemed compressible */
&& (budget < inSize * BYTESCALE) )
break;
}
return n;
}
/** ZSTD_compressSubBlock_multi() :
* Breaks super-block into multiple sub-blocks and compresses them.
* Entropy will be written into the first block.
* The following blocks use repeat_mode to compress.
* Sub-blocks are all compressed, except the last one when beneficial.
* @return : compressed size of the super block (which features multiple ZSTD blocks)
* or 0 if it failed to compress. */
static size_t ZSTD_compressSubBlock_multi(const seqStore_t* seqStorePtr,
const ZSTD_compressedBlockState_t* prevCBlock,
ZSTD_compressedBlockState_t* nextCBlock,
const ZSTD_entropyCTablesMetadata_t* entropyMetadata,
const ZSTD_CCtx_params* cctxParams,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
const int bmi2, U32 lastBlock,
void* workspace, size_t wkspSize)
{
const seqDef* const sstart = seqStorePtr->sequencesStart;
const seqDef* const send = seqStorePtr->sequences;
const seqDef* sp = sstart; /* tracks progresses within seqStorePtr->sequences */
size_t const nbSeqs = (size_t)(send - sstart);
const BYTE* const lstart = seqStorePtr->litStart;
const BYTE* const lend = seqStorePtr->lit;
const BYTE* lp = lstart;
size_t const nbLiterals = (size_t)(lend - lstart);
BYTE const* ip = (BYTE const*)src;
BYTE const* const iend = ip + srcSize;
BYTE* const ostart = (BYTE*)dst;
BYTE* const oend = ostart + dstCapacity;
BYTE* op = ostart;
const BYTE* llCodePtr = seqStorePtr->llCode;
const BYTE* mlCodePtr = seqStorePtr->mlCode;
const BYTE* ofCodePtr = seqStorePtr->ofCode;
size_t const minTarget = ZSTD_TARGETCBLOCKSIZE_MIN; /* enforce minimum size, to reduce undesirable side effects */
size_t const targetCBlockSize = MAX(minTarget, cctxParams->targetCBlockSize);
int writeLitEntropy = (entropyMetadata->hufMetadata.hType == set_compressed);
int writeSeqEntropy = 1;
DEBUGLOG(5, "ZSTD_compressSubBlock_multi (srcSize=%u, litSize=%u, nbSeq=%u)",
(unsigned)srcSize, (unsigned)(lend-lstart), (unsigned)(send-sstart));
/* let's start by a general estimation for the full block */
if (nbSeqs > 0) {
EstimatedBlockSize const ebs =
ZSTD_estimateSubBlockSize(lp, nbLiterals,
ofCodePtr, llCodePtr, mlCodePtr, nbSeqs,
&nextCBlock->entropy, entropyMetadata,
workspace, wkspSize,
writeLitEntropy, writeSeqEntropy);
/* quick estimation */
size_t const avgLitCost = nbLiterals ? (ebs.estLitSize * BYTESCALE) / nbLiterals : BYTESCALE;
size_t const avgSeqCost = ((ebs.estBlockSize - ebs.estLitSize) * BYTESCALE) / nbSeqs;
const size_t nbSubBlocks = MAX((ebs.estBlockSize + (targetCBlockSize/2)) / targetCBlockSize, 1);
size_t n, avgBlockBudget, blockBudgetSupp=0;
avgBlockBudget = (ebs.estBlockSize * BYTESCALE) / nbSubBlocks;
DEBUGLOG(5, "estimated fullblock size=%u bytes ; avgLitCost=%.2f ; avgSeqCost=%.2f ; targetCBlockSize=%u, nbSubBlocks=%u ; avgBlockBudget=%.0f bytes",
(unsigned)ebs.estBlockSize, (double)avgLitCost/BYTESCALE, (double)avgSeqCost/BYTESCALE,
(unsigned)targetCBlockSize, (unsigned)nbSubBlocks, (double)avgBlockBudget/BYTESCALE);
/* simplification: if estimates states that the full superblock doesn't compress, just bail out immediately
* this will result in the production of a single uncompressed block covering @srcSize.*/
if (ebs.estBlockSize > srcSize) return 0;
/* compress and write sub-blocks */
assert(nbSubBlocks>0);
for (n=0; n < nbSubBlocks-1; n++) {
/* determine nb of sequences for current sub-block + nbLiterals from next sequence */
size_t const seqCount = sizeBlockSequences(sp, (size_t)(send-sp),
avgBlockBudget + blockBudgetSupp, avgLitCost, avgSeqCost, n==0);
/* if reached last sequence : break to last sub-block (simplification) */
assert(seqCount <= (size_t)(send-sp));
if (sp + seqCount == send) break;
assert(seqCount > 0);
/* compress sub-block */
{ int litEntropyWritten = 0;
int seqEntropyWritten = 0;
size_t litSize = countLiterals(seqStorePtr, sp, seqCount);
const size_t decompressedSize =
ZSTD_seqDecompressedSize(seqStorePtr, sp, seqCount, litSize, 0);
size_t const cSize = ZSTD_compressSubBlock(&nextCBlock->entropy, entropyMetadata,
sp, seqCount,
lp, litSize,
llCodePtr, mlCodePtr, ofCodePtr,
cctxParams,
op, (size_t)(oend-op),
bmi2, writeLitEntropy, writeSeqEntropy,
&litEntropyWritten, &seqEntropyWritten,
0);
FORWARD_IF_ERROR(cSize, "ZSTD_compressSubBlock failed");
/* check compressibility, update state components */
if (cSize > 0 && cSize < decompressedSize) {
DEBUGLOG(5, "Committed sub-block compressing %u bytes => %u bytes",
(unsigned)decompressedSize, (unsigned)cSize);
assert(ip + decompressedSize <= iend);
ip += decompressedSize;
lp += litSize;
op += cSize;
llCodePtr += seqCount;
mlCodePtr += seqCount;
ofCodePtr += seqCount;
/* Entropy only needs to be written once */
if (litEntropyWritten) {
writeLitEntropy = 0;
}
if (seqEntropyWritten) {
writeSeqEntropy = 0;
}
sp += seqCount;
blockBudgetSupp = 0;
} }
/* otherwise : do not compress yet, coalesce current sub-block with following one */
}
} /* if (nbSeqs > 0) */
/* write last block */
DEBUGLOG(5, "Generate last sub-block: %u sequences remaining", (unsigned)(send - sp));
{ int litEntropyWritten = 0;
int seqEntropyWritten = 0;
size_t litSize = (size_t)(lend - lp);
size_t seqCount = (size_t)(send - sp);
const size_t decompressedSize =
ZSTD_seqDecompressedSize(seqStorePtr, sp, seqCount, litSize, 1);
size_t const cSize = ZSTD_compressSubBlock(&nextCBlock->entropy, entropyMetadata,
sp, seqCount,
lp, litSize,
llCodePtr, mlCodePtr, ofCodePtr,
cctxParams,
op, (size_t)(oend-op),
bmi2, writeLitEntropy, writeSeqEntropy,
&litEntropyWritten, &seqEntropyWritten,
lastBlock);
FORWARD_IF_ERROR(cSize, "ZSTD_compressSubBlock failed");
/* update pointers, the nb of literals borrowed from next sequence must be preserved */
if (cSize > 0 && cSize < decompressedSize) {
DEBUGLOG(5, "Last sub-block compressed %u bytes => %u bytes",
(unsigned)decompressedSize, (unsigned)cSize);
assert(ip + decompressedSize <= iend);
ip += decompressedSize;
lp += litSize;
op += cSize;
llCodePtr += seqCount;
mlCodePtr += seqCount;
ofCodePtr += seqCount;
/* Entropy only needs to be written once */
if (litEntropyWritten) {
writeLitEntropy = 0;
}
if (seqEntropyWritten) {
writeSeqEntropy = 0;
}
sp += seqCount;
}
}
if (writeLitEntropy) {
DEBUGLOG(5, "Literal entropy tables were never written");
ZSTD_memcpy(&nextCBlock->entropy.huf, &prevCBlock->entropy.huf, sizeof(prevCBlock->entropy.huf));
}
if (writeSeqEntropy && ZSTD_needSequenceEntropyTables(&entropyMetadata->fseMetadata)) {
/* If we haven't written our entropy tables, then we've violated our contract and
* must emit an uncompressed block.
*/
DEBUGLOG(5, "Sequence entropy tables were never written => cancel, emit an uncompressed block");
return 0;
}
if (ip < iend) {
/* some data left : last part of the block sent uncompressed */
size_t const rSize = (size_t)((iend - ip));
size_t const cSize = ZSTD_noCompressBlock(op, (size_t)(oend - op), ip, rSize, lastBlock);
DEBUGLOG(5, "Generate last uncompressed sub-block of %u bytes", (unsigned)(rSize));
FORWARD_IF_ERROR(cSize, "ZSTD_noCompressBlock failed");
assert(cSize != 0);
op += cSize;
/* We have to regenerate the repcodes because we've skipped some sequences */
if (sp < send) {
const seqDef* seq;
repcodes_t rep;
ZSTD_memcpy(&rep, prevCBlock->rep, sizeof(rep));
for (seq = sstart; seq < sp; ++seq) {
ZSTD_updateRep(rep.rep, seq->offBase, ZSTD_getSequenceLength(seqStorePtr, seq).litLength == 0);
}
ZSTD_memcpy(nextCBlock->rep, &rep, sizeof(rep));
}
}
DEBUGLOG(5, "ZSTD_compressSubBlock_multi compressed all subBlocks: total compressed size = %u",
(unsigned)(op-ostart));
return (size_t)(op-ostart);
}
size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
unsigned lastBlock)
{
ZSTD_entropyCTablesMetadata_t entropyMetadata;
FORWARD_IF_ERROR(ZSTD_buildBlockEntropyStats(&zc->seqStore,
&zc->blockState.prevCBlock->entropy,
&zc->blockState.nextCBlock->entropy,
&zc->appliedParams,
&entropyMetadata,
zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */), "");
return ZSTD_compressSubBlock_multi(&zc->seqStore,
zc->blockState.prevCBlock,
zc->blockState.nextCBlock,
&entropyMetadata,
&zc->appliedParams,
dst, dstCapacity,
src, srcSize,
zc->bmi2, lastBlock,
zc->entropyWorkspace, ENTROPY_WORKSPACE_SIZE /* statically allocated in resetCCtx */);
}
#endif /* USE_EXTERNAL_ZSTD */

View File

@ -0,0 +1,35 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_COMPRESS_ADVANCED_H
#define ZSTD_COMPRESS_ADVANCED_H
/*-*************************************
* Dependencies
***************************************/
#include "zstd.h" /* ZSTD_CCtx */
/*-*************************************
* Target Compressed Block Size
***************************************/
/* ZSTD_compressSuperBlock() :
* Used to compress a super block when targetCBlockSize is being used.
* The given block will be compressed into multiple sub blocks that are around targetCBlockSize. */
size_t ZSTD_compressSuperBlock(ZSTD_CCtx* zc,
void* dst, size_t dstCapacity,
void const* src, size_t srcSize,
unsigned lastBlock);
#endif /* ZSTD_COMPRESS_ADVANCED_H */
#endif /* USE_EXTERNAL_ZSTD */

131
vendor/github.com/DataDog/zstd/zstd_ctx.go generated vendored Normal file
View File

@ -0,0 +1,131 @@
package zstd
/*
#include "zstd.h"
*/
import "C"
import (
"bytes"
"io/ioutil"
"runtime"
"unsafe"
)
type Ctx interface {
// Compress src into dst. If you have a buffer to use, you can pass it to
// prevent allocation. If it is too small, or if nil is passed, a new buffer
// will be allocated and returned.
Compress(dst, src []byte) ([]byte, error)
// CompressLevel is the same as Compress but you can pass a compression level
CompressLevel(dst, src []byte, level int) ([]byte, error)
// Decompress src into dst. If you have a buffer to use, you can pass it to
// prevent allocation. If it is too small, or if nil is passed, a new buffer
// will be allocated and returned.
Decompress(dst, src []byte) ([]byte, error)
}
type ctx struct {
cctx *C.ZSTD_CCtx
dctx *C.ZSTD_DCtx
}
// Create a new ZStd Context.
// When compressing/decompressing many times, it is recommended to allocate a
// context just once, and re-use it for each successive compression operation.
// This will make workload friendlier for system's memory.
// Note : re-using context is just a speed / resource optimization.
// It doesn't change the compression ratio, which remains identical.
// Note 2 : In multi-threaded environments,
// use one different context per thread for parallel execution.
//
func NewCtx() Ctx {
c := &ctx{
cctx: C.ZSTD_createCCtx(),
dctx: C.ZSTD_createDCtx(),
}
runtime.SetFinalizer(c, finalizeCtx)
return c
}
func (c *ctx) Compress(dst, src []byte) ([]byte, error) {
return c.CompressLevel(dst, src, DefaultCompression)
}
func (c *ctx) CompressLevel(dst, src []byte, level int) ([]byte, error) {
bound := CompressBound(len(src))
if cap(dst) >= bound {
dst = dst[0:bound] // Reuse dst buffer
} else {
dst = make([]byte, bound)
}
// We need unsafe.Pointer(&src[0]) in the Cgo call to avoid "Go pointer to Go pointer" panics.
// This means we need to special case empty input. See:
// https://github.com/golang/go/issues/14210#issuecomment-346402945
var cWritten C.size_t
if len(src) == 0 {
cWritten = C.ZSTD_compressCCtx(
c.cctx,
unsafe.Pointer(&dst[0]),
C.size_t(len(dst)),
unsafe.Pointer(nil),
C.size_t(0),
C.int(level))
} else {
cWritten = C.ZSTD_compressCCtx(
c.cctx,
unsafe.Pointer(&dst[0]),
C.size_t(len(dst)),
unsafe.Pointer(&src[0]),
C.size_t(len(src)),
C.int(level))
}
written := int(cWritten)
// Check if the return is an Error code
if err := getError(written); err != nil {
return nil, err
}
return dst[:written], nil
}
func (c *ctx) Decompress(dst, src []byte) ([]byte, error) {
if len(src) == 0 {
return []byte{}, ErrEmptySlice
}
bound := decompressSizeHint(src)
if cap(dst) >= bound {
dst = dst[0:cap(dst)]
} else {
dst = make([]byte, bound)
}
written := int(C.ZSTD_decompressDCtx(
c.dctx,
unsafe.Pointer(&dst[0]),
C.size_t(len(dst)),
unsafe.Pointer(&src[0]),
C.size_t(len(src))))
err := getError(written)
if err == nil {
return dst[:written], nil
}
if !IsDstSizeTooSmallError(err) {
return nil, err
}
// We failed getting a dst buffer of correct size, use stream API
r := NewReader(bytes.NewReader(src))
defer r.Close()
return ioutil.ReadAll(r)
}
func finalizeCtx(c *ctx) {
C.ZSTD_freeCCtx(c.cctx)
C.ZSTD_freeDCtx(c.dctx)
}

751
vendor/github.com/DataDog/zstd/zstd_cwksp.h generated vendored Normal file
View File

@ -0,0 +1,751 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CWKSP_H
#define ZSTD_CWKSP_H
/*-*************************************
* Dependencies
***************************************/
#include "allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */
#include "zstd_internal.h"
#include "portability_macros.h"
#if defined (__cplusplus)
extern "C" {
#endif
/*-*************************************
* Constants
***************************************/
/* Since the workspace is effectively its own little malloc implementation /
* arena, when we run under ASAN, we should similarly insert redzones between
* each internal element of the workspace, so ASAN will catch overruns that
* reach outside an object but that stay inside the workspace.
*
* This defines the size of that redzone.
*/
#ifndef ZSTD_CWKSP_ASAN_REDZONE_SIZE
#define ZSTD_CWKSP_ASAN_REDZONE_SIZE 128
#endif
/* Set our tables and aligneds to align by 64 bytes */
#define ZSTD_CWKSP_ALIGNMENT_BYTES 64
/*-*************************************
* Structures
***************************************/
typedef enum {
ZSTD_cwksp_alloc_objects,
ZSTD_cwksp_alloc_aligned_init_once,
ZSTD_cwksp_alloc_aligned,
ZSTD_cwksp_alloc_buffers
} ZSTD_cwksp_alloc_phase_e;
/**
* Used to describe whether the workspace is statically allocated (and will not
* necessarily ever be freed), or if it's dynamically allocated and we can
* expect a well-formed caller to free this.
*/
typedef enum {
ZSTD_cwksp_dynamic_alloc,
ZSTD_cwksp_static_alloc
} ZSTD_cwksp_static_alloc_e;
/**
* Zstd fits all its internal datastructures into a single continuous buffer,
* so that it only needs to perform a single OS allocation (or so that a buffer
* can be provided to it and it can perform no allocations at all). This buffer
* is called the workspace.
*
* Several optimizations complicate that process of allocating memory ranges
* from this workspace for each internal datastructure:
*
* - These different internal datastructures have different setup requirements:
*
* - The static objects need to be cleared once and can then be trivially
* reused for each compression.
*
* - Various buffers don't need to be initialized at all--they are always
* written into before they're read.
*
* - The matchstate tables have a unique requirement that they don't need
* their memory to be totally cleared, but they do need the memory to have
* some bound, i.e., a guarantee that all values in the memory they've been
* allocated is less than some maximum value (which is the starting value
* for the indices that they will then use for compression). When this
* guarantee is provided to them, they can use the memory without any setup
* work. When it can't, they have to clear the area.
*
* - These buffers also have different alignment requirements.
*
* - We would like to reuse the objects in the workspace for multiple
* compressions without having to perform any expensive reallocation or
* reinitialization work.
*
* - We would like to be able to efficiently reuse the workspace across
* multiple compressions **even when the compression parameters change** and
* we need to resize some of the objects (where possible).
*
* To attempt to manage this buffer, given these constraints, the ZSTD_cwksp
* abstraction was created. It works as follows:
*
* Workspace Layout:
*
* [ ... workspace ... ]
* [objects][tables ->] free space [<- buffers][<- aligned][<- init once]
*
* The various objects that live in the workspace are divided into the
* following categories, and are allocated separately:
*
* - Static objects: this is optionally the enclosing ZSTD_CCtx or ZSTD_CDict,
* so that literally everything fits in a single buffer. Note: if present,
* this must be the first object in the workspace, since ZSTD_customFree{CCtx,
* CDict}() rely on a pointer comparison to see whether one or two frees are
* required.
*
* - Fixed size objects: these are fixed-size, fixed-count objects that are
* nonetheless "dynamically" allocated in the workspace so that we can
* control how they're initialized separately from the broader ZSTD_CCtx.
* Examples:
* - Entropy Workspace
* - 2 x ZSTD_compressedBlockState_t
* - CDict dictionary contents
*
* - Tables: these are any of several different datastructures (hash tables,
* chain tables, binary trees) that all respect a common format: they are
* uint32_t arrays, all of whose values are between 0 and (nextSrc - base).
* Their sizes depend on the cparams. These tables are 64-byte aligned.
*
* - Init once: these buffers require to be initialized at least once before
* use. They should be used when we want to skip memory initialization
* while not triggering memory checkers (like Valgrind) when reading from
* from this memory without writing to it first.
* These buffers should be used carefully as they might contain data
* from previous compressions.
* Buffers are aligned to 64 bytes.
*
* - Aligned: these buffers don't require any initialization before they're
* used. The user of the buffer should make sure they write into a buffer
* location before reading from it.
* Buffers are aligned to 64 bytes.
*
* - Buffers: these buffers are used for various purposes that don't require
* any alignment or initialization before they're used. This means they can
* be moved around at no cost for a new compression.
*
* Allocating Memory:
*
* The various types of objects must be allocated in order, so they can be
* correctly packed into the workspace buffer. That order is:
*
* 1. Objects
* 2. Init once / Tables
* 3. Aligned / Tables
* 4. Buffers / Tables
*
* Attempts to reserve objects of different types out of order will fail.
*/
typedef struct {
void* workspace;
void* workspaceEnd;
void* objectEnd;
void* tableEnd;
void* tableValidEnd;
void* allocStart;
void* initOnceStart;
BYTE allocFailed;
int workspaceOversizedDuration;
ZSTD_cwksp_alloc_phase_e phase;
ZSTD_cwksp_static_alloc_e isStatic;
} ZSTD_cwksp;
/*-*************************************
* Functions
***************************************/
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws);
MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws);
MEM_STATIC void ZSTD_cwksp_assert_internal_consistency(ZSTD_cwksp* ws) {
(void)ws;
assert(ws->workspace <= ws->objectEnd);
assert(ws->objectEnd <= ws->tableEnd);
assert(ws->objectEnd <= ws->tableValidEnd);
assert(ws->tableEnd <= ws->allocStart);
assert(ws->tableValidEnd <= ws->allocStart);
assert(ws->allocStart <= ws->workspaceEnd);
assert(ws->initOnceStart <= ZSTD_cwksp_initialAllocStart(ws));
assert(ws->workspace <= ws->initOnceStart);
#if ZSTD_MEMORY_SANITIZER
{
intptr_t const offset = __msan_test_shadow(ws->initOnceStart,
(U8*)ZSTD_cwksp_initialAllocStart(ws) - (U8*)ws->initOnceStart);
(void)offset;
#if defined(ZSTD_MSAN_PRINT)
if(offset!=-1) {
__msan_print_shadow((U8*)ws->initOnceStart + offset - 8, 32);
}
#endif
assert(offset==-1);
};
#endif
}
/**
* Align must be a power of 2.
*/
MEM_STATIC size_t ZSTD_cwksp_align(size_t size, size_t const align) {
size_t const mask = align - 1;
assert((align & mask) == 0);
return (size + mask) & ~mask;
}
/**
* Use this to determine how much space in the workspace we will consume to
* allocate this object. (Normally it should be exactly the size of the object,
* but under special conditions, like ASAN, where we pad each object, it might
* be larger.)
*
* Since tables aren't currently redzoned, you don't need to call through this
* to figure out how much space you need for the matchState tables. Everything
* else is though.
*
* Do not use for sizing aligned buffers. Instead, use ZSTD_cwksp_aligned_alloc_size().
*/
MEM_STATIC size_t ZSTD_cwksp_alloc_size(size_t size) {
if (size == 0)
return 0;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
return size + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#else
return size;
#endif
}
/**
* Returns an adjusted alloc size that is the nearest larger multiple of 64 bytes.
* Used to determine the number of bytes required for a given "aligned".
*/
MEM_STATIC size_t ZSTD_cwksp_aligned_alloc_size(size_t size) {
return ZSTD_cwksp_alloc_size(ZSTD_cwksp_align(size, ZSTD_CWKSP_ALIGNMENT_BYTES));
}
/**
* Returns the amount of additional space the cwksp must allocate
* for internal purposes (currently only alignment).
*/
MEM_STATIC size_t ZSTD_cwksp_slack_space_required(void) {
/* For alignment, the wksp will always allocate an additional 2*ZSTD_CWKSP_ALIGNMENT_BYTES
* bytes to align the beginning of tables section and end of buffers;
*/
size_t const slackSpace = ZSTD_CWKSP_ALIGNMENT_BYTES * 2;
return slackSpace;
}
/**
* Return the number of additional bytes required to align a pointer to the given number of bytes.
* alignBytes must be a power of two.
*/
MEM_STATIC size_t ZSTD_cwksp_bytes_to_align_ptr(void* ptr, const size_t alignBytes) {
size_t const alignBytesMask = alignBytes - 1;
size_t const bytes = (alignBytes - ((size_t)ptr & (alignBytesMask))) & alignBytesMask;
assert((alignBytes & alignBytesMask) == 0);
assert(bytes < alignBytes);
return bytes;
}
/**
* Returns the initial value for allocStart which is used to determine the position from
* which we can allocate from the end of the workspace.
*/
MEM_STATIC void* ZSTD_cwksp_initialAllocStart(ZSTD_cwksp* ws) {
return (void*)((size_t)ws->workspaceEnd & ~(ZSTD_CWKSP_ALIGNMENT_BYTES-1));
}
/**
* Internal function. Do not use directly.
* Reserves the given number of bytes within the aligned/buffer segment of the wksp,
* which counts from the end of the wksp (as opposed to the object/table segment).
*
* Returns a pointer to the beginning of that space.
*/
MEM_STATIC void*
ZSTD_cwksp_reserve_internal_buffer_space(ZSTD_cwksp* ws, size_t const bytes)
{
void* const alloc = (BYTE*)ws->allocStart - bytes;
void* const bottom = ws->tableEnd;
DEBUGLOG(5, "cwksp: reserving %p %zd bytes, %zd bytes remaining",
alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
ZSTD_cwksp_assert_internal_consistency(ws);
assert(alloc >= bottom);
if (alloc < bottom) {
DEBUGLOG(4, "cwksp: alloc failed!");
ws->allocFailed = 1;
return NULL;
}
/* the area is reserved from the end of wksp.
* If it overlaps with tableValidEnd, it voids guarantees on values' range */
if (alloc < ws->tableValidEnd) {
ws->tableValidEnd = alloc;
}
ws->allocStart = alloc;
return alloc;
}
/**
* Moves the cwksp to the next phase, and does any necessary allocations.
* cwksp initialization must necessarily go through each phase in order.
* Returns a 0 on success, or zstd error
*/
MEM_STATIC size_t
ZSTD_cwksp_internal_advance_phase(ZSTD_cwksp* ws, ZSTD_cwksp_alloc_phase_e phase)
{
assert(phase >= ws->phase);
if (phase > ws->phase) {
/* Going from allocating objects to allocating initOnce / tables */
if (ws->phase < ZSTD_cwksp_alloc_aligned_init_once &&
phase >= ZSTD_cwksp_alloc_aligned_init_once) {
ws->tableValidEnd = ws->objectEnd;
ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws);
{ /* Align the start of the tables to 64 bytes. Use [0, 63] bytes */
void *const alloc = ws->objectEnd;
size_t const bytesToAlign = ZSTD_cwksp_bytes_to_align_ptr(alloc, ZSTD_CWKSP_ALIGNMENT_BYTES);
void *const objectEnd = (BYTE *) alloc + bytesToAlign;
DEBUGLOG(5, "reserving table alignment addtl space: %zu", bytesToAlign);
RETURN_ERROR_IF(objectEnd > ws->workspaceEnd, memory_allocation,
"table phase - alignment initial allocation failed!");
ws->objectEnd = objectEnd;
ws->tableEnd = objectEnd; /* table area starts being empty */
if (ws->tableValidEnd < ws->tableEnd) {
ws->tableValidEnd = ws->tableEnd;
}
}
}
ws->phase = phase;
ZSTD_cwksp_assert_internal_consistency(ws);
}
return 0;
}
/**
* Returns whether this object/buffer/etc was allocated in this workspace.
*/
MEM_STATIC int ZSTD_cwksp_owns_buffer(const ZSTD_cwksp* ws, const void* ptr)
{
return (ptr != NULL) && (ws->workspace <= ptr) && (ptr < ws->workspaceEnd);
}
/**
* Internal function. Do not use directly.
*/
MEM_STATIC void*
ZSTD_cwksp_reserve_internal(ZSTD_cwksp* ws, size_t bytes, ZSTD_cwksp_alloc_phase_e phase)
{
void* alloc;
if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase)) || bytes == 0) {
return NULL;
}
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* over-reserve space */
bytes += 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif
alloc = ZSTD_cwksp_reserve_internal_buffer_space(ws, bytes);
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
* either size. */
if (alloc) {
alloc = (BYTE *)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
/* We need to keep the redzone poisoned while unpoisoning the bytes that
* are actually allocated. */
__asan_unpoison_memory_region(alloc, bytes - 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE);
}
}
#endif
return alloc;
}
/**
* Reserves and returns unaligned memory.
*/
MEM_STATIC BYTE* ZSTD_cwksp_reserve_buffer(ZSTD_cwksp* ws, size_t bytes)
{
return (BYTE*)ZSTD_cwksp_reserve_internal(ws, bytes, ZSTD_cwksp_alloc_buffers);
}
/**
* Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
* This memory has been initialized at least once in the past.
* This doesn't mean it has been initialized this time, and it might contain data from previous
* operations.
* The main usage is for algorithms that might need read access into uninitialized memory.
* The algorithm must maintain safety under these conditions and must make sure it doesn't
* leak any of the past data (directly or in side channels).
*/
MEM_STATIC void* ZSTD_cwksp_reserve_aligned_init_once(ZSTD_cwksp* ws, size_t bytes)
{
size_t const alignedBytes = ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES);
void* ptr = ZSTD_cwksp_reserve_internal(ws, alignedBytes, ZSTD_cwksp_alloc_aligned_init_once);
assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
if(ptr && ptr < ws->initOnceStart) {
/* We assume the memory following the current allocation is either:
* 1. Not usable as initOnce memory (end of workspace)
* 2. Another initOnce buffer that has been allocated before (and so was previously memset)
* 3. An ASAN redzone, in which case we don't want to write on it
* For these reasons it should be fine to not explicitly zero every byte up to ws->initOnceStart.
* Note that we assume here that MSAN and ASAN cannot run in the same time. */
ZSTD_memset(ptr, 0, MIN((size_t)((U8*)ws->initOnceStart - (U8*)ptr), alignedBytes));
ws->initOnceStart = ptr;
}
#if ZSTD_MEMORY_SANITIZER
assert(__msan_test_shadow(ptr, bytes) == -1);
#endif
return ptr;
}
/**
* Reserves and returns memory sized on and aligned on ZSTD_CWKSP_ALIGNMENT_BYTES (64 bytes).
*/
MEM_STATIC void* ZSTD_cwksp_reserve_aligned(ZSTD_cwksp* ws, size_t bytes)
{
void* ptr = ZSTD_cwksp_reserve_internal(ws, ZSTD_cwksp_align(bytes, ZSTD_CWKSP_ALIGNMENT_BYTES),
ZSTD_cwksp_alloc_aligned);
assert(((size_t)ptr & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
return ptr;
}
/**
* Aligned on 64 bytes. These buffers have the special property that
* their values remain constrained, allowing us to reuse them without
* memset()-ing them.
*/
MEM_STATIC void* ZSTD_cwksp_reserve_table(ZSTD_cwksp* ws, size_t bytes)
{
const ZSTD_cwksp_alloc_phase_e phase = ZSTD_cwksp_alloc_aligned_init_once;
void* alloc;
void* end;
void* top;
/* We can only start allocating tables after we are done reserving space for objects at the
* start of the workspace */
if(ws->phase < phase) {
if (ZSTD_isError(ZSTD_cwksp_internal_advance_phase(ws, phase))) {
return NULL;
}
}
alloc = ws->tableEnd;
end = (BYTE *)alloc + bytes;
top = ws->allocStart;
DEBUGLOG(5, "cwksp: reserving %p table %zd bytes, %zd bytes remaining",
alloc, bytes, ZSTD_cwksp_available_space(ws) - bytes);
assert((bytes & (sizeof(U32)-1)) == 0);
ZSTD_cwksp_assert_internal_consistency(ws);
assert(end <= top);
if (end > top) {
DEBUGLOG(4, "cwksp: table alloc failed!");
ws->allocFailed = 1;
return NULL;
}
ws->tableEnd = end;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
__asan_unpoison_memory_region(alloc, bytes);
}
#endif
assert((bytes & (ZSTD_CWKSP_ALIGNMENT_BYTES-1)) == 0);
assert(((size_t)alloc & (ZSTD_CWKSP_ALIGNMENT_BYTES-1))== 0);
return alloc;
}
/**
* Aligned on sizeof(void*).
* Note : should happen only once, at workspace first initialization
*/
MEM_STATIC void* ZSTD_cwksp_reserve_object(ZSTD_cwksp* ws, size_t bytes)
{
size_t const roundedBytes = ZSTD_cwksp_align(bytes, sizeof(void*));
void* alloc = ws->objectEnd;
void* end = (BYTE*)alloc + roundedBytes;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* over-reserve space */
end = (BYTE *)end + 2 * ZSTD_CWKSP_ASAN_REDZONE_SIZE;
#endif
DEBUGLOG(4,
"cwksp: reserving %p object %zd bytes (rounded to %zd), %zd bytes remaining",
alloc, bytes, roundedBytes, ZSTD_cwksp_available_space(ws) - roundedBytes);
assert((size_t)alloc % ZSTD_ALIGNOF(void*) == 0);
assert(bytes % ZSTD_ALIGNOF(void*) == 0);
ZSTD_cwksp_assert_internal_consistency(ws);
/* we must be in the first phase, no advance is possible */
if (ws->phase != ZSTD_cwksp_alloc_objects || end > ws->workspaceEnd) {
DEBUGLOG(3, "cwksp: object alloc failed!");
ws->allocFailed = 1;
return NULL;
}
ws->objectEnd = end;
ws->tableEnd = end;
ws->tableValidEnd = end;
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* Move alloc so there's ZSTD_CWKSP_ASAN_REDZONE_SIZE unused space on
* either size. */
alloc = (BYTE*)alloc + ZSTD_CWKSP_ASAN_REDZONE_SIZE;
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
__asan_unpoison_memory_region(alloc, bytes);
}
#endif
return alloc;
}
MEM_STATIC void ZSTD_cwksp_mark_tables_dirty(ZSTD_cwksp* ws)
{
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_dirty");
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* To validate that the table reuse logic is sound, and that we don't
* access table space that we haven't cleaned, we re-"poison" the table
* space every time we mark it dirty.
* Since tableValidEnd space and initOnce space may overlap we don't poison
* the initOnce portion as it break its promise. This means that this poisoning
* check isn't always applied fully. */
{
size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
assert(__msan_test_shadow(ws->objectEnd, size) == -1);
if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) {
__msan_poison(ws->objectEnd, size);
} else {
assert(ws->initOnceStart >= ws->objectEnd);
__msan_poison(ws->objectEnd, (BYTE*)ws->initOnceStart - (BYTE*)ws->objectEnd);
}
}
#endif
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
ws->tableValidEnd = ws->objectEnd;
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC void ZSTD_cwksp_mark_tables_clean(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_mark_tables_clean");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
if (ws->tableValidEnd < ws->tableEnd) {
ws->tableValidEnd = ws->tableEnd;
}
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* Zero the part of the allocated tables not already marked clean.
*/
MEM_STATIC void ZSTD_cwksp_clean_tables(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: ZSTD_cwksp_clean_tables");
assert(ws->tableValidEnd >= ws->objectEnd);
assert(ws->tableValidEnd <= ws->allocStart);
if (ws->tableValidEnd < ws->tableEnd) {
ZSTD_memset(ws->tableValidEnd, 0, (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->tableValidEnd));
}
ZSTD_cwksp_mark_tables_clean(ws);
}
/**
* Invalidates table allocations.
* All other allocations remain valid.
*/
MEM_STATIC void ZSTD_cwksp_clear_tables(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing tables!");
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* We don't do this when the workspace is statically allocated, because
* when that is the case, we have no capability to hook into the end of the
* workspace's lifecycle to unpoison the memory.
*/
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
size_t size = (BYTE*)ws->tableValidEnd - (BYTE*)ws->objectEnd;
__asan_poison_memory_region(ws->objectEnd, size);
}
#endif
ws->tableEnd = ws->objectEnd;
ZSTD_cwksp_assert_internal_consistency(ws);
}
/**
* Invalidates all buffer, aligned, and table allocations.
* Object allocations remain valid.
*/
MEM_STATIC void ZSTD_cwksp_clear(ZSTD_cwksp* ws) {
DEBUGLOG(4, "cwksp: clearing!");
#if ZSTD_MEMORY_SANITIZER && !defined (ZSTD_MSAN_DONT_POISON_WORKSPACE)
/* To validate that the context reuse logic is sound, and that we don't
* access stuff that this compression hasn't initialized, we re-"poison"
* the workspace except for the areas in which we expect memory reuse
* without initialization (objects, valid tables area and init once
* memory). */
{
if((BYTE*)ws->tableValidEnd < (BYTE*)ws->initOnceStart) {
size_t size = (BYTE*)ws->initOnceStart - (BYTE*)ws->tableValidEnd;
__msan_poison(ws->tableValidEnd, size);
}
}
#endif
#if ZSTD_ADDRESS_SANITIZER && !defined (ZSTD_ASAN_DONT_POISON_WORKSPACE)
/* We don't do this when the workspace is statically allocated, because
* when that is the case, we have no capability to hook into the end of the
* workspace's lifecycle to unpoison the memory.
*/
if (ws->isStatic == ZSTD_cwksp_dynamic_alloc) {
size_t size = (BYTE*)ws->workspaceEnd - (BYTE*)ws->objectEnd;
__asan_poison_memory_region(ws->objectEnd, size);
}
#endif
ws->tableEnd = ws->objectEnd;
ws->allocStart = ZSTD_cwksp_initialAllocStart(ws);
ws->allocFailed = 0;
if (ws->phase > ZSTD_cwksp_alloc_aligned_init_once) {
ws->phase = ZSTD_cwksp_alloc_aligned_init_once;
}
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC size_t ZSTD_cwksp_sizeof(const ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->workspace);
}
MEM_STATIC size_t ZSTD_cwksp_used(const ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->tableEnd - (BYTE*)ws->workspace)
+ (size_t)((BYTE*)ws->workspaceEnd - (BYTE*)ws->allocStart);
}
/**
* The provided workspace takes ownership of the buffer [start, start+size).
* Any existing values in the workspace are ignored (the previously managed
* buffer, if present, must be separately freed).
*/
MEM_STATIC void ZSTD_cwksp_init(ZSTD_cwksp* ws, void* start, size_t size, ZSTD_cwksp_static_alloc_e isStatic) {
DEBUGLOG(4, "cwksp: init'ing workspace with %zd bytes", size);
assert(((size_t)start & (sizeof(void*)-1)) == 0); /* ensure correct alignment */
ws->workspace = start;
ws->workspaceEnd = (BYTE*)start + size;
ws->objectEnd = ws->workspace;
ws->tableValidEnd = ws->objectEnd;
ws->initOnceStart = ZSTD_cwksp_initialAllocStart(ws);
ws->phase = ZSTD_cwksp_alloc_objects;
ws->isStatic = isStatic;
ZSTD_cwksp_clear(ws);
ws->workspaceOversizedDuration = 0;
ZSTD_cwksp_assert_internal_consistency(ws);
}
MEM_STATIC size_t ZSTD_cwksp_create(ZSTD_cwksp* ws, size_t size, ZSTD_customMem customMem) {
void* workspace = ZSTD_customMalloc(size, customMem);
DEBUGLOG(4, "cwksp: creating new workspace with %zd bytes", size);
RETURN_ERROR_IF(workspace == NULL, memory_allocation, "NULL pointer!");
ZSTD_cwksp_init(ws, workspace, size, ZSTD_cwksp_dynamic_alloc);
return 0;
}
MEM_STATIC void ZSTD_cwksp_free(ZSTD_cwksp* ws, ZSTD_customMem customMem) {
void *ptr = ws->workspace;
DEBUGLOG(4, "cwksp: freeing workspace");
#if ZSTD_MEMORY_SANITIZER && !defined(ZSTD_MSAN_DONT_POISON_WORKSPACE)
if (ptr != NULL && customMem.customFree != NULL) {
__msan_unpoison(ptr, ZSTD_cwksp_sizeof(ws));
}
#endif
ZSTD_memset(ws, 0, sizeof(ZSTD_cwksp));
ZSTD_customFree(ptr, customMem);
}
/**
* Moves the management of a workspace from one cwksp to another. The src cwksp
* is left in an invalid state (src must be re-init()'ed before it's used again).
*/
MEM_STATIC void ZSTD_cwksp_move(ZSTD_cwksp* dst, ZSTD_cwksp* src) {
*dst = *src;
ZSTD_memset(src, 0, sizeof(ZSTD_cwksp));
}
MEM_STATIC int ZSTD_cwksp_reserve_failed(const ZSTD_cwksp* ws) {
return ws->allocFailed;
}
/*-*************************************
* Functions Checking Free Space
***************************************/
/* ZSTD_alignmentSpaceWithinBounds() :
* Returns if the estimated space needed for a wksp is within an acceptable limit of the
* actual amount of space used.
*/
MEM_STATIC int ZSTD_cwksp_estimated_space_within_bounds(const ZSTD_cwksp *const ws, size_t const estimatedSpace) {
/* We have an alignment space between objects and tables between tables and buffers, so we can have up to twice
* the alignment bytes difference between estimation and actual usage */
return (estimatedSpace - ZSTD_cwksp_slack_space_required()) <= ZSTD_cwksp_used(ws) &&
ZSTD_cwksp_used(ws) <= estimatedSpace;
}
MEM_STATIC size_t ZSTD_cwksp_available_space(ZSTD_cwksp* ws) {
return (size_t)((BYTE*)ws->allocStart - (BYTE*)ws->tableEnd);
}
MEM_STATIC int ZSTD_cwksp_check_available(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_available_space(ws) >= additionalNeededSpace;
}
MEM_STATIC int ZSTD_cwksp_check_too_large(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_check_available(
ws, additionalNeededSpace * ZSTD_WORKSPACETOOLARGE_FACTOR);
}
MEM_STATIC int ZSTD_cwksp_check_wasteful(ZSTD_cwksp* ws, size_t additionalNeededSpace) {
return ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)
&& ws->workspaceOversizedDuration > ZSTD_WORKSPACETOOLARGE_MAXDURATION;
}
MEM_STATIC void ZSTD_cwksp_bump_oversized_duration(
ZSTD_cwksp* ws, size_t additionalNeededSpace) {
if (ZSTD_cwksp_check_too_large(ws, additionalNeededSpace)) {
ws->workspaceOversizedDuration++;
} else {
ws->workspaceOversizedDuration = 0;
}
}
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_CWKSP_H */
#endif /* USE_EXTERNAL_ZSTD */

247
vendor/github.com/DataDog/zstd/zstd_ddict.c generated vendored Normal file
View File

@ -0,0 +1,247 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* zstd_ddict.c :
* concentrates all logic that needs to know the internals of ZSTD_DDict object */
/*-*******************************************************
* Dependencies
*********************************************************/
#include "allocations.h" /* ZSTD_customMalloc, ZSTD_customFree */
#include "zstd_deps.h" /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
#include "cpu.h" /* bmi2 */
#include "mem.h" /* low level memory routines */
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "huf.h"
#include "zstd_decompress_internal.h"
#include "zstd_ddict.h"
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
#include "zstd_legacy.h"
#endif
/*-*******************************************************
* Types
*********************************************************/
struct ZSTD_DDict_s {
void* dictBuffer;
const void* dictContent;
size_t dictSize;
ZSTD_entropyDTables_t entropy;
U32 dictID;
U32 entropyPresent;
ZSTD_customMem cMem;
}; /* typedef'd to ZSTD_DDict within "zstd.h" */
const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict)
{
assert(ddict != NULL);
return ddict->dictContent;
}
size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict)
{
assert(ddict != NULL);
return ddict->dictSize;
}
void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict)
{
DEBUGLOG(4, "ZSTD_copyDDictParameters");
assert(dctx != NULL);
assert(ddict != NULL);
dctx->dictID = ddict->dictID;
dctx->prefixStart = ddict->dictContent;
dctx->virtualStart = ddict->dictContent;
dctx->dictEnd = (const BYTE*)ddict->dictContent + ddict->dictSize;
dctx->previousDstEnd = dctx->dictEnd;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
dctx->dictContentBeginForFuzzing = dctx->prefixStart;
dctx->dictContentEndForFuzzing = dctx->previousDstEnd;
#endif
if (ddict->entropyPresent) {
dctx->litEntropy = 1;
dctx->fseEntropy = 1;
dctx->LLTptr = ddict->entropy.LLTable;
dctx->MLTptr = ddict->entropy.MLTable;
dctx->OFTptr = ddict->entropy.OFTable;
dctx->HUFptr = ddict->entropy.hufTable;
dctx->entropy.rep[0] = ddict->entropy.rep[0];
dctx->entropy.rep[1] = ddict->entropy.rep[1];
dctx->entropy.rep[2] = ddict->entropy.rep[2];
} else {
dctx->litEntropy = 0;
dctx->fseEntropy = 0;
}
}
static size_t
ZSTD_loadEntropy_intoDDict(ZSTD_DDict* ddict,
ZSTD_dictContentType_e dictContentType)
{
ddict->dictID = 0;
ddict->entropyPresent = 0;
if (dictContentType == ZSTD_dct_rawContent) return 0;
if (ddict->dictSize < 8) {
if (dictContentType == ZSTD_dct_fullDict)
return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
return 0; /* pure content mode */
}
{ U32 const magic = MEM_readLE32(ddict->dictContent);
if (magic != ZSTD_MAGIC_DICTIONARY) {
if (dictContentType == ZSTD_dct_fullDict)
return ERROR(dictionary_corrupted); /* only accept specified dictionaries */
return 0; /* pure content mode */
}
}
ddict->dictID = MEM_readLE32((const char*)ddict->dictContent + ZSTD_FRAMEIDSIZE);
/* load entropy tables */
RETURN_ERROR_IF(ZSTD_isError(ZSTD_loadDEntropy(
&ddict->entropy, ddict->dictContent, ddict->dictSize)),
dictionary_corrupted, "");
ddict->entropyPresent = 1;
return 0;
}
static size_t ZSTD_initDDict_internal(ZSTD_DDict* ddict,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
if ((dictLoadMethod == ZSTD_dlm_byRef) || (!dict) || (!dictSize)) {
ddict->dictBuffer = NULL;
ddict->dictContent = dict;
if (!dict) dictSize = 0;
} else {
void* const internalBuffer = ZSTD_customMalloc(dictSize, ddict->cMem);
ddict->dictBuffer = internalBuffer;
ddict->dictContent = internalBuffer;
if (!internalBuffer) return ERROR(memory_allocation);
ZSTD_memcpy(internalBuffer, dict, dictSize);
}
ddict->dictSize = dictSize;
ddict->entropy.hufTable[0] = (HUF_DTable)((ZSTD_HUFFDTABLE_CAPACITY_LOG)*0x1000001); /* cover both little and big endian */
/* parse dictionary content */
FORWARD_IF_ERROR( ZSTD_loadEntropy_intoDDict(ddict, dictContentType) , "");
return 0;
}
ZSTD_DDict* ZSTD_createDDict_advanced(const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType,
ZSTD_customMem customMem)
{
if ((!customMem.customAlloc) ^ (!customMem.customFree)) return NULL;
{ ZSTD_DDict* const ddict = (ZSTD_DDict*) ZSTD_customMalloc(sizeof(ZSTD_DDict), customMem);
if (ddict == NULL) return NULL;
ddict->cMem = customMem;
{ size_t const initResult = ZSTD_initDDict_internal(ddict,
dict, dictSize,
dictLoadMethod, dictContentType);
if (ZSTD_isError(initResult)) {
ZSTD_freeDDict(ddict);
return NULL;
} }
return ddict;
}
}
/*! ZSTD_createDDict() :
* Create a digested dictionary, to start decompression without startup delay.
* `dict` content is copied inside DDict.
* Consequently, `dict` can be released after `ZSTD_DDict` creation */
ZSTD_DDict* ZSTD_createDDict(const void* dict, size_t dictSize)
{
ZSTD_customMem const allocator = { NULL, NULL, NULL };
return ZSTD_createDDict_advanced(dict, dictSize, ZSTD_dlm_byCopy, ZSTD_dct_auto, allocator);
}
/*! ZSTD_createDDict_byReference() :
* Create a digested dictionary, to start decompression without startup delay.
* Dictionary content is simply referenced, it will be accessed during decompression.
* Warning : dictBuffer must outlive DDict (DDict must be freed before dictBuffer) */
ZSTD_DDict* ZSTD_createDDict_byReference(const void* dictBuffer, size_t dictSize)
{
ZSTD_customMem const allocator = { NULL, NULL, NULL };
return ZSTD_createDDict_advanced(dictBuffer, dictSize, ZSTD_dlm_byRef, ZSTD_dct_auto, allocator);
}
const ZSTD_DDict* ZSTD_initStaticDDict(
void* sBuffer, size_t sBufferSize,
const void* dict, size_t dictSize,
ZSTD_dictLoadMethod_e dictLoadMethod,
ZSTD_dictContentType_e dictContentType)
{
size_t const neededSpace = sizeof(ZSTD_DDict)
+ (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
ZSTD_DDict* const ddict = (ZSTD_DDict*)sBuffer;
assert(sBuffer != NULL);
assert(dict != NULL);
if ((size_t)sBuffer & 7) return NULL; /* 8-aligned */
if (sBufferSize < neededSpace) return NULL;
if (dictLoadMethod == ZSTD_dlm_byCopy) {
ZSTD_memcpy(ddict+1, dict, dictSize); /* local copy */
dict = ddict+1;
}
if (ZSTD_isError( ZSTD_initDDict_internal(ddict,
dict, dictSize,
ZSTD_dlm_byRef, dictContentType) ))
return NULL;
return ddict;
}
size_t ZSTD_freeDDict(ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0; /* support free on NULL */
{ ZSTD_customMem const cMem = ddict->cMem;
ZSTD_customFree(ddict->dictBuffer, cMem);
ZSTD_customFree(ddict, cMem);
return 0;
}
}
/*! ZSTD_estimateDDictSize() :
* Estimate amount of memory that will be needed to create a dictionary for decompression.
* Note : dictionary created by reference using ZSTD_dlm_byRef are smaller */
size_t ZSTD_estimateDDictSize(size_t dictSize, ZSTD_dictLoadMethod_e dictLoadMethod)
{
return sizeof(ZSTD_DDict) + (dictLoadMethod == ZSTD_dlm_byRef ? 0 : dictSize);
}
size_t ZSTD_sizeof_DDict(const ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0; /* support sizeof on NULL */
return sizeof(*ddict) + (ddict->dictBuffer ? ddict->dictSize : 0) ;
}
/*! ZSTD_getDictID_fromDDict() :
* Provides the dictID of the dictionary loaded into `ddict`.
* If @return == 0, the dictionary is not conformant to Zstandard specification, or empty.
* Non-conformant dictionaries can still be loaded, but as content-only dictionaries. */
unsigned ZSTD_getDictID_fromDDict(const ZSTD_DDict* ddict)
{
if (ddict==NULL) return 0;
return ddict->dictID;
}
#endif /* USE_EXTERNAL_ZSTD */

47
vendor/github.com/DataDog/zstd/zstd_ddict.h generated vendored Normal file
View File

@ -0,0 +1,47 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_DDICT_H
#define ZSTD_DDICT_H
/*-*******************************************************
* Dependencies
*********************************************************/
#include "zstd_deps.h" /* size_t */
#include "zstd.h" /* ZSTD_DDict, and several public functions */
/*-*******************************************************
* Interface
*********************************************************/
/* note: several prototypes are already published in `zstd.h` :
* ZSTD_createDDict()
* ZSTD_createDDict_byReference()
* ZSTD_createDDict_advanced()
* ZSTD_freeDDict()
* ZSTD_initStaticDDict()
* ZSTD_sizeof_DDict()
* ZSTD_estimateDDictSize()
* ZSTD_getDictID_fromDict()
*/
const void* ZSTD_DDict_dictContent(const ZSTD_DDict* ddict);
size_t ZSTD_DDict_dictSize(const ZSTD_DDict* ddict);
void ZSTD_copyDDictParameters(ZSTD_DCtx* dctx, const ZSTD_DDict* ddict);
#endif /* ZSTD_DDICT_H */
#endif /* USE_EXTERNAL_ZSTD */

2410
vendor/github.com/DataDog/zstd/zstd_decompress.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

2218
vendor/github.com/DataDog/zstd/zstd_decompress_block.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

76
vendor/github.com/DataDog/zstd/zstd_decompress_block.h generated vendored Normal file
View File

@ -0,0 +1,76 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_DEC_BLOCK_H
#define ZSTD_DEC_BLOCK_H
/*-*******************************************************
* Dependencies
*********************************************************/
#include "zstd_deps.h" /* size_t */
#include "zstd.h" /* DCtx, and some public functions */
#include "zstd_internal.h" /* blockProperties_t, and some public functions */
#include "zstd_decompress_internal.h" /* ZSTD_seqSymbol */
/* === Prototypes === */
/* note: prototypes already published within `zstd.h` :
* ZSTD_decompressBlock()
*/
/* note: prototypes already published within `zstd_internal.h` :
* ZSTD_getcBlockSize()
* ZSTD_decodeSeqHeaders()
*/
/* Streaming state is used to inform allocation of the literal buffer */
typedef enum {
not_streaming = 0,
is_streaming = 1
} streaming_operation;
/* ZSTD_decompressBlock_internal() :
* decompress block, starting at `src`,
* into destination buffer `dst`.
* @return : decompressed block size,
* or an error code (which can be tested using ZSTD_isError())
*/
size_t ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize, const streaming_operation streaming);
/* ZSTD_buildFSETable() :
* generate FSE decoding table for one symbol (ll, ml or off)
* this function must be called with valid parameters only
* (dt is large enough, normalizedCounter distribution total is a power of 2, max is within range, etc.)
* in which case it cannot fail.
* The workspace must be 4-byte aligned and at least ZSTD_BUILD_FSE_TABLE_WKSP_SIZE bytes, which is
* defined in zstd_decompress_internal.h.
* Internal use only.
*/
void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
const short* normalizedCounter, unsigned maxSymbolValue,
const U32* baseValue, const U8* nbAdditionalBits,
unsigned tableLog, void* wksp, size_t wkspSize,
int bmi2);
/* Internal definition of ZSTD_decompressBlock() to avoid deprecation warnings. */
size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize);
#endif /* ZSTD_DEC_BLOCK_H */
#endif /* USE_EXTERNAL_ZSTD */

View File

@ -0,0 +1,243 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* zstd_decompress_internal:
* objects and definitions shared within lib/decompress modules */
#ifndef ZSTD_DECOMPRESS_INTERNAL_H
#define ZSTD_DECOMPRESS_INTERNAL_H
/*-*******************************************************
* Dependencies
*********************************************************/
#include "mem.h" /* BYTE, U16, U32 */
#include "zstd_internal.h" /* constants : MaxLL, MaxML, MaxOff, LLFSELog, etc. */
/*-*******************************************************
* Constants
*********************************************************/
static UNUSED_ATTR const U32 LL_base[MaxLL+1] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 18, 20, 22, 24, 28, 32, 40,
48, 64, 0x80, 0x100, 0x200, 0x400, 0x800, 0x1000,
0x2000, 0x4000, 0x8000, 0x10000 };
static UNUSED_ATTR const U32 OF_base[MaxOff+1] = {
0, 1, 1, 5, 0xD, 0x1D, 0x3D, 0x7D,
0xFD, 0x1FD, 0x3FD, 0x7FD, 0xFFD, 0x1FFD, 0x3FFD, 0x7FFD,
0xFFFD, 0x1FFFD, 0x3FFFD, 0x7FFFD, 0xFFFFD, 0x1FFFFD, 0x3FFFFD, 0x7FFFFD,
0xFFFFFD, 0x1FFFFFD, 0x3FFFFFD, 0x7FFFFFD, 0xFFFFFFD, 0x1FFFFFFD, 0x3FFFFFFD, 0x7FFFFFFD };
static UNUSED_ATTR const U8 OF_bits[MaxOff+1] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31 };
static UNUSED_ATTR const U32 ML_base[MaxML+1] = {
3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34,
35, 37, 39, 41, 43, 47, 51, 59,
67, 83, 99, 0x83, 0x103, 0x203, 0x403, 0x803,
0x1003, 0x2003, 0x4003, 0x8003, 0x10003 };
/*-*******************************************************
* Decompression types
*********************************************************/
typedef struct {
U32 fastMode;
U32 tableLog;
} ZSTD_seqSymbol_header;
typedef struct {
U16 nextState;
BYTE nbAdditionalBits;
BYTE nbBits;
U32 baseValue;
} ZSTD_seqSymbol;
#define SEQSYMBOL_TABLE_SIZE(log) (1 + (1 << (log)))
#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE (sizeof(S16) * (MaxSeq + 1) + (1u << MaxFSELog) + sizeof(U64))
#define ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32 ((ZSTD_BUILD_FSE_TABLE_WKSP_SIZE + sizeof(U32) - 1) / sizeof(U32))
#define ZSTD_HUFFDTABLE_CAPACITY_LOG 12
typedef struct {
ZSTD_seqSymbol LLTable[SEQSYMBOL_TABLE_SIZE(LLFSELog)]; /* Note : Space reserved for FSE Tables */
ZSTD_seqSymbol OFTable[SEQSYMBOL_TABLE_SIZE(OffFSELog)]; /* is also used as temporary workspace while building hufTable during DDict creation */
ZSTD_seqSymbol MLTable[SEQSYMBOL_TABLE_SIZE(MLFSELog)]; /* and therefore must be at least HUF_DECOMPRESS_WORKSPACE_SIZE large */
HUF_DTable hufTable[HUF_DTABLE_SIZE(ZSTD_HUFFDTABLE_CAPACITY_LOG)]; /* can accommodate HUF_decompress4X */
U32 rep[ZSTD_REP_NUM];
U32 workspace[ZSTD_BUILD_FSE_TABLE_WKSP_SIZE_U32];
} ZSTD_entropyDTables_t;
typedef enum { ZSTDds_getFrameHeaderSize, ZSTDds_decodeFrameHeader,
ZSTDds_decodeBlockHeader, ZSTDds_decompressBlock,
ZSTDds_decompressLastBlock, ZSTDds_checkChecksum,
ZSTDds_decodeSkippableHeader, ZSTDds_skipFrame } ZSTD_dStage;
typedef enum { zdss_init=0, zdss_loadHeader,
zdss_read, zdss_load, zdss_flush } ZSTD_dStreamStage;
typedef enum {
ZSTD_use_indefinitely = -1, /* Use the dictionary indefinitely */
ZSTD_dont_use = 0, /* Do not use the dictionary (if one exists free it) */
ZSTD_use_once = 1 /* Use the dictionary once and set to ZSTD_dont_use */
} ZSTD_dictUses_e;
/* Hashset for storing references to multiple ZSTD_DDict within ZSTD_DCtx */
typedef struct {
const ZSTD_DDict** ddictPtrTable;
size_t ddictPtrTableSize;
size_t ddictPtrCount;
} ZSTD_DDictHashSet;
#ifndef ZSTD_DECODER_INTERNAL_BUFFER
# define ZSTD_DECODER_INTERNAL_BUFFER (1 << 16)
#endif
#define ZSTD_LBMIN 64
#define ZSTD_LBMAX (128 << 10)
/* extra buffer, compensates when dst is not large enough to store litBuffer */
#define ZSTD_LITBUFFEREXTRASIZE BOUNDED(ZSTD_LBMIN, ZSTD_DECODER_INTERNAL_BUFFER, ZSTD_LBMAX)
typedef enum {
ZSTD_not_in_dst = 0, /* Stored entirely within litExtraBuffer */
ZSTD_in_dst = 1, /* Stored entirely within dst (in memory after current output write) */
ZSTD_split = 2 /* Split between litExtraBuffer and dst */
} ZSTD_litLocation_e;
struct ZSTD_DCtx_s
{
const ZSTD_seqSymbol* LLTptr;
const ZSTD_seqSymbol* MLTptr;
const ZSTD_seqSymbol* OFTptr;
const HUF_DTable* HUFptr;
ZSTD_entropyDTables_t entropy;
U32 workspace[HUF_DECOMPRESS_WORKSPACE_SIZE_U32]; /* space needed when building huffman tables */
const void* previousDstEnd; /* detect continuity */
const void* prefixStart; /* start of current segment */
const void* virtualStart; /* virtual start of previous segment if it was just before current one */
const void* dictEnd; /* end of previous segment */
size_t expected;
ZSTD_frameHeader fParams;
U64 processedCSize;
U64 decodedSize;
blockType_e bType; /* used in ZSTD_decompressContinue(), store blockType between block header decoding and block decompression stages */
ZSTD_dStage stage;
U32 litEntropy;
U32 fseEntropy;
XXH64_state_t xxhState;
size_t headerSize;
ZSTD_format_e format;
ZSTD_forceIgnoreChecksum_e forceIgnoreChecksum; /* User specified: if == 1, will ignore checksums in compressed frame. Default == 0 */
U32 validateChecksum; /* if == 1, will validate checksum. Is == 1 if (fParams.checksumFlag == 1) and (forceIgnoreChecksum == 0). */
const BYTE* litPtr;
ZSTD_customMem customMem;
size_t litSize;
size_t rleSize;
size_t staticSize;
int isFrameDecompression;
#if DYNAMIC_BMI2 != 0
int bmi2; /* == 1 if the CPU supports BMI2 and 0 otherwise. CPU support is determined dynamically once per context lifetime. */
#endif
/* dictionary */
ZSTD_DDict* ddictLocal;
const ZSTD_DDict* ddict; /* set by ZSTD_initDStream_usingDDict(), or ZSTD_DCtx_refDDict() */
U32 dictID;
int ddictIsCold; /* if == 1 : dictionary is "new" for working context, and presumed "cold" (not in cpu cache) */
ZSTD_dictUses_e dictUses;
ZSTD_DDictHashSet* ddictSet; /* Hash set for multiple ddicts */
ZSTD_refMultipleDDicts_e refMultipleDDicts; /* User specified: if == 1, will allow references to multiple DDicts. Default == 0 (disabled) */
int disableHufAsm;
int maxBlockSizeParam;
/* streaming */
ZSTD_dStreamStage streamStage;
char* inBuff;
size_t inBuffSize;
size_t inPos;
size_t maxWindowSize;
char* outBuff;
size_t outBuffSize;
size_t outStart;
size_t outEnd;
size_t lhSize;
#if defined(ZSTD_LEGACY_SUPPORT) && (ZSTD_LEGACY_SUPPORT>=1)
void* legacyContext;
U32 previousLegacyVersion;
U32 legacyVersion;
#endif
U32 hostageByte;
int noForwardProgress;
ZSTD_bufferMode_e outBufferMode;
ZSTD_outBuffer expectedOutBuffer;
/* workspace */
BYTE* litBuffer;
const BYTE* litBufferEnd;
ZSTD_litLocation_e litBufferLocation;
BYTE litExtraBuffer[ZSTD_LITBUFFEREXTRASIZE + WILDCOPY_OVERLENGTH]; /* literal buffer can be split between storage within dst and within this scratch buffer */
BYTE headerBuffer[ZSTD_FRAMEHEADERSIZE_MAX];
size_t oversizedDuration;
#ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
void const* dictContentBeginForFuzzing;
void const* dictContentEndForFuzzing;
#endif
/* Tracing */
#if ZSTD_TRACE
ZSTD_TraceCtx traceCtx;
#endif
}; /* typedef'd to ZSTD_DCtx within "zstd.h" */
MEM_STATIC int ZSTD_DCtx_get_bmi2(const struct ZSTD_DCtx_s *dctx) {
#if DYNAMIC_BMI2 != 0
return dctx->bmi2;
#else
(void)dctx;
return 0;
#endif
}
/*-*******************************************************
* Shared internal functions
*********************************************************/
/*! ZSTD_loadDEntropy() :
* dict : must point at beginning of a valid zstd dictionary.
* @return : size of dictionary header (size of magic number + dict ID + entropy tables) */
size_t ZSTD_loadDEntropy(ZSTD_entropyDTables_t* entropy,
const void* const dict, size_t const dictSize);
/*! ZSTD_checkContinuity() :
* check if next `dst` follows previous position, where decompression ended.
* If yes, do nothing (continue on current segment).
* If not, classify previous segment as "external dictionary", and start a new segment.
* This function cannot fail. */
void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize);
#endif /* ZSTD_DECOMPRESS_INTERNAL_H */
#endif /* USE_EXTERNAL_ZSTD */

114
vendor/github.com/DataDog/zstd/zstd_deps.h generated vendored Normal file
View File

@ -0,0 +1,114 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
/* This file provides common libc dependencies that zstd requires.
* The purpose is to allow replacing this file with a custom implementation
* to compile zstd without libc support.
*/
/* Need:
* NULL
* INT_MAX
* UINT_MAX
* ZSTD_memcpy()
* ZSTD_memset()
* ZSTD_memmove()
*/
#ifndef ZSTD_DEPS_COMMON
#define ZSTD_DEPS_COMMON
#include <limits.h>
#include <stddef.h>
#include <string.h>
#if defined(__GNUC__) && __GNUC__ >= 4
# define ZSTD_memcpy(d,s,l) __builtin_memcpy((d),(s),(l))
# define ZSTD_memmove(d,s,l) __builtin_memmove((d),(s),(l))
# define ZSTD_memset(p,v,l) __builtin_memset((p),(v),(l))
#else
# define ZSTD_memcpy(d,s,l) memcpy((d),(s),(l))
# define ZSTD_memmove(d,s,l) memmove((d),(s),(l))
# define ZSTD_memset(p,v,l) memset((p),(v),(l))
#endif
#endif /* ZSTD_DEPS_COMMON */
/* Need:
* ZSTD_malloc()
* ZSTD_free()
* ZSTD_calloc()
*/
#ifdef ZSTD_DEPS_NEED_MALLOC
#ifndef ZSTD_DEPS_MALLOC
#define ZSTD_DEPS_MALLOC
#include <stdlib.h>
#define ZSTD_malloc(s) malloc(s)
#define ZSTD_calloc(n,s) calloc((n), (s))
#define ZSTD_free(p) free((p))
#endif /* ZSTD_DEPS_MALLOC */
#endif /* ZSTD_DEPS_NEED_MALLOC */
/*
* Provides 64-bit math support.
* Need:
* U64 ZSTD_div64(U64 dividend, U32 divisor)
*/
#ifdef ZSTD_DEPS_NEED_MATH64
#ifndef ZSTD_DEPS_MATH64
#define ZSTD_DEPS_MATH64
#define ZSTD_div64(dividend, divisor) ((dividend) / (divisor))
#endif /* ZSTD_DEPS_MATH64 */
#endif /* ZSTD_DEPS_NEED_MATH64 */
/* Need:
* assert()
*/
#ifdef ZSTD_DEPS_NEED_ASSERT
#ifndef ZSTD_DEPS_ASSERT
#define ZSTD_DEPS_ASSERT
#include <assert.h>
#endif /* ZSTD_DEPS_ASSERT */
#endif /* ZSTD_DEPS_NEED_ASSERT */
/* Need:
* ZSTD_DEBUG_PRINT()
*/
#ifdef ZSTD_DEPS_NEED_IO
#ifndef ZSTD_DEPS_IO
#define ZSTD_DEPS_IO
#include <stdio.h>
#define ZSTD_DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__)
#endif /* ZSTD_DEPS_IO */
#endif /* ZSTD_DEPS_NEED_IO */
/* Only requested when <stdint.h> is known to be present.
* Need:
* intptr_t
*/
#ifdef ZSTD_DEPS_NEED_STDINT
#ifndef ZSTD_DEPS_STDINT
#define ZSTD_DEPS_STDINT
#include <stdint.h>
#endif /* ZSTD_DEPS_STDINT */
#endif /* ZSTD_DEPS_NEED_STDINT */
#endif /* USE_EXTERNAL_ZSTD */

773
vendor/github.com/DataDog/zstd/zstd_double_fast.c generated vendored Normal file
View File

@ -0,0 +1,773 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h"
#include "zstd_double_fast.h"
#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR
static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_fillDoubleHashTableForCDict(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashLarge = ms->hashTable;
U32 const hBitsL = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
U32 const mls = cParams->minMatch;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog + ZSTD_SHORT_CACHE_TAG_BITS;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Always insert every fastHashFillStep position into the hash tables.
* Insert the other positions into the large hash table if their entry
* is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const smHashAndTag = ZSTD_hashPtr(ip + i, hBitsS, mls);
size_t const lgHashAndTag = ZSTD_hashPtr(ip + i, hBitsL, 8);
if (i == 0) {
ZSTD_writeTaggedIndex(hashSmall, smHashAndTag, curr + i);
}
if (i == 0 || hashLarge[lgHashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) {
ZSTD_writeTaggedIndex(hashLarge, lgHashAndTag, curr + i);
}
/* Only load extra positions for ZSTD_dtlm_full */
if (dtlm == ZSTD_dtlm_fast)
break;
} }
}
static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_fillDoubleHashTableForCCtx(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashLarge = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32 const mls = cParams->minMatch;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Always insert every fastHashFillStep position into the hash tables.
* Insert the other positions into the large hash table if their entry
* is empty.
*/
for (; ip + fastHashFillStep - 1 <= iend; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
U32 i;
for (i = 0; i < fastHashFillStep; ++i) {
size_t const smHash = ZSTD_hashPtr(ip + i, hBitsS, mls);
size_t const lgHash = ZSTD_hashPtr(ip + i, hBitsL, 8);
if (i == 0)
hashSmall[smHash] = curr + i;
if (i == 0 || hashLarge[lgHash] == 0)
hashLarge[lgHash] = curr + i;
/* Only load extra positions for ZSTD_dtlm_full */
if (dtlm == ZSTD_dtlm_fast)
break;
} }
}
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm,
ZSTD_tableFillPurpose_e tfp)
{
if (tfp == ZSTD_tfp_forCDict) {
ZSTD_fillDoubleHashTableForCDict(ms, end, dtlm);
} else {
ZSTD_fillDoubleHashTableForCCtx(ms, end, dtlm);
}
}
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_doubleFast_noDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
const U32 hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
const U32 hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
/* presumes that, if there is a dictionary, it must be using Attach mode */
const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixLowest = base + prefixLowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved1 = 0, offsetSaved2 = 0;
size_t mLength;
U32 offset;
U32 curr;
/* how many positions to search before increasing step size */
const size_t kStepIncr = 1 << kSearchStrength;
/* the position at which to increment the step size if no match is found */
const BYTE* nextStep;
size_t step; /* the current step size */
size_t hl0; /* the long hash at ip */
size_t hl1; /* the long hash at ip1 */
U32 idxl0; /* the long match index for ip */
U32 idxl1; /* the long match index for ip1 */
const BYTE* matchl0; /* the long match for ip */
const BYTE* matchs0; /* the short match for ip */
const BYTE* matchl1; /* the long match for ip1 */
const BYTE* ip = istart; /* the current position */
const BYTE* ip1; /* the next position */
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_noDict_generic");
/* init */
ip += ((ip - prefixLowest) == 0);
{
U32 const current = (U32)(ip - base);
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, current, cParams->windowLog);
U32 const maxRep = current - windowLow;
if (offset_2 > maxRep) offsetSaved2 = offset_2, offset_2 = 0;
if (offset_1 > maxRep) offsetSaved1 = offset_1, offset_1 = 0;
}
/* Outer Loop: one iteration per match found and stored */
while (1) {
step = 1;
nextStep = ip + kStepIncr;
ip1 = ip + step;
if (ip1 > ilimit) {
goto _cleanup;
}
hl0 = ZSTD_hashPtr(ip, hBitsL, 8);
idxl0 = hashLong[hl0];
matchl0 = base + idxl0;
/* Inner Loop: one iteration per search / position */
do {
const size_t hs0 = ZSTD_hashPtr(ip, hBitsS, mls);
const U32 idxs0 = hashSmall[hs0];
curr = (U32)(ip-base);
matchs0 = base + idxs0;
hashLong[hl0] = hashSmall[hs0] = curr; /* update hash tables */
/* check noDict repcode */
if ((offset_1 > 0) & (MEM_read32(ip+1-offset_1) == MEM_read32(ip+1))) {
mLength = ZSTD_count(ip+1+4, ip+1+4-offset_1, iend) + 4;
ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
goto _match_stored;
}
hl1 = ZSTD_hashPtr(ip1, hBitsL, 8);
if (idxl0 > prefixLowestIndex) {
/* check prefix long match */
if (MEM_read64(matchl0) == MEM_read64(ip)) {
mLength = ZSTD_count(ip+8, matchl0+8, iend) + 8;
offset = (U32)(ip-matchl0);
while (((ip>anchor) & (matchl0>prefixLowest)) && (ip[-1] == matchl0[-1])) { ip--; matchl0--; mLength++; } /* catch up */
goto _match_found;
}
}
idxl1 = hashLong[hl1];
matchl1 = base + idxl1;
if (idxs0 > prefixLowestIndex) {
/* check prefix short match */
if (MEM_read32(matchs0) == MEM_read32(ip)) {
goto _search_next_long;
}
}
if (ip1 >= nextStep) {
PREFETCH_L1(ip1 + 64);
PREFETCH_L1(ip1 + 128);
step++;
nextStep += kStepIncr;
}
ip = ip1;
ip1 += step;
hl0 = hl1;
idxl0 = idxl1;
matchl0 = matchl1;
#if defined(__aarch64__)
PREFETCH_L1(ip+256);
#endif
} while (ip1 <= ilimit);
_cleanup:
/* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
* rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved1;
rep[1] = offset_2 ? offset_2 : offsetSaved2;
/* Return the last literals size */
return (size_t)(iend - anchor);
_search_next_long:
/* check prefix long +1 match */
if (idxl1 > prefixLowestIndex) {
if (MEM_read64(matchl1) == MEM_read64(ip1)) {
ip = ip1;
mLength = ZSTD_count(ip+8, matchl1+8, iend) + 8;
offset = (U32)(ip-matchl1);
while (((ip>anchor) & (matchl1>prefixLowest)) && (ip[-1] == matchl1[-1])) { ip--; matchl1--; mLength++; } /* catch up */
goto _match_found;
}
}
/* if no long +1 match, explore the short match we found */
mLength = ZSTD_count(ip+4, matchs0+4, iend) + 4;
offset = (U32)(ip - matchs0);
while (((ip>anchor) & (matchs0>prefixLowest)) && (ip[-1] == matchs0[-1])) { ip--; matchs0--; mLength++; } /* catch up */
/* fall-through */
_match_found: /* requires ip, offset, mLength */
offset_2 = offset_1;
offset_1 = offset;
if (step < 4) {
/* It is unsafe to write this value back to the hashtable when ip1 is
* greater than or equal to the new ip we will have after we're done
* processing this match. Rather than perform that test directly
* (ip1 >= ip + mLength), which costs speed in practice, we do a simpler
* more predictable test. The minmatch even if we take a short match is
* 4 bytes, so as long as step, the distance between ip and ip1
* (initially) is less than 4, we know ip1 < new ip. */
hashLong[hl1] = (U32)(ip1 - base);
}
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
_match_stored:
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while ( (ip <= ilimit)
&& ( (offset_2>0)
& (MEM_read32(ip) == MEM_read32(ip - offset_2)) )) {
/* store sequence */
size_t const rLength = ZSTD_count(ip+4, ip+4-offset_2, iend) + 4;
U32 const tmpOff = offset_2; offset_2 = offset_1; offset_1 = tmpOff; /* swap offset_2 <=> offset_1 */
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = (U32)(ip-base);
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = (U32)(ip-base);
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, rLength);
ip += rLength;
anchor = ip;
continue; /* faster when present ... (?) */
}
}
}
}
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_doubleFast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
const U32 hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
const U32 hBitsS = cParams->chainLog;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
/* presumes that, if there is a dictionary, it must be using Attach mode */
const U32 prefixLowestIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixLowest = base + prefixLowestIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const ZSTD_compressionParameters* const dictCParams = &dms->cParams;
const U32* const dictHashLong = dms->hashTable;
const U32* const dictHashSmall = dms->chainTable;
const U32 dictStartIndex = dms->window.dictLimit;
const BYTE* const dictBase = dms->window.base;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dms->window.nextSrc;
const U32 dictIndexDelta = prefixLowestIndex - (U32)(dictEnd - dictBase);
const U32 dictHBitsL = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
const U32 dictHBitsS = dictCParams->chainLog + ZSTD_SHORT_CACHE_TAG_BITS;
const U32 dictAndPrefixLength = (U32)((ip - prefixLowest) + (dictEnd - dictStart));
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_dictMatchState_generic");
/* if a dictionary is attached, it must be within window range */
assert(ms->window.dictLimit + (1U << cParams->windowLog) >= endIndex);
if (ms->prefetchCDictTables) {
size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
size_t const chainTableBytes = (((size_t)1) << dictCParams->chainLog) * sizeof(U32);
PREFETCH_AREA(dictHashLong, hashTableBytes);
PREFETCH_AREA(dictHashSmall, chainTableBytes);
}
/* init */
ip += (dictAndPrefixLength == 0);
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
/* Main Search Loop */
while (ip < ilimit) { /* < instead of <=, because repcode check at (ip+1) */
size_t mLength;
U32 offset;
size_t const h2 = ZSTD_hashPtr(ip, hBitsL, 8);
size_t const h = ZSTD_hashPtr(ip, hBitsS, mls);
size_t const dictHashAndTagL = ZSTD_hashPtr(ip, dictHBitsL, 8);
size_t const dictHashAndTagS = ZSTD_hashPtr(ip, dictHBitsS, mls);
U32 const dictMatchIndexAndTagL = dictHashLong[dictHashAndTagL >> ZSTD_SHORT_CACHE_TAG_BITS];
U32 const dictMatchIndexAndTagS = dictHashSmall[dictHashAndTagS >> ZSTD_SHORT_CACHE_TAG_BITS];
int const dictTagsMatchL = ZSTD_comparePackedTags(dictMatchIndexAndTagL, dictHashAndTagL);
int const dictTagsMatchS = ZSTD_comparePackedTags(dictMatchIndexAndTagS, dictHashAndTagS);
U32 const curr = (U32)(ip-base);
U32 const matchIndexL = hashLong[h2];
U32 matchIndexS = hashSmall[h];
const BYTE* matchLong = base + matchIndexL;
const BYTE* match = base + matchIndexS;
const U32 repIndex = curr + 1 - offset_1;
const BYTE* repMatch = (repIndex < prefixLowestIndex) ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
hashLong[h2] = hashSmall[h] = curr; /* update hash tables */
/* check repcode */
if (((U32)((prefixLowestIndex-1) - repIndex) >= 3 /* intentional underflow */)
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixLowestIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixLowest) + 4;
ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
goto _match_stored;
}
if (matchIndexL > prefixLowestIndex) {
/* check prefix long match */
if (MEM_read64(matchLong) == MEM_read64(ip)) {
mLength = ZSTD_count(ip+8, matchLong+8, iend) + 8;
offset = (U32)(ip-matchLong);
while (((ip>anchor) & (matchLong>prefixLowest)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
goto _match_found;
}
} else if (dictTagsMatchL) {
/* check dictMatchState long match */
U32 const dictMatchIndexL = dictMatchIndexAndTagL >> ZSTD_SHORT_CACHE_TAG_BITS;
const BYTE* dictMatchL = dictBase + dictMatchIndexL;
assert(dictMatchL < dictEnd);
if (dictMatchL > dictStart && MEM_read64(dictMatchL) == MEM_read64(ip)) {
mLength = ZSTD_count_2segments(ip+8, dictMatchL+8, iend, dictEnd, prefixLowest) + 8;
offset = (U32)(curr - dictMatchIndexL - dictIndexDelta);
while (((ip>anchor) & (dictMatchL>dictStart)) && (ip[-1] == dictMatchL[-1])) { ip--; dictMatchL--; mLength++; } /* catch up */
goto _match_found;
} }
if (matchIndexS > prefixLowestIndex) {
/* check prefix short match */
if (MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long;
}
} else if (dictTagsMatchS) {
/* check dictMatchState short match */
U32 const dictMatchIndexS = dictMatchIndexAndTagS >> ZSTD_SHORT_CACHE_TAG_BITS;
match = dictBase + dictMatchIndexS;
matchIndexS = dictMatchIndexS + dictIndexDelta;
if (match > dictStart && MEM_read32(match) == MEM_read32(ip)) {
goto _search_next_long;
} }
ip += ((ip-anchor) >> kSearchStrength) + 1;
#if defined(__aarch64__)
PREFETCH_L1(ip+256);
#endif
continue;
_search_next_long:
{ size_t const hl3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
size_t const dictHashAndTagL3 = ZSTD_hashPtr(ip+1, dictHBitsL, 8);
U32 const matchIndexL3 = hashLong[hl3];
U32 const dictMatchIndexAndTagL3 = dictHashLong[dictHashAndTagL3 >> ZSTD_SHORT_CACHE_TAG_BITS];
int const dictTagsMatchL3 = ZSTD_comparePackedTags(dictMatchIndexAndTagL3, dictHashAndTagL3);
const BYTE* matchL3 = base + matchIndexL3;
hashLong[hl3] = curr + 1;
/* check prefix long +1 match */
if (matchIndexL3 > prefixLowestIndex) {
if (MEM_read64(matchL3) == MEM_read64(ip+1)) {
mLength = ZSTD_count(ip+9, matchL3+8, iend) + 8;
ip++;
offset = (U32)(ip-matchL3);
while (((ip>anchor) & (matchL3>prefixLowest)) && (ip[-1] == matchL3[-1])) { ip--; matchL3--; mLength++; } /* catch up */
goto _match_found;
}
} else if (dictTagsMatchL3) {
/* check dict long +1 match */
U32 const dictMatchIndexL3 = dictMatchIndexAndTagL3 >> ZSTD_SHORT_CACHE_TAG_BITS;
const BYTE* dictMatchL3 = dictBase + dictMatchIndexL3;
assert(dictMatchL3 < dictEnd);
if (dictMatchL3 > dictStart && MEM_read64(dictMatchL3) == MEM_read64(ip+1)) {
mLength = ZSTD_count_2segments(ip+1+8, dictMatchL3+8, iend, dictEnd, prefixLowest) + 8;
ip++;
offset = (U32)(curr + 1 - dictMatchIndexL3 - dictIndexDelta);
while (((ip>anchor) & (dictMatchL3>dictStart)) && (ip[-1] == dictMatchL3[-1])) { ip--; dictMatchL3--; mLength++; } /* catch up */
goto _match_found;
} } }
/* if no long +1 match, explore the short match we found */
if (matchIndexS < prefixLowestIndex) {
mLength = ZSTD_count_2segments(ip+4, match+4, iend, dictEnd, prefixLowest) + 4;
offset = (U32)(curr - matchIndexS);
while (((ip>anchor) & (match>dictStart)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
} else {
mLength = ZSTD_count(ip+4, match+4, iend) + 4;
offset = (U32)(ip - match);
while (((ip>anchor) & (match>prefixLowest)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
_match_found:
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
_match_stored:
/* match found */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixLowestIndex ?
dictBase + repIndex2 - dictIndexDelta :
base + repIndex2;
if ( ((U32)((prefixLowestIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixLowestIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixLowest) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
}
}
} /* while (ip < ilimit) */
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
#define ZSTD_GEN_DFAST_FN(dictMode, mls) \
static size_t ZSTD_compressBlock_doubleFast_##dictMode##_##mls( \
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \
void const* src, size_t srcSize) \
{ \
return ZSTD_compressBlock_doubleFast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls); \
}
ZSTD_GEN_DFAST_FN(noDict, 4)
ZSTD_GEN_DFAST_FN(noDict, 5)
ZSTD_GEN_DFAST_FN(noDict, 6)
ZSTD_GEN_DFAST_FN(noDict, 7)
ZSTD_GEN_DFAST_FN(dictMatchState, 4)
ZSTD_GEN_DFAST_FN(dictMatchState, 5)
ZSTD_GEN_DFAST_FN(dictMatchState, 6)
ZSTD_GEN_DFAST_FN(dictMatchState, 7)
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
const U32 mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_noDict_4(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_doubleFast_noDict_5(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_doubleFast_noDict_6(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_doubleFast_noDict_7(ms, seqStore, rep, src, srcSize);
}
}
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
const U32 mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_dictMatchState_4(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_doubleFast_dictMatchState_5(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_doubleFast_dictMatchState_6(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_doubleFast_dictMatchState_7(ms, seqStore, rep, src, srcSize);
}
}
static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_doubleFast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls /* template */)
{
ZSTD_compressionParameters const* cParams = &ms->cParams;
U32* const hashLong = ms->hashTable;
U32 const hBitsL = cParams->hashLog;
U32* const hashSmall = ms->chainTable;
U32 const hBitsS = cParams->chainLog;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip = istart;
const BYTE* anchor = istart;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
const BYTE* const base = ms->window.base;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
const U32 dictStartIndex = lowLimit;
const U32 dictLimit = ms->window.dictLimit;
const U32 prefixStartIndex = (dictLimit > lowLimit) ? dictLimit : lowLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
U32 offset_1=rep[0], offset_2=rep[1];
DEBUGLOG(5, "ZSTD_compressBlock_doubleFast_extDict_generic (srcSize=%zu)", srcSize);
/* if extDict is invalidated due to maxDistance, switch to "regular" variant */
if (prefixStartIndex == dictStartIndex)
return ZSTD_compressBlock_doubleFast(ms, seqStore, rep, src, srcSize);
/* Search Loop */
while (ip < ilimit) { /* < instead of <=, because (ip+1) */
const size_t hSmall = ZSTD_hashPtr(ip, hBitsS, mls);
const U32 matchIndex = hashSmall[hSmall];
const BYTE* const matchBase = matchIndex < prefixStartIndex ? dictBase : base;
const BYTE* match = matchBase + matchIndex;
const size_t hLong = ZSTD_hashPtr(ip, hBitsL, 8);
const U32 matchLongIndex = hashLong[hLong];
const BYTE* const matchLongBase = matchLongIndex < prefixStartIndex ? dictBase : base;
const BYTE* matchLong = matchLongBase + matchLongIndex;
const U32 curr = (U32)(ip-base);
const U32 repIndex = curr + 1 - offset_1; /* offset_1 expected <= curr +1 */
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
const BYTE* const repMatch = repBase + repIndex;
size_t mLength;
hashSmall[hSmall] = hashLong[hLong] = curr; /* update hash table */
if ((((U32)((prefixStartIndex-1) - repIndex) >= 3) /* intentional underflow : ensure repIndex doesn't overlap dict + prefix */
& (offset_1 <= curr+1 - dictStartIndex)) /* note: we are searching at curr+1 */
&& (MEM_read32(repMatch) == MEM_read32(ip+1)) ) {
const BYTE* repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip+1+4, repMatch+4, iend, repMatchEnd, prefixStart) + 4;
ip++;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
} else {
if ((matchLongIndex > dictStartIndex) && (MEM_read64(matchLong) == MEM_read64(ip))) {
const BYTE* const matchEnd = matchLongIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchLongIndex < prefixStartIndex ? dictStart : prefixStart;
U32 offset;
mLength = ZSTD_count_2segments(ip+8, matchLong+8, iend, matchEnd, prefixStart) + 8;
offset = curr - matchLongIndex;
while (((ip>anchor) & (matchLong>lowMatchPtr)) && (ip[-1] == matchLong[-1])) { ip--; matchLong--; mLength++; } /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
} else if ((matchIndex > dictStartIndex) && (MEM_read32(match) == MEM_read32(ip))) {
size_t const h3 = ZSTD_hashPtr(ip+1, hBitsL, 8);
U32 const matchIndex3 = hashLong[h3];
const BYTE* const match3Base = matchIndex3 < prefixStartIndex ? dictBase : base;
const BYTE* match3 = match3Base + matchIndex3;
U32 offset;
hashLong[h3] = curr + 1;
if ( (matchIndex3 > dictStartIndex) && (MEM_read64(match3) == MEM_read64(ip+1)) ) {
const BYTE* const matchEnd = matchIndex3 < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex3 < prefixStartIndex ? dictStart : prefixStart;
mLength = ZSTD_count_2segments(ip+9, match3+8, iend, matchEnd, prefixStart) + 8;
ip++;
offset = curr+1 - matchIndex3;
while (((ip>anchor) & (match3>lowMatchPtr)) && (ip[-1] == match3[-1])) { ip--; match3--; mLength++; } /* catch up */
} else {
const BYTE* const matchEnd = matchIndex < prefixStartIndex ? dictEnd : iend;
const BYTE* const lowMatchPtr = matchIndex < prefixStartIndex ? dictStart : prefixStart;
mLength = ZSTD_count_2segments(ip+4, match+4, iend, matchEnd, prefixStart) + 4;
offset = curr - matchIndex;
while (((ip>anchor) & (match>lowMatchPtr)) && (ip[-1] == match[-1])) { ip--; match--; mLength++; } /* catch up */
}
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t)(ip-anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
} else {
ip += ((ip-anchor) >> kSearchStrength) + 1;
continue;
} }
/* move to next sequence start */
ip += mLength;
anchor = ip;
if (ip <= ilimit) {
/* Complementary insertion */
/* done after iLimit test, as candidates could be > iend-8 */
{ U32 const indexToInsert = curr+2;
hashLong[ZSTD_hashPtr(base+indexToInsert, hBitsL, 8)] = indexToInsert;
hashLong[ZSTD_hashPtr(ip-2, hBitsL, 8)] = (U32)(ip-2-base);
hashSmall[ZSTD_hashPtr(base+indexToInsert, hBitsS, mls)] = indexToInsert;
hashSmall[ZSTD_hashPtr(ip-1, hBitsS, mls)] = (U32)(ip-1-base);
}
/* check immediate repcode */
while (ip <= ilimit) {
U32 const current2 = (U32)(ip-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) /* intentional overflow : ensure repIndex2 doesn't overlap dict + prefix */
& (offset_2 <= current2 - dictStartIndex))
&& (MEM_read32(repMatch2) == MEM_read32(ip)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
hashSmall[ZSTD_hashPtr(ip, hBitsS, mls)] = current2;
hashLong[ZSTD_hashPtr(ip, hBitsL, 8)] = current2;
ip += repLength2;
anchor = ip;
continue;
}
break;
} } }
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
ZSTD_GEN_DFAST_FN(extDict, 4)
ZSTD_GEN_DFAST_FN(extDict, 5)
ZSTD_GEN_DFAST_FN(extDict, 6)
ZSTD_GEN_DFAST_FN(extDict, 7)
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_doubleFast_extDict_4(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_doubleFast_extDict_5(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_doubleFast_extDict_6(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_doubleFast_extDict_7(ms, seqStore, rep, src, srcSize);
}
}
#endif /* ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR */
#endif /* USE_EXTERNAL_ZSTD */

53
vendor/github.com/DataDog/zstd/zstd_double_fast.h generated vendored Normal file
View File

@ -0,0 +1,53 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_DOUBLE_FAST_H
#define ZSTD_DOUBLE_FAST_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "mem.h" /* U32 */
#include "zstd_compress_internal.h" /* ZSTD_CCtx, size_t */
#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR
void ZSTD_fillDoubleHashTable(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm,
ZSTD_tableFillPurpose_e tfp);
size_t ZSTD_compressBlock_doubleFast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_doubleFast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_doubleFast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#define ZSTD_COMPRESSBLOCK_DOUBLEFAST ZSTD_compressBlock_doubleFast
#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_DICTMATCHSTATE ZSTD_compressBlock_doubleFast_dictMatchState
#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_EXTDICT ZSTD_compressBlock_doubleFast_extDict
#else
#define ZSTD_COMPRESSBLOCK_DOUBLEFAST NULL
#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_DICTMATCHSTATE NULL
#define ZSTD_COMPRESSBLOCK_DOUBLEFAST_EXTDICT NULL
#endif /* ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_DOUBLE_FAST_H */
#endif /* USE_EXTERNAL_ZSTD */

117
vendor/github.com/DataDog/zstd/zstd_errors.h generated vendored Normal file
View File

@ -0,0 +1,117 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_ERRORS_H_398273423
#define ZSTD_ERRORS_H_398273423
#if defined (__cplusplus)
extern "C" {
#endif
/*===== dependency =====*/
#include <stddef.h> /* size_t */
/* ===== ZSTDERRORLIB_API : control library symbols visibility ===== */
#ifndef ZSTDERRORLIB_VISIBLE
/* Backwards compatibility with old macro name */
# ifdef ZSTDERRORLIB_VISIBILITY
# define ZSTDERRORLIB_VISIBLE ZSTDERRORLIB_VISIBILITY
# elif defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
# define ZSTDERRORLIB_VISIBLE __attribute__ ((visibility ("default")))
# else
# define ZSTDERRORLIB_VISIBLE
# endif
#endif
#ifndef ZSTDERRORLIB_HIDDEN
# if defined(__GNUC__) && (__GNUC__ >= 4) && !defined(__MINGW32__)
# define ZSTDERRORLIB_HIDDEN __attribute__ ((visibility ("hidden")))
# else
# define ZSTDERRORLIB_HIDDEN
# endif
#endif
#if defined(ZSTD_DLL_EXPORT) && (ZSTD_DLL_EXPORT==1)
# define ZSTDERRORLIB_API __declspec(dllexport) ZSTDERRORLIB_VISIBLE
#elif defined(ZSTD_DLL_IMPORT) && (ZSTD_DLL_IMPORT==1)
# define ZSTDERRORLIB_API __declspec(dllimport) ZSTDERRORLIB_VISIBLE /* It isn't required but allows to generate better code, saving a function pointer load from the IAT and an indirect jump.*/
#else
# define ZSTDERRORLIB_API ZSTDERRORLIB_VISIBLE
#endif
/*-*********************************************
* Error codes list
*-*********************************************
* Error codes _values_ are pinned down since v1.3.1 only.
* Therefore, don't rely on values if you may link to any version < v1.3.1.
*
* Only values < 100 are considered stable.
*
* note 1 : this API shall be used with static linking only.
* dynamic linking is not yet officially supported.
* note 2 : Prefer relying on the enum than on its value whenever possible
* This is the only supported way to use the error list < v1.3.1
* note 3 : ZSTD_isError() is always correct, whatever the library version.
**********************************************/
typedef enum {
ZSTD_error_no_error = 0,
ZSTD_error_GENERIC = 1,
ZSTD_error_prefix_unknown = 10,
ZSTD_error_version_unsupported = 12,
ZSTD_error_frameParameter_unsupported = 14,
ZSTD_error_frameParameter_windowTooLarge = 16,
ZSTD_error_corruption_detected = 20,
ZSTD_error_checksum_wrong = 22,
ZSTD_error_literals_headerWrong = 24,
ZSTD_error_dictionary_corrupted = 30,
ZSTD_error_dictionary_wrong = 32,
ZSTD_error_dictionaryCreation_failed = 34,
ZSTD_error_parameter_unsupported = 40,
ZSTD_error_parameter_combination_unsupported = 41,
ZSTD_error_parameter_outOfBound = 42,
ZSTD_error_tableLog_tooLarge = 44,
ZSTD_error_maxSymbolValue_tooLarge = 46,
ZSTD_error_maxSymbolValue_tooSmall = 48,
ZSTD_error_stabilityCondition_notRespected = 50,
ZSTD_error_stage_wrong = 60,
ZSTD_error_init_missing = 62,
ZSTD_error_memory_allocation = 64,
ZSTD_error_workSpace_tooSmall= 66,
ZSTD_error_dstSize_tooSmall = 70,
ZSTD_error_srcSize_wrong = 72,
ZSTD_error_dstBuffer_null = 74,
ZSTD_error_noForwardProgress_destFull = 80,
ZSTD_error_noForwardProgress_inputEmpty = 82,
/* following error codes are __NOT STABLE__, they can be removed or changed in future versions */
ZSTD_error_frameIndex_tooLarge = 100,
ZSTD_error_seekableIO = 102,
ZSTD_error_dstBuffer_wrong = 104,
ZSTD_error_srcBuffer_wrong = 105,
ZSTD_error_sequenceProducer_failed = 106,
ZSTD_error_externalSequences_invalid = 107,
ZSTD_error_maxCode = 120 /* never EVER use this value directly, it can change in future versions! Use ZSTD_isError() instead */
} ZSTD_ErrorCode;
/*! ZSTD_getErrorCode() :
convert a `size_t` function result into a `ZSTD_ErrorCode` enum type,
which can be used to compare with enum list published above */
ZSTDERRORLIB_API ZSTD_ErrorCode ZSTD_getErrorCode(size_t functionResult);
ZSTDERRORLIB_API const char* ZSTD_getErrorString(ZSTD_ErrorCode code); /**< Same as ZSTD_getErrorName, but using a `ZSTD_ErrorCode` enum argument */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_ERRORS_H_398273423 */
#endif /* USE_EXTERNAL_ZSTD */

971
vendor/github.com/DataDog/zstd/zstd_fast.c generated vendored Normal file
View File

@ -0,0 +1,971 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_compress_internal.h" /* ZSTD_hashPtr, ZSTD_count, ZSTD_storeSeq */
#include "zstd_fast.h"
static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_fillHashTableForCDict(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hBits = cParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
U32 const mls = cParams->minMatch;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Currently, we always use ZSTD_dtlm_full for filling CDict tables.
* Feel free to remove this assert if there's a good reason! */
assert(dtlm == ZSTD_dtlm_full);
/* Always insert every fastHashFillStep position into the hash table.
* Insert the other positions if their hash entry is empty.
*/
for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
{ size_t const hashAndTag = ZSTD_hashPtr(ip, hBits, mls);
ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr); }
if (dtlm == ZSTD_dtlm_fast) continue;
/* Only load extra positions for ZSTD_dtlm_full */
{ U32 p;
for (p = 1; p < fastHashFillStep; ++p) {
size_t const hashAndTag = ZSTD_hashPtr(ip + p, hBits, mls);
if (hashTable[hashAndTag >> ZSTD_SHORT_CACHE_TAG_BITS] == 0) { /* not yet filled */
ZSTD_writeTaggedIndex(hashTable, hashAndTag, curr + p);
} } } }
}
static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
void ZSTD_fillHashTableForCCtx(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hBits = cParams->hashLog;
U32 const mls = cParams->minMatch;
const BYTE* const base = ms->window.base;
const BYTE* ip = base + ms->nextToUpdate;
const BYTE* const iend = ((const BYTE*)end) - HASH_READ_SIZE;
const U32 fastHashFillStep = 3;
/* Currently, we always use ZSTD_dtlm_fast for filling CCtx tables.
* Feel free to remove this assert if there's a good reason! */
assert(dtlm == ZSTD_dtlm_fast);
/* Always insert every fastHashFillStep position into the hash table.
* Insert the other positions if their hash entry is empty.
*/
for ( ; ip + fastHashFillStep < iend + 2; ip += fastHashFillStep) {
U32 const curr = (U32)(ip - base);
size_t const hash0 = ZSTD_hashPtr(ip, hBits, mls);
hashTable[hash0] = curr;
if (dtlm == ZSTD_dtlm_fast) continue;
/* Only load extra positions for ZSTD_dtlm_full */
{ U32 p;
for (p = 1; p < fastHashFillStep; ++p) {
size_t const hash = ZSTD_hashPtr(ip + p, hBits, mls);
if (hashTable[hash] == 0) { /* not yet filled */
hashTable[hash] = curr + p;
} } } }
}
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
const void* const end,
ZSTD_dictTableLoadMethod_e dtlm,
ZSTD_tableFillPurpose_e tfp)
{
if (tfp == ZSTD_tfp_forCDict) {
ZSTD_fillHashTableForCDict(ms, end, dtlm);
} else {
ZSTD_fillHashTableForCCtx(ms, end, dtlm);
}
}
/**
* If you squint hard enough (and ignore repcodes), the search operation at any
* given position is broken into 4 stages:
*
* 1. Hash (map position to hash value via input read)
* 2. Lookup (map hash val to index via hashtable read)
* 3. Load (map index to value at that position via input read)
* 4. Compare
*
* Each of these steps involves a memory read at an address which is computed
* from the previous step. This means these steps must be sequenced and their
* latencies are cumulative.
*
* Rather than do 1->2->3->4 sequentially for a single position before moving
* onto the next, this implementation interleaves these operations across the
* next few positions:
*
* R = Repcode Read & Compare
* H = Hash
* T = Table Lookup
* M = Match Read & Compare
*
* Pos | Time -->
* ----+-------------------
* N | ... M
* N+1 | ... TM
* N+2 | R H T M
* N+3 | H TM
* N+4 | R H T M
* N+5 | H ...
* N+6 | R ...
*
* This is very much analogous to the pipelining of execution in a CPU. And just
* like a CPU, we have to dump the pipeline when we find a match (i.e., take a
* branch).
*
* When this happens, we throw away our current state, and do the following prep
* to re-enter the loop:
*
* Pos | Time -->
* ----+-------------------
* N | H T
* N+1 | H
*
* This is also the work we do at the beginning to enter the loop initially.
*/
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_fast_noDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize,
U32 const mls, U32 const hasStep)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */
size_t const stepSize = hasStep ? (cParams->targetLength + !(cParams->targetLength) + 1) : 2;
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 prefixStartIndex = ZSTD_getLowestPrefixIndex(ms, endIndex, cParams->windowLog);
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
const BYTE* anchor = istart;
const BYTE* ip0 = istart;
const BYTE* ip1;
const BYTE* ip2;
const BYTE* ip3;
U32 current0;
U32 rep_offset1 = rep[0];
U32 rep_offset2 = rep[1];
U32 offsetSaved1 = 0, offsetSaved2 = 0;
size_t hash0; /* hash for ip0 */
size_t hash1; /* hash for ip1 */
U32 idx; /* match idx for ip0 */
U32 mval; /* src value at match idx */
U32 offcode;
const BYTE* match0;
size_t mLength;
/* ip0 and ip1 are always adjacent. The targetLength skipping and
* uncompressibility acceleration is applied to every other position,
* matching the behavior of #1562. step therefore represents the gap
* between pairs of positions, from ip0 to ip2 or ip1 to ip3. */
size_t step;
const BYTE* nextStep;
const size_t kStepIncr = (1 << (kSearchStrength - 1));
DEBUGLOG(5, "ZSTD_compressBlock_fast_generic");
ip0 += (ip0 == prefixStart);
{ U32 const curr = (U32)(ip0 - base);
U32 const windowLow = ZSTD_getLowestPrefixIndex(ms, curr, cParams->windowLog);
U32 const maxRep = curr - windowLow;
if (rep_offset2 > maxRep) offsetSaved2 = rep_offset2, rep_offset2 = 0;
if (rep_offset1 > maxRep) offsetSaved1 = rep_offset1, rep_offset1 = 0;
}
/* start each op */
_start: /* Requires: ip0 */
step = stepSize;
nextStep = ip0 + kStepIncr;
/* calculate positions, ip0 - anchor == 0, so we skip step calc */
ip1 = ip0 + 1;
ip2 = ip0 + step;
ip3 = ip2 + 1;
if (ip3 >= ilimit) {
goto _cleanup;
}
hash0 = ZSTD_hashPtr(ip0, hlog, mls);
hash1 = ZSTD_hashPtr(ip1, hlog, mls);
idx = hashTable[hash0];
do {
/* load repcode match for ip[2]*/
const U32 rval = MEM_read32(ip2 - rep_offset1);
/* write back hash table entry */
current0 = (U32)(ip0 - base);
hashTable[hash0] = current0;
/* check repcode at ip[2] */
if ((MEM_read32(ip2) == rval) & (rep_offset1 > 0)) {
ip0 = ip2;
match0 = ip0 - rep_offset1;
mLength = ip0[-1] == match0[-1];
ip0 -= mLength;
match0 -= mLength;
offcode = REPCODE1_TO_OFFBASE;
mLength += 4;
/* First write next hash table entry; we've already calculated it.
* This write is known to be safe because the ip1 is before the
* repcode (ip2). */
hashTable[hash1] = (U32)(ip1 - base);
goto _match;
}
/* load match for ip[0] */
if (idx >= prefixStartIndex) {
mval = MEM_read32(base + idx);
} else {
mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
}
/* check match at ip[0] */
if (MEM_read32(ip0) == mval) {
/* found a match! */
/* First write next hash table entry; we've already calculated it.
* This write is known to be safe because the ip1 == ip0 + 1, so
* we know we will resume searching after ip1 */
hashTable[hash1] = (U32)(ip1 - base);
goto _offset;
}
/* lookup ip[1] */
idx = hashTable[hash1];
/* hash ip[2] */
hash0 = hash1;
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
/* advance to next positions */
ip0 = ip1;
ip1 = ip2;
ip2 = ip3;
/* write back hash table entry */
current0 = (U32)(ip0 - base);
hashTable[hash0] = current0;
/* load match for ip[0] */
if (idx >= prefixStartIndex) {
mval = MEM_read32(base + idx);
} else {
mval = MEM_read32(ip0) ^ 1; /* guaranteed to not match. */
}
/* check match at ip[0] */
if (MEM_read32(ip0) == mval) {
/* found a match! */
/* first write next hash table entry; we've already calculated it */
if (step <= 4) {
/* We need to avoid writing an index into the hash table >= the
* position at which we will pick up our searching after we've
* taken this match.
*
* The minimum possible match has length 4, so the earliest ip0
* can be after we take this match will be the current ip0 + 4.
* ip1 is ip0 + step - 1. If ip1 is >= ip0 + 4, we can't safely
* write this position.
*/
hashTable[hash1] = (U32)(ip1 - base);
}
goto _offset;
}
/* lookup ip[1] */
idx = hashTable[hash1];
/* hash ip[2] */
hash0 = hash1;
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
/* advance to next positions */
ip0 = ip1;
ip1 = ip2;
ip2 = ip0 + step;
ip3 = ip1 + step;
/* calculate step */
if (ip2 >= nextStep) {
step++;
PREFETCH_L1(ip1 + 64);
PREFETCH_L1(ip1 + 128);
nextStep += kStepIncr;
}
} while (ip3 < ilimit);
_cleanup:
/* Note that there are probably still a couple positions we could search.
* However, it seems to be a meaningful performance hit to try to search
* them. So let's not. */
/* When the repcodes are outside of the prefix, we set them to zero before the loop.
* When the offsets are still zero, we need to restore them after the block to have a correct
* repcode history. If only one offset was invalid, it is easy. The tricky case is when both
* offsets were invalid. We need to figure out which offset to refill with.
* - If both offsets are zero they are in the same order.
* - If both offsets are non-zero, we won't restore the offsets from `offsetSaved[12]`.
* - If only one is zero, we need to decide which offset to restore.
* - If rep_offset1 is non-zero, then rep_offset2 must be offsetSaved1.
* - It is impossible for rep_offset2 to be non-zero.
*
* So if rep_offset1 started invalid (offsetSaved1 != 0) and became valid (rep_offset1 != 0), then
* set rep[0] = rep_offset1 and rep[1] = offsetSaved1.
*/
offsetSaved2 = ((offsetSaved1 != 0) && (rep_offset1 != 0)) ? offsetSaved1 : offsetSaved2;
/* save reps for next block */
rep[0] = rep_offset1 ? rep_offset1 : offsetSaved1;
rep[1] = rep_offset2 ? rep_offset2 : offsetSaved2;
/* Return the last literals size */
return (size_t)(iend - anchor);
_offset: /* Requires: ip0, idx */
/* Compute the offset code. */
match0 = base + idx;
rep_offset2 = rep_offset1;
rep_offset1 = (U32)(ip0-match0);
offcode = OFFSET_TO_OFFBASE(rep_offset1);
mLength = 4;
/* Count the backwards match length. */
while (((ip0>anchor) & (match0>prefixStart)) && (ip0[-1] == match0[-1])) {
ip0--;
match0--;
mLength++;
}
_match: /* Requires: ip0, match0, offcode */
/* Count the forward length. */
mLength += ZSTD_count(ip0 + mLength, match0 + mLength, iend);
ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
ip0 += mLength;
anchor = ip0;
/* Fill table and check for immediate repcode. */
if (ip0 <= ilimit) {
/* Fill Table */
assert(base+current0+2 > istart); /* check base overflow */
hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
if (rep_offset2 > 0) { /* rep_offset2==0 means rep_offset2 is invalidated */
while ( (ip0 <= ilimit) && (MEM_read32(ip0) == MEM_read32(ip0 - rep_offset2)) ) {
/* store sequence */
size_t const rLength = ZSTD_count(ip0+4, ip0+4-rep_offset2, iend) + 4;
{ U32 const tmpOff = rep_offset2; rep_offset2 = rep_offset1; rep_offset1 = tmpOff; } /* swap rep_offset2 <=> rep_offset1 */
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
ip0 += rLength;
ZSTD_storeSeq(seqStore, 0 /*litLen*/, anchor, iend, REPCODE1_TO_OFFBASE, rLength);
anchor = ip0;
continue; /* faster when present (confirmed on gcc-8) ... (?) */
} } }
goto _start;
}
#define ZSTD_GEN_FAST_FN(dictMode, mls, step) \
static size_t ZSTD_compressBlock_fast_##dictMode##_##mls##_##step( \
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM], \
void const* src, size_t srcSize) \
{ \
return ZSTD_compressBlock_fast_##dictMode##_generic(ms, seqStore, rep, src, srcSize, mls, step); \
}
ZSTD_GEN_FAST_FN(noDict, 4, 1)
ZSTD_GEN_FAST_FN(noDict, 5, 1)
ZSTD_GEN_FAST_FN(noDict, 6, 1)
ZSTD_GEN_FAST_FN(noDict, 7, 1)
ZSTD_GEN_FAST_FN(noDict, 4, 0)
ZSTD_GEN_FAST_FN(noDict, 5, 0)
ZSTD_GEN_FAST_FN(noDict, 6, 0)
ZSTD_GEN_FAST_FN(noDict, 7, 0)
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState == NULL);
if (ms->cParams.targetLength > 1) {
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_noDict_4_1(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_fast_noDict_5_1(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_fast_noDict_6_1(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_fast_noDict_7_1(ms, seqStore, rep, src, srcSize);
}
} else {
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_noDict_4_0(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_fast_noDict_5_0(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_fast_noDict_6_0(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_fast_noDict_7_0(ms, seqStore, rep, src, srcSize);
}
}
}
FORCE_INLINE_TEMPLATE
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_fast_dictMatchState_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */
U32 const stepSize = cParams->targetLength + !(cParams->targetLength);
const BYTE* const base = ms->window.base;
const BYTE* const istart = (const BYTE*)src;
const BYTE* ip0 = istart;
const BYTE* ip1 = ip0 + stepSize; /* we assert below that stepSize >= 1 */
const BYTE* anchor = istart;
const U32 prefixStartIndex = ms->window.dictLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - HASH_READ_SIZE;
U32 offset_1=rep[0], offset_2=rep[1];
const ZSTD_matchState_t* const dms = ms->dictMatchState;
const ZSTD_compressionParameters* const dictCParams = &dms->cParams ;
const U32* const dictHashTable = dms->hashTable;
const U32 dictStartIndex = dms->window.dictLimit;
const BYTE* const dictBase = dms->window.base;
const BYTE* const dictStart = dictBase + dictStartIndex;
const BYTE* const dictEnd = dms->window.nextSrc;
const U32 dictIndexDelta = prefixStartIndex - (U32)(dictEnd - dictBase);
const U32 dictAndPrefixLength = (U32)(istart - prefixStart + dictEnd - dictStart);
const U32 dictHBits = dictCParams->hashLog + ZSTD_SHORT_CACHE_TAG_BITS;
/* if a dictionary is still attached, it necessarily means that
* it is within window size. So we just check it. */
const U32 maxDistance = 1U << cParams->windowLog;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
assert(endIndex - prefixStartIndex <= maxDistance);
(void)maxDistance; (void)endIndex; /* these variables are not used when assert() is disabled */
(void)hasStep; /* not currently specialized on whether it's accelerated */
/* ensure there will be no underflow
* when translating a dict index into a local index */
assert(prefixStartIndex >= (U32)(dictEnd - dictBase));
if (ms->prefetchCDictTables) {
size_t const hashTableBytes = (((size_t)1) << dictCParams->hashLog) * sizeof(U32);
PREFETCH_AREA(dictHashTable, hashTableBytes);
}
/* init */
DEBUGLOG(5, "ZSTD_compressBlock_fast_dictMatchState_generic");
ip0 += (dictAndPrefixLength == 0);
/* dictMatchState repCode checks don't currently handle repCode == 0
* disabling. */
assert(offset_1 <= dictAndPrefixLength);
assert(offset_2 <= dictAndPrefixLength);
/* Outer search loop */
assert(stepSize >= 1);
while (ip1 <= ilimit) { /* repcode check at (ip0 + 1) is safe because ip0 < ip1 */
size_t mLength;
size_t hash0 = ZSTD_hashPtr(ip0, hlog, mls);
size_t const dictHashAndTag0 = ZSTD_hashPtr(ip0, dictHBits, mls);
U32 dictMatchIndexAndTag = dictHashTable[dictHashAndTag0 >> ZSTD_SHORT_CACHE_TAG_BITS];
int dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag0);
U32 matchIndex = hashTable[hash0];
U32 curr = (U32)(ip0 - base);
size_t step = stepSize;
const size_t kStepIncr = 1 << kSearchStrength;
const BYTE* nextStep = ip0 + kStepIncr;
/* Inner search loop */
while (1) {
const BYTE* match = base + matchIndex;
const U32 repIndex = curr + 1 - offset_1;
const BYTE* repMatch = (repIndex < prefixStartIndex) ?
dictBase + (repIndex - dictIndexDelta) :
base + repIndex;
const size_t hash1 = ZSTD_hashPtr(ip1, hlog, mls);
size_t const dictHashAndTag1 = ZSTD_hashPtr(ip1, dictHBits, mls);
hashTable[hash0] = curr; /* update hash table */
if (((U32) ((prefixStartIndex - 1) - repIndex) >=
3) /* intentional underflow : ensure repIndex isn't overlapping dict + prefix */
&& (MEM_read32(repMatch) == MEM_read32(ip0 + 1))) {
const BYTE* const repMatchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
mLength = ZSTD_count_2segments(ip0 + 1 + 4, repMatch + 4, iend, repMatchEnd, prefixStart) + 4;
ip0++;
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, REPCODE1_TO_OFFBASE, mLength);
break;
}
if (dictTagsMatch) {
/* Found a possible dict match */
const U32 dictMatchIndex = dictMatchIndexAndTag >> ZSTD_SHORT_CACHE_TAG_BITS;
const BYTE* dictMatch = dictBase + dictMatchIndex;
if (dictMatchIndex > dictStartIndex &&
MEM_read32(dictMatch) == MEM_read32(ip0)) {
/* To replicate extDict parse behavior, we only use dict matches when the normal matchIndex is invalid */
if (matchIndex <= prefixStartIndex) {
U32 const offset = (U32) (curr - dictMatchIndex - dictIndexDelta);
mLength = ZSTD_count_2segments(ip0 + 4, dictMatch + 4, iend, dictEnd, prefixStart) + 4;
while (((ip0 > anchor) & (dictMatch > dictStart))
&& (ip0[-1] == dictMatch[-1])) {
ip0--;
dictMatch--;
mLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
break;
}
}
}
if (matchIndex > prefixStartIndex && MEM_read32(match) == MEM_read32(ip0)) {
/* found a regular match */
U32 const offset = (U32) (ip0 - match);
mLength = ZSTD_count(ip0 + 4, match + 4, iend) + 4;
while (((ip0 > anchor) & (match > prefixStart))
&& (ip0[-1] == match[-1])) {
ip0--;
match--;
mLength++;
} /* catch up */
offset_2 = offset_1;
offset_1 = offset;
ZSTD_storeSeq(seqStore, (size_t) (ip0 - anchor), anchor, iend, OFFSET_TO_OFFBASE(offset), mLength);
break;
}
/* Prepare for next iteration */
dictMatchIndexAndTag = dictHashTable[dictHashAndTag1 >> ZSTD_SHORT_CACHE_TAG_BITS];
dictTagsMatch = ZSTD_comparePackedTags(dictMatchIndexAndTag, dictHashAndTag1);
matchIndex = hashTable[hash1];
if (ip1 >= nextStep) {
step++;
nextStep += kStepIncr;
}
ip0 = ip1;
ip1 = ip1 + step;
if (ip1 > ilimit) goto _cleanup;
curr = (U32)(ip0 - base);
hash0 = hash1;
} /* end inner search loop */
/* match found */
assert(mLength);
ip0 += mLength;
anchor = ip0;
if (ip0 <= ilimit) {
/* Fill Table */
assert(base+curr+2 > istart); /* check base overflow */
hashTable[ZSTD_hashPtr(base+curr+2, hlog, mls)] = curr+2; /* here because curr+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
/* check immediate repcode */
while (ip0 <= ilimit) {
U32 const current2 = (U32)(ip0-base);
U32 const repIndex2 = current2 - offset_2;
const BYTE* repMatch2 = repIndex2 < prefixStartIndex ?
dictBase - dictIndexDelta + repIndex2 :
base + repIndex2;
if ( ((U32)((prefixStartIndex-1) - (U32)repIndex2) >= 3 /* intentional overflow */)
&& (MEM_read32(repMatch2) == MEM_read32(ip0))) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
U32 tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = current2;
ip0 += repLength2;
anchor = ip0;
continue;
}
break;
}
}
/* Prepare for next iteration */
assert(ip0 == anchor);
ip1 = ip0 + stepSize;
}
_cleanup:
/* save reps for next block */
rep[0] = offset_1;
rep[1] = offset_2;
/* Return the last literals size */
return (size_t)(iend - anchor);
}
ZSTD_GEN_FAST_FN(dictMatchState, 4, 0)
ZSTD_GEN_FAST_FN(dictMatchState, 5, 0)
ZSTD_GEN_FAST_FN(dictMatchState, 6, 0)
ZSTD_GEN_FAST_FN(dictMatchState, 7, 0)
size_t ZSTD_compressBlock_fast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState != NULL);
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_dictMatchState_4_0(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_fast_dictMatchState_5_0(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_fast_dictMatchState_6_0(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_fast_dictMatchState_7_0(ms, seqStore, rep, src, srcSize);
}
}
static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_compressBlock_fast_extDict_generic(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize, U32 const mls, U32 const hasStep)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
U32* const hashTable = ms->hashTable;
U32 const hlog = cParams->hashLog;
/* support stepSize of 0 */
size_t const stepSize = cParams->targetLength + !(cParams->targetLength) + 1;
const BYTE* const base = ms->window.base;
const BYTE* const dictBase = ms->window.dictBase;
const BYTE* const istart = (const BYTE*)src;
const BYTE* anchor = istart;
const U32 endIndex = (U32)((size_t)(istart - base) + srcSize);
const U32 lowLimit = ZSTD_getLowestMatchIndex(ms, endIndex, cParams->windowLog);
const U32 dictStartIndex = lowLimit;
const BYTE* const dictStart = dictBase + dictStartIndex;
const U32 dictLimit = ms->window.dictLimit;
const U32 prefixStartIndex = dictLimit < lowLimit ? lowLimit : dictLimit;
const BYTE* const prefixStart = base + prefixStartIndex;
const BYTE* const dictEnd = dictBase + prefixStartIndex;
const BYTE* const iend = istart + srcSize;
const BYTE* const ilimit = iend - 8;
U32 offset_1=rep[0], offset_2=rep[1];
U32 offsetSaved1 = 0, offsetSaved2 = 0;
const BYTE* ip0 = istart;
const BYTE* ip1;
const BYTE* ip2;
const BYTE* ip3;
U32 current0;
size_t hash0; /* hash for ip0 */
size_t hash1; /* hash for ip1 */
U32 idx; /* match idx for ip0 */
const BYTE* idxBase; /* base pointer for idx */
U32 offcode;
const BYTE* match0;
size_t mLength;
const BYTE* matchEnd = 0; /* initialize to avoid warning, assert != 0 later */
size_t step;
const BYTE* nextStep;
const size_t kStepIncr = (1 << (kSearchStrength - 1));
(void)hasStep; /* not currently specialized on whether it's accelerated */
DEBUGLOG(5, "ZSTD_compressBlock_fast_extDict_generic (offset_1=%u)", offset_1);
/* switch to "regular" variant if extDict is invalidated due to maxDistance */
if (prefixStartIndex == dictStartIndex)
return ZSTD_compressBlock_fast(ms, seqStore, rep, src, srcSize);
{ U32 const curr = (U32)(ip0 - base);
U32 const maxRep = curr - dictStartIndex;
if (offset_2 >= maxRep) offsetSaved2 = offset_2, offset_2 = 0;
if (offset_1 >= maxRep) offsetSaved1 = offset_1, offset_1 = 0;
}
/* start each op */
_start: /* Requires: ip0 */
step = stepSize;
nextStep = ip0 + kStepIncr;
/* calculate positions, ip0 - anchor == 0, so we skip step calc */
ip1 = ip0 + 1;
ip2 = ip0 + step;
ip3 = ip2 + 1;
if (ip3 >= ilimit) {
goto _cleanup;
}
hash0 = ZSTD_hashPtr(ip0, hlog, mls);
hash1 = ZSTD_hashPtr(ip1, hlog, mls);
idx = hashTable[hash0];
idxBase = idx < prefixStartIndex ? dictBase : base;
do {
{ /* load repcode match for ip[2] */
U32 const current2 = (U32)(ip2 - base);
U32 const repIndex = current2 - offset_1;
const BYTE* const repBase = repIndex < prefixStartIndex ? dictBase : base;
U32 rval;
if ( ((U32)(prefixStartIndex - repIndex) >= 4) /* intentional underflow */
& (offset_1 > 0) ) {
rval = MEM_read32(repBase + repIndex);
} else {
rval = MEM_read32(ip2) ^ 1; /* guaranteed to not match. */
}
/* write back hash table entry */
current0 = (U32)(ip0 - base);
hashTable[hash0] = current0;
/* check repcode at ip[2] */
if (MEM_read32(ip2) == rval) {
ip0 = ip2;
match0 = repBase + repIndex;
matchEnd = repIndex < prefixStartIndex ? dictEnd : iend;
assert((match0 != prefixStart) & (match0 != dictStart));
mLength = ip0[-1] == match0[-1];
ip0 -= mLength;
match0 -= mLength;
offcode = REPCODE1_TO_OFFBASE;
mLength += 4;
goto _match;
} }
{ /* load match for ip[0] */
U32 const mval = idx >= dictStartIndex ?
MEM_read32(idxBase + idx) :
MEM_read32(ip0) ^ 1; /* guaranteed not to match */
/* check match at ip[0] */
if (MEM_read32(ip0) == mval) {
/* found a match! */
goto _offset;
} }
/* lookup ip[1] */
idx = hashTable[hash1];
idxBase = idx < prefixStartIndex ? dictBase : base;
/* hash ip[2] */
hash0 = hash1;
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
/* advance to next positions */
ip0 = ip1;
ip1 = ip2;
ip2 = ip3;
/* write back hash table entry */
current0 = (U32)(ip0 - base);
hashTable[hash0] = current0;
{ /* load match for ip[0] */
U32 const mval = idx >= dictStartIndex ?
MEM_read32(idxBase + idx) :
MEM_read32(ip0) ^ 1; /* guaranteed not to match */
/* check match at ip[0] */
if (MEM_read32(ip0) == mval) {
/* found a match! */
goto _offset;
} }
/* lookup ip[1] */
idx = hashTable[hash1];
idxBase = idx < prefixStartIndex ? dictBase : base;
/* hash ip[2] */
hash0 = hash1;
hash1 = ZSTD_hashPtr(ip2, hlog, mls);
/* advance to next positions */
ip0 = ip1;
ip1 = ip2;
ip2 = ip0 + step;
ip3 = ip1 + step;
/* calculate step */
if (ip2 >= nextStep) {
step++;
PREFETCH_L1(ip1 + 64);
PREFETCH_L1(ip1 + 128);
nextStep += kStepIncr;
}
} while (ip3 < ilimit);
_cleanup:
/* Note that there are probably still a couple positions we could search.
* However, it seems to be a meaningful performance hit to try to search
* them. So let's not. */
/* If offset_1 started invalid (offsetSaved1 != 0) and became valid (offset_1 != 0),
* rotate saved offsets. See comment in ZSTD_compressBlock_fast_noDict for more context. */
offsetSaved2 = ((offsetSaved1 != 0) && (offset_1 != 0)) ? offsetSaved1 : offsetSaved2;
/* save reps for next block */
rep[0] = offset_1 ? offset_1 : offsetSaved1;
rep[1] = offset_2 ? offset_2 : offsetSaved2;
/* Return the last literals size */
return (size_t)(iend - anchor);
_offset: /* Requires: ip0, idx, idxBase */
/* Compute the offset code. */
{ U32 const offset = current0 - idx;
const BYTE* const lowMatchPtr = idx < prefixStartIndex ? dictStart : prefixStart;
matchEnd = idx < prefixStartIndex ? dictEnd : iend;
match0 = idxBase + idx;
offset_2 = offset_1;
offset_1 = offset;
offcode = OFFSET_TO_OFFBASE(offset);
mLength = 4;
/* Count the backwards match length. */
while (((ip0>anchor) & (match0>lowMatchPtr)) && (ip0[-1] == match0[-1])) {
ip0--;
match0--;
mLength++;
} }
_match: /* Requires: ip0, match0, offcode, matchEnd */
/* Count the forward length. */
assert(matchEnd != 0);
mLength += ZSTD_count_2segments(ip0 + mLength, match0 + mLength, iend, matchEnd, prefixStart);
ZSTD_storeSeq(seqStore, (size_t)(ip0 - anchor), anchor, iend, offcode, mLength);
ip0 += mLength;
anchor = ip0;
/* write next hash table entry */
if (ip1 < ip0) {
hashTable[hash1] = (U32)(ip1 - base);
}
/* Fill table and check for immediate repcode. */
if (ip0 <= ilimit) {
/* Fill Table */
assert(base+current0+2 > istart); /* check base overflow */
hashTable[ZSTD_hashPtr(base+current0+2, hlog, mls)] = current0+2; /* here because current+2 could be > iend-8 */
hashTable[ZSTD_hashPtr(ip0-2, hlog, mls)] = (U32)(ip0-2-base);
while (ip0 <= ilimit) {
U32 const repIndex2 = (U32)(ip0-base) - offset_2;
const BYTE* const repMatch2 = repIndex2 < prefixStartIndex ? dictBase + repIndex2 : base + repIndex2;
if ( (((U32)((prefixStartIndex-1) - repIndex2) >= 3) & (offset_2 > 0)) /* intentional underflow */
&& (MEM_read32(repMatch2) == MEM_read32(ip0)) ) {
const BYTE* const repEnd2 = repIndex2 < prefixStartIndex ? dictEnd : iend;
size_t const repLength2 = ZSTD_count_2segments(ip0+4, repMatch2+4, iend, repEnd2, prefixStart) + 4;
{ U32 const tmpOffset = offset_2; offset_2 = offset_1; offset_1 = tmpOffset; } /* swap offset_2 <=> offset_1 */
ZSTD_storeSeq(seqStore, 0 /*litlen*/, anchor, iend, REPCODE1_TO_OFFBASE, repLength2);
hashTable[ZSTD_hashPtr(ip0, hlog, mls)] = (U32)(ip0-base);
ip0 += repLength2;
anchor = ip0;
continue;
}
break;
} }
goto _start;
}
ZSTD_GEN_FAST_FN(extDict, 4, 0)
ZSTD_GEN_FAST_FN(extDict, 5, 0)
ZSTD_GEN_FAST_FN(extDict, 6, 0)
ZSTD_GEN_FAST_FN(extDict, 7, 0)
size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize)
{
U32 const mls = ms->cParams.minMatch;
assert(ms->dictMatchState == NULL);
switch(mls)
{
default: /* includes case 3 */
case 4 :
return ZSTD_compressBlock_fast_extDict_4_0(ms, seqStore, rep, src, srcSize);
case 5 :
return ZSTD_compressBlock_fast_extDict_5_0(ms, seqStore, rep, src, srcSize);
case 6 :
return ZSTD_compressBlock_fast_extDict_6_0(ms, seqStore, rep, src, srcSize);
case 7 :
return ZSTD_compressBlock_fast_extDict_7_0(ms, seqStore, rep, src, srcSize);
}
}
#endif /* USE_EXTERNAL_ZSTD */

41
vendor/github.com/DataDog/zstd/zstd_fast.h generated vendored Normal file
View File

@ -0,0 +1,41 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_FAST_H
#define ZSTD_FAST_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "mem.h" /* U32 */
#include "zstd_compress_internal.h"
void ZSTD_fillHashTable(ZSTD_matchState_t* ms,
void const* end, ZSTD_dictTableLoadMethod_e dtlm,
ZSTD_tableFillPurpose_e tfp);
size_t ZSTD_compressBlock_fast(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_fast_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_fast_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_FAST_H */
#endif /* USE_EXTERNAL_ZSTD */

395
vendor/github.com/DataDog/zstd/zstd_internal.h generated vendored Normal file
View File

@ -0,0 +1,395 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_CCOMMON_H_MODULE
#define ZSTD_CCOMMON_H_MODULE
/* this module contains definitions which must be identical
* across compression, decompression and dictBuilder.
* It also contains a few functions useful to at least 2 of them
* and which benefit from being inlined */
/*-*************************************
* Dependencies
***************************************/
#include "compiler.h"
#include "cpu.h"
#include "mem.h"
#include "debug.h" /* assert, DEBUGLOG, RAWLOG, g_debuglevel */
#include "error_private.h"
#define ZSTD_STATIC_LINKING_ONLY
#include "zstd.h"
#define FSE_STATIC_LINKING_ONLY
#include "fse.h"
#include "huf.h"
#ifndef XXH_STATIC_LINKING_ONLY
# define XXH_STATIC_LINKING_ONLY /* XXH64_state_t */
#endif
#include "xxhash.h" /* XXH_reset, update, digest */
#ifndef ZSTD_NO_TRACE
# include "zstd_trace.h"
#else
# define ZSTD_TRACE 0
#endif
#if defined (__cplusplus)
extern "C" {
#endif
/* ---- static assert (debug) --- */
#define ZSTD_STATIC_ASSERT(c) DEBUG_STATIC_ASSERT(c)
#define ZSTD_isError ERR_isError /* for inlining */
#define FSE_isError ERR_isError
#define HUF_isError ERR_isError
/*-*************************************
* shared macros
***************************************/
#undef MIN
#undef MAX
#define MIN(a,b) ((a)<(b) ? (a) : (b))
#define MAX(a,b) ((a)>(b) ? (a) : (b))
#define BOUNDED(min,val,max) (MAX(min,MIN(val,max)))
/*-*************************************
* Common constants
***************************************/
#define ZSTD_OPT_NUM (1<<12)
#define ZSTD_REP_NUM 3 /* number of repcodes */
static UNUSED_ATTR const U32 repStartValue[ZSTD_REP_NUM] = { 1, 4, 8 };
#define KB *(1 <<10)
#define MB *(1 <<20)
#define GB *(1U<<30)
#define BIT7 128
#define BIT6 64
#define BIT5 32
#define BIT4 16
#define BIT1 2
#define BIT0 1
#define ZSTD_WINDOWLOG_ABSOLUTEMIN 10
static UNUSED_ATTR const size_t ZSTD_fcs_fieldSize[4] = { 0, 2, 4, 8 };
static UNUSED_ATTR const size_t ZSTD_did_fieldSize[4] = { 0, 1, 2, 4 };
#define ZSTD_FRAMEIDSIZE 4 /* magic number size */
#define ZSTD_BLOCKHEADERSIZE 3 /* C standard doesn't allow `static const` variable to be init using another `static const` variable */
static UNUSED_ATTR const size_t ZSTD_blockHeaderSize = ZSTD_BLOCKHEADERSIZE;
typedef enum { bt_raw, bt_rle, bt_compressed, bt_reserved } blockType_e;
#define ZSTD_FRAMECHECKSUMSIZE 4
#define MIN_SEQUENCES_SIZE 1 /* nbSeq==0 */
#define MIN_CBLOCK_SIZE (1 /*litCSize*/ + 1 /* RLE or RAW */) /* for a non-null block */
#define MIN_LITERALS_FOR_4_STREAMS 6
typedef enum { set_basic, set_rle, set_compressed, set_repeat } symbolEncodingType_e;
#define LONGNBSEQ 0x7F00
#define MINMATCH 3
#define Litbits 8
#define LitHufLog 11
#define MaxLit ((1<<Litbits) - 1)
#define MaxML 52
#define MaxLL 35
#define DefaultMaxOff 28
#define MaxOff 31
#define MaxSeq MAX(MaxLL, MaxML) /* Assumption : MaxOff < MaxLL,MaxML */
#define MLFSELog 9
#define LLFSELog 9
#define OffFSELog 8
#define MaxFSELog MAX(MAX(MLFSELog, LLFSELog), OffFSELog)
#define MaxMLBits 16
#define MaxLLBits 16
#define ZSTD_MAX_HUF_HEADER_SIZE 128 /* header + <= 127 byte tree description */
/* Each table cannot take more than #symbols * FSELog bits */
#define ZSTD_MAX_FSE_HEADERS_SIZE (((MaxML + 1) * MLFSELog + (MaxLL + 1) * LLFSELog + (MaxOff + 1) * OffFSELog + 7) / 8)
static UNUSED_ATTR const U8 LL_bits[MaxLL+1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3,
4, 6, 7, 8, 9,10,11,12,
13,14,15,16
};
static UNUSED_ATTR const S16 LL_defaultNorm[MaxLL+1] = {
4, 3, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
2, 3, 2, 1, 1, 1, 1, 1,
-1,-1,-1,-1
};
#define LL_DEFAULTNORMLOG 6 /* for static allocation */
static UNUSED_ATTR const U32 LL_defaultNormLog = LL_DEFAULTNORMLOG;
static UNUSED_ATTR const U8 ML_bits[MaxML+1] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 2, 2, 3, 3,
4, 4, 5, 7, 8, 9,10,11,
12,13,14,15,16
};
static UNUSED_ATTR const S16 ML_defaultNorm[MaxML+1] = {
1, 4, 3, 2, 2, 2, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1,-1,-1,
-1,-1,-1,-1,-1
};
#define ML_DEFAULTNORMLOG 6 /* for static allocation */
static UNUSED_ATTR const U32 ML_defaultNormLog = ML_DEFAULTNORMLOG;
static UNUSED_ATTR const S16 OF_defaultNorm[DefaultMaxOff+1] = {
1, 1, 1, 1, 1, 1, 2, 2,
2, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1,
-1,-1,-1,-1,-1
};
#define OF_DEFAULTNORMLOG 5 /* for static allocation */
static UNUSED_ATTR const U32 OF_defaultNormLog = OF_DEFAULTNORMLOG;
/*-*******************************************
* Shared functions to include for inlining
*********************************************/
static void ZSTD_copy8(void* dst, const void* src) {
#if defined(ZSTD_ARCH_ARM_NEON)
vst1_u8((uint8_t*)dst, vld1_u8((const uint8_t*)src));
#else
ZSTD_memcpy(dst, src, 8);
#endif
}
#define COPY8(d,s) do { ZSTD_copy8(d,s); d+=8; s+=8; } while (0)
/* Need to use memmove here since the literal buffer can now be located within
the dst buffer. In circumstances where the op "catches up" to where the
literal buffer is, there can be partial overlaps in this call on the final
copy if the literal is being shifted by less than 16 bytes. */
static void ZSTD_copy16(void* dst, const void* src) {
#if defined(ZSTD_ARCH_ARM_NEON)
vst1q_u8((uint8_t*)dst, vld1q_u8((const uint8_t*)src));
#elif defined(ZSTD_ARCH_X86_SSE2)
_mm_storeu_si128((__m128i*)dst, _mm_loadu_si128((const __m128i*)src));
#elif defined(__clang__)
ZSTD_memmove(dst, src, 16);
#else
/* ZSTD_memmove is not inlined properly by gcc */
BYTE copy16_buf[16];
ZSTD_memcpy(copy16_buf, src, 16);
ZSTD_memcpy(dst, copy16_buf, 16);
#endif
}
#define COPY16(d,s) do { ZSTD_copy16(d,s); d+=16; s+=16; } while (0)
#define WILDCOPY_OVERLENGTH 32
#define WILDCOPY_VECLEN 16
typedef enum {
ZSTD_no_overlap,
ZSTD_overlap_src_before_dst
/* ZSTD_overlap_dst_before_src, */
} ZSTD_overlap_e;
/*! ZSTD_wildcopy() :
* Custom version of ZSTD_memcpy(), can over read/write up to WILDCOPY_OVERLENGTH bytes (if length==0)
* @param ovtype controls the overlap detection
* - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
* - ZSTD_overlap_src_before_dst: The src and dst may overlap, but they MUST be at least 8 bytes apart.
* The src buffer must be before the dst buffer.
*/
MEM_STATIC FORCE_INLINE_ATTR
void ZSTD_wildcopy(void* dst, const void* src, ptrdiff_t length, ZSTD_overlap_e const ovtype)
{
ptrdiff_t diff = (BYTE*)dst - (const BYTE*)src;
const BYTE* ip = (const BYTE*)src;
BYTE* op = (BYTE*)dst;
BYTE* const oend = op + length;
if (ovtype == ZSTD_overlap_src_before_dst && diff < WILDCOPY_VECLEN) {
/* Handle short offset copies. */
do {
COPY8(op, ip);
} while (op < oend);
} else {
assert(diff >= WILDCOPY_VECLEN || diff <= -WILDCOPY_VECLEN);
/* Separate out the first COPY16() call because the copy length is
* almost certain to be short, so the branches have different
* probabilities. Since it is almost certain to be short, only do
* one COPY16() in the first call. Then, do two calls per loop since
* at that point it is more likely to have a high trip count.
*/
ZSTD_copy16(op, ip);
if (16 >= length) return;
op += 16;
ip += 16;
do {
COPY16(op, ip);
COPY16(op, ip);
}
while (op < oend);
}
}
MEM_STATIC size_t ZSTD_limitCopy(void* dst, size_t dstCapacity, const void* src, size_t srcSize)
{
size_t const length = MIN(dstCapacity, srcSize);
if (length > 0) {
ZSTD_memcpy(dst, src, length);
}
return length;
}
/* define "workspace is too large" as this number of times larger than needed */
#define ZSTD_WORKSPACETOOLARGE_FACTOR 3
/* when workspace is continuously too large
* during at least this number of times,
* context's memory usage is considered wasteful,
* because it's sized to handle a worst case scenario which rarely happens.
* In which case, resize it down to free some memory */
#define ZSTD_WORKSPACETOOLARGE_MAXDURATION 128
/* Controls whether the input/output buffer is buffered or stable. */
typedef enum {
ZSTD_bm_buffered = 0, /* Buffer the input/output */
ZSTD_bm_stable = 1 /* ZSTD_inBuffer/ZSTD_outBuffer is stable */
} ZSTD_bufferMode_e;
/*-*******************************************
* Private declarations
*********************************************/
typedef struct seqDef_s {
U32 offBase; /* offBase == Offset + ZSTD_REP_NUM, or repcode 1,2,3 */
U16 litLength;
U16 mlBase; /* mlBase == matchLength - MINMATCH */
} seqDef;
/* Controls whether seqStore has a single "long" litLength or matchLength. See seqStore_t. */
typedef enum {
ZSTD_llt_none = 0, /* no longLengthType */
ZSTD_llt_literalLength = 1, /* represents a long literal */
ZSTD_llt_matchLength = 2 /* represents a long match */
} ZSTD_longLengthType_e;
typedef struct {
seqDef* sequencesStart;
seqDef* sequences; /* ptr to end of sequences */
BYTE* litStart;
BYTE* lit; /* ptr to end of literals */
BYTE* llCode;
BYTE* mlCode;
BYTE* ofCode;
size_t maxNbSeq;
size_t maxNbLit;
/* longLengthPos and longLengthType to allow us to represent either a single litLength or matchLength
* in the seqStore that has a value larger than U16 (if it exists). To do so, we increment
* the existing value of the litLength or matchLength by 0x10000.
*/
ZSTD_longLengthType_e longLengthType;
U32 longLengthPos; /* Index of the sequence to apply long length modification to */
} seqStore_t;
typedef struct {
U32 litLength;
U32 matchLength;
} ZSTD_sequenceLength;
/**
* Returns the ZSTD_sequenceLength for the given sequences. It handles the decoding of long sequences
* indicated by longLengthPos and longLengthType, and adds MINMATCH back to matchLength.
*/
MEM_STATIC ZSTD_sequenceLength ZSTD_getSequenceLength(seqStore_t const* seqStore, seqDef const* seq)
{
ZSTD_sequenceLength seqLen;
seqLen.litLength = seq->litLength;
seqLen.matchLength = seq->mlBase + MINMATCH;
if (seqStore->longLengthPos == (U32)(seq - seqStore->sequencesStart)) {
if (seqStore->longLengthType == ZSTD_llt_literalLength) {
seqLen.litLength += 0x10000;
}
if (seqStore->longLengthType == ZSTD_llt_matchLength) {
seqLen.matchLength += 0x10000;
}
}
return seqLen;
}
/**
* Contains the compressed frame size and an upper-bound for the decompressed frame size.
* Note: before using `compressedSize`, check for errors using ZSTD_isError().
* similarly, before using `decompressedBound`, check for errors using:
* `decompressedBound != ZSTD_CONTENTSIZE_ERROR`
*/
typedef struct {
size_t nbBlocks;
size_t compressedSize;
unsigned long long decompressedBound;
} ZSTD_frameSizeInfo; /* decompress & legacy */
const seqStore_t* ZSTD_getSeqStore(const ZSTD_CCtx* ctx); /* compress & dictBuilder */
int ZSTD_seqToCodes(const seqStore_t* seqStorePtr); /* compress, dictBuilder, decodeCorpus (shouldn't get its definition from here) */
/* ZSTD_invalidateRepCodes() :
* ensures next compression will not use repcodes from previous block.
* Note : only works with regular variant;
* do not use with extDict variant ! */
void ZSTD_invalidateRepCodes(ZSTD_CCtx* cctx); /* zstdmt, adaptive_compression (shouldn't get this definition from here) */
typedef struct {
blockType_e blockType;
U32 lastBlock;
U32 origSize;
} blockProperties_t; /* declared here for decompress and fullbench */
/*! ZSTD_getcBlockSize() :
* Provides the size of compressed block from block header `src` */
/* Used by: decompress, fullbench */
size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
blockProperties_t* bpPtr);
/*! ZSTD_decodeSeqHeaders() :
* decode sequence header from src */
/* Used by: zstd_decompress_block, fullbench */
size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
const void* src, size_t srcSize);
/**
* @returns true iff the CPU supports dynamic BMI2 dispatch.
*/
MEM_STATIC int ZSTD_cpuSupportsBmi2(void)
{
ZSTD_cpuid_t cpuid = ZSTD_cpuid();
return ZSTD_cpuid_bmi1(cpuid) && ZSTD_cpuid_bmi2(cpuid);
}
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_CCOMMON_H_MODULE */
#endif /* USE_EXTERNAL_ZSTD */

2202
vendor/github.com/DataDog/zstd/zstd_lazy.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

205
vendor/github.com/DataDog/zstd/zstd_lazy.h generated vendored Normal file
View File

@ -0,0 +1,205 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LAZY_H
#define ZSTD_LAZY_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h"
/**
* Dedicated Dictionary Search Structure bucket log. In the
* ZSTD_dedicatedDictSearch mode, the hashTable has
* 2 ** ZSTD_LAZY_DDSS_BUCKET_LOG entries in each bucket, rather than just
* one.
*/
#define ZSTD_LAZY_DDSS_BUCKET_LOG 2
#define ZSTD_ROW_HASH_TAG_BITS 8 /* nb bits to use for the tag */
#if !defined(ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR) \
|| !defined(ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR) \
|| !defined(ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR) \
|| !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR)
U32 ZSTD_insertAndFindFirstIndex(ZSTD_matchState_t* ms, const BYTE* ip);
void ZSTD_row_update(ZSTD_matchState_t* const ms, const BYTE* ip);
void ZSTD_dedicatedDictSearch_lazy_loadDictionary(ZSTD_matchState_t* ms, const BYTE* const ip);
void ZSTD_preserveUnsortedMark (U32* const table, U32 const size, U32 const reducerValue); /*! used in ZSTD_reduceIndex(). preemptively increase value of ZSTD_DUBT_UNSORTED_MARK */
#endif
#ifndef ZSTD_EXCLUDE_GREEDY_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_greedy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_greedy_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#define ZSTD_COMPRESSBLOCK_GREEDY ZSTD_compressBlock_greedy
#define ZSTD_COMPRESSBLOCK_GREEDY_ROW ZSTD_compressBlock_greedy_row
#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE ZSTD_compressBlock_greedy_dictMatchState
#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE_ROW ZSTD_compressBlock_greedy_dictMatchState_row
#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH ZSTD_compressBlock_greedy_dedicatedDictSearch
#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH_ROW ZSTD_compressBlock_greedy_dedicatedDictSearch_row
#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT ZSTD_compressBlock_greedy_extDict
#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT_ROW ZSTD_compressBlock_greedy_extDict_row
#else
#define ZSTD_COMPRESSBLOCK_GREEDY NULL
#define ZSTD_COMPRESSBLOCK_GREEDY_ROW NULL
#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE NULL
#define ZSTD_COMPRESSBLOCK_GREEDY_DICTMATCHSTATE_ROW NULL
#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH NULL
#define ZSTD_COMPRESSBLOCK_GREEDY_DEDICATEDDICTSEARCH_ROW NULL
#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT NULL
#define ZSTD_COMPRESSBLOCK_GREEDY_EXTDICT_ROW NULL
#endif
#ifndef ZSTD_EXCLUDE_LAZY_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_lazy(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#define ZSTD_COMPRESSBLOCK_LAZY ZSTD_compressBlock_lazy
#define ZSTD_COMPRESSBLOCK_LAZY_ROW ZSTD_compressBlock_lazy_row
#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE ZSTD_compressBlock_lazy_dictMatchState
#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE_ROW ZSTD_compressBlock_lazy_dictMatchState_row
#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH ZSTD_compressBlock_lazy_dedicatedDictSearch
#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH_ROW ZSTD_compressBlock_lazy_dedicatedDictSearch_row
#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT ZSTD_compressBlock_lazy_extDict
#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT_ROW ZSTD_compressBlock_lazy_extDict_row
#else
#define ZSTD_COMPRESSBLOCK_LAZY NULL
#define ZSTD_COMPRESSBLOCK_LAZY_ROW NULL
#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE NULL
#define ZSTD_COMPRESSBLOCK_LAZY_DICTMATCHSTATE_ROW NULL
#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH NULL
#define ZSTD_COMPRESSBLOCK_LAZY_DEDICATEDDICTSEARCH_ROW NULL
#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT NULL
#define ZSTD_COMPRESSBLOCK_LAZY_EXTDICT_ROW NULL
#endif
#ifndef ZSTD_EXCLUDE_LAZY2_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_lazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dictMatchState_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_dedicatedDictSearch_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_lazy2_extDict_row(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#define ZSTD_COMPRESSBLOCK_LAZY2 ZSTD_compressBlock_lazy2
#define ZSTD_COMPRESSBLOCK_LAZY2_ROW ZSTD_compressBlock_lazy2_row
#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE ZSTD_compressBlock_lazy2_dictMatchState
#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE_ROW ZSTD_compressBlock_lazy2_dictMatchState_row
#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH ZSTD_compressBlock_lazy2_dedicatedDictSearch
#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH_ROW ZSTD_compressBlock_lazy2_dedicatedDictSearch_row
#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT ZSTD_compressBlock_lazy2_extDict
#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT_ROW ZSTD_compressBlock_lazy2_extDict_row
#else
#define ZSTD_COMPRESSBLOCK_LAZY2 NULL
#define ZSTD_COMPRESSBLOCK_LAZY2_ROW NULL
#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE NULL
#define ZSTD_COMPRESSBLOCK_LAZY2_DICTMATCHSTATE_ROW NULL
#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH NULL
#define ZSTD_COMPRESSBLOCK_LAZY2_DEDICATEDDICTSEARCH_ROW NULL
#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT NULL
#define ZSTD_COMPRESSBLOCK_LAZY2_EXTDICT_ROW NULL
#endif
#ifndef ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_btlazy2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btlazy2_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#define ZSTD_COMPRESSBLOCK_BTLAZY2 ZSTD_compressBlock_btlazy2
#define ZSTD_COMPRESSBLOCK_BTLAZY2_DICTMATCHSTATE ZSTD_compressBlock_btlazy2_dictMatchState
#define ZSTD_COMPRESSBLOCK_BTLAZY2_EXTDICT ZSTD_compressBlock_btlazy2_extDict
#else
#define ZSTD_COMPRESSBLOCK_BTLAZY2 NULL
#define ZSTD_COMPRESSBLOCK_BTLAZY2_DICTMATCHSTATE NULL
#define ZSTD_COMPRESSBLOCK_BTLAZY2_EXTDICT NULL
#endif
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_LAZY_H */
#endif /* USE_EXTERNAL_ZSTD */

733
vendor/github.com/DataDog/zstd/zstd_ldm.c generated vendored Normal file
View File

@ -0,0 +1,733 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#include "zstd_ldm.h"
#include "debug.h"
#include "xxhash.h"
#include "zstd_fast.h" /* ZSTD_fillHashTable() */
#include "zstd_double_fast.h" /* ZSTD_fillDoubleHashTable() */
#include "zstd_ldm_geartab.h"
#define LDM_BUCKET_SIZE_LOG 3
#define LDM_MIN_MATCH_LENGTH 64
#define LDM_HASH_RLOG 7
typedef struct {
U64 rolling;
U64 stopMask;
} ldmRollingHashState_t;
/** ZSTD_ldm_gear_init():
*
* Initializes the rolling hash state such that it will honor the
* settings in params. */
static void ZSTD_ldm_gear_init(ldmRollingHashState_t* state, ldmParams_t const* params)
{
unsigned maxBitsInMask = MIN(params->minMatchLength, 64);
unsigned hashRateLog = params->hashRateLog;
state->rolling = ~(U32)0;
/* The choice of the splitting criterion is subject to two conditions:
* 1. it has to trigger on average every 2^(hashRateLog) bytes;
* 2. ideally, it has to depend on a window of minMatchLength bytes.
*
* In the gear hash algorithm, bit n depends on the last n bytes;
* so in order to obtain a good quality splitting criterion it is
* preferable to use bits with high weight.
*
* To match condition 1 we use a mask with hashRateLog bits set
* and, because of the previous remark, we make sure these bits
* have the highest possible weight while still respecting
* condition 2.
*/
if (hashRateLog > 0 && hashRateLog <= maxBitsInMask) {
state->stopMask = (((U64)1 << hashRateLog) - 1) << (maxBitsInMask - hashRateLog);
} else {
/* In this degenerate case we simply honor the hash rate. */
state->stopMask = ((U64)1 << hashRateLog) - 1;
}
}
/** ZSTD_ldm_gear_reset()
* Feeds [data, data + minMatchLength) into the hash without registering any
* splits. This effectively resets the hash state. This is used when skipping
* over data, either at the beginning of a block, or skipping sections.
*/
static void ZSTD_ldm_gear_reset(ldmRollingHashState_t* state,
BYTE const* data, size_t minMatchLength)
{
U64 hash = state->rolling;
size_t n = 0;
#define GEAR_ITER_ONCE() do { \
hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
n += 1; \
} while (0)
while (n + 3 < minMatchLength) {
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
}
while (n < minMatchLength) {
GEAR_ITER_ONCE();
}
#undef GEAR_ITER_ONCE
}
/** ZSTD_ldm_gear_feed():
*
* Registers in the splits array all the split points found in the first
* size bytes following the data pointer. This function terminates when
* either all the data has been processed or LDM_BATCH_SIZE splits are
* present in the splits array.
*
* Precondition: The splits array must not be full.
* Returns: The number of bytes processed. */
static size_t ZSTD_ldm_gear_feed(ldmRollingHashState_t* state,
BYTE const* data, size_t size,
size_t* splits, unsigned* numSplits)
{
size_t n;
U64 hash, mask;
hash = state->rolling;
mask = state->stopMask;
n = 0;
#define GEAR_ITER_ONCE() do { \
hash = (hash << 1) + ZSTD_ldm_gearTab[data[n] & 0xff]; \
n += 1; \
if (UNLIKELY((hash & mask) == 0)) { \
splits[*numSplits] = n; \
*numSplits += 1; \
if (*numSplits == LDM_BATCH_SIZE) \
goto done; \
} \
} while (0)
while (n + 3 < size) {
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
GEAR_ITER_ONCE();
}
while (n < size) {
GEAR_ITER_ONCE();
}
#undef GEAR_ITER_ONCE
done:
state->rolling = hash;
return n;
}
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams)
{
params->windowLog = cParams->windowLog;
ZSTD_STATIC_ASSERT(LDM_BUCKET_SIZE_LOG <= ZSTD_LDM_BUCKETSIZELOG_MAX);
DEBUGLOG(4, "ZSTD_ldm_adjustParameters");
if (!params->bucketSizeLog) params->bucketSizeLog = LDM_BUCKET_SIZE_LOG;
if (!params->minMatchLength) params->minMatchLength = LDM_MIN_MATCH_LENGTH;
if (params->hashLog == 0) {
params->hashLog = MAX(ZSTD_HASHLOG_MIN, params->windowLog - LDM_HASH_RLOG);
assert(params->hashLog <= ZSTD_HASHLOG_MAX);
}
if (params->hashRateLog == 0) {
params->hashRateLog = params->windowLog < params->hashLog
? 0
: params->windowLog - params->hashLog;
}
params->bucketSizeLog = MIN(params->bucketSizeLog, params->hashLog);
}
size_t ZSTD_ldm_getTableSize(ldmParams_t params)
{
size_t const ldmHSize = ((size_t)1) << params.hashLog;
size_t const ldmBucketSizeLog = MIN(params.bucketSizeLog, params.hashLog);
size_t const ldmBucketSize = ((size_t)1) << (params.hashLog - ldmBucketSizeLog);
size_t const totalSize = ZSTD_cwksp_alloc_size(ldmBucketSize)
+ ZSTD_cwksp_alloc_size(ldmHSize * sizeof(ldmEntry_t));
return params.enableLdm == ZSTD_ps_enable ? totalSize : 0;
}
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize)
{
return params.enableLdm == ZSTD_ps_enable ? (maxChunkSize / params.minMatchLength) : 0;
}
/** ZSTD_ldm_getBucket() :
* Returns a pointer to the start of the bucket associated with hash. */
static ldmEntry_t* ZSTD_ldm_getBucket(
ldmState_t* ldmState, size_t hash, ldmParams_t const ldmParams)
{
return ldmState->hashTable + (hash << ldmParams.bucketSizeLog);
}
/** ZSTD_ldm_insertEntry() :
* Insert the entry with corresponding hash into the hash table */
static void ZSTD_ldm_insertEntry(ldmState_t* ldmState,
size_t const hash, const ldmEntry_t entry,
ldmParams_t const ldmParams)
{
BYTE* const pOffset = ldmState->bucketOffsets + hash;
unsigned const offset = *pOffset;
*(ZSTD_ldm_getBucket(ldmState, hash, ldmParams) + offset) = entry;
*pOffset = (BYTE)((offset + 1) & ((1u << ldmParams.bucketSizeLog) - 1));
}
/** ZSTD_ldm_countBackwardsMatch() :
* Returns the number of bytes that match backwards before pIn and pMatch.
*
* We count only bytes where pMatch >= pBase and pIn >= pAnchor. */
static size_t ZSTD_ldm_countBackwardsMatch(
const BYTE* pIn, const BYTE* pAnchor,
const BYTE* pMatch, const BYTE* pMatchBase)
{
size_t matchLength = 0;
while (pIn > pAnchor && pMatch > pMatchBase && pIn[-1] == pMatch[-1]) {
pIn--;
pMatch--;
matchLength++;
}
return matchLength;
}
/** ZSTD_ldm_countBackwardsMatch_2segments() :
* Returns the number of bytes that match backwards from pMatch,
* even with the backwards match spanning 2 different segments.
*
* On reaching `pMatchBase`, start counting from mEnd */
static size_t ZSTD_ldm_countBackwardsMatch_2segments(
const BYTE* pIn, const BYTE* pAnchor,
const BYTE* pMatch, const BYTE* pMatchBase,
const BYTE* pExtDictStart, const BYTE* pExtDictEnd)
{
size_t matchLength = ZSTD_ldm_countBackwardsMatch(pIn, pAnchor, pMatch, pMatchBase);
if (pMatch - matchLength != pMatchBase || pMatchBase == pExtDictStart) {
/* If backwards match is entirely in the extDict or prefix, immediately return */
return matchLength;
}
DEBUGLOG(7, "ZSTD_ldm_countBackwardsMatch_2segments: found 2-parts backwards match (length in prefix==%zu)", matchLength);
matchLength += ZSTD_ldm_countBackwardsMatch(pIn - matchLength, pAnchor, pExtDictEnd, pExtDictStart);
DEBUGLOG(7, "final backwards match length = %zu", matchLength);
return matchLength;
}
/** ZSTD_ldm_fillFastTables() :
*
* Fills the relevant tables for the ZSTD_fast and ZSTD_dfast strategies.
* This is similar to ZSTD_loadDictionaryContent.
*
* The tables for the other strategies are filled within their
* block compressors. */
static size_t ZSTD_ldm_fillFastTables(ZSTD_matchState_t* ms,
void const* end)
{
const BYTE* const iend = (const BYTE*)end;
switch(ms->cParams.strategy)
{
case ZSTD_fast:
ZSTD_fillHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
break;
case ZSTD_dfast:
#ifndef ZSTD_EXCLUDE_DFAST_BLOCK_COMPRESSOR
ZSTD_fillDoubleHashTable(ms, iend, ZSTD_dtlm_fast, ZSTD_tfp_forCCtx);
#else
assert(0); /* shouldn't be called: cparams should've been adjusted. */
#endif
break;
case ZSTD_greedy:
case ZSTD_lazy:
case ZSTD_lazy2:
case ZSTD_btlazy2:
case ZSTD_btopt:
case ZSTD_btultra:
case ZSTD_btultra2:
break;
default:
assert(0); /* not possible : not a valid strategy id */
}
return 0;
}
void ZSTD_ldm_fillHashTable(
ldmState_t* ldmState, const BYTE* ip,
const BYTE* iend, ldmParams_t const* params)
{
U32 const minMatchLength = params->minMatchLength;
U32 const hBits = params->hashLog - params->bucketSizeLog;
BYTE const* const base = ldmState->window.base;
BYTE const* const istart = ip;
ldmRollingHashState_t hashState;
size_t* const splits = ldmState->splitIndices;
unsigned numSplits;
DEBUGLOG(5, "ZSTD_ldm_fillHashTable");
ZSTD_ldm_gear_init(&hashState, params);
while (ip < iend) {
size_t hashed;
unsigned n;
numSplits = 0;
hashed = ZSTD_ldm_gear_feed(&hashState, ip, iend - ip, splits, &numSplits);
for (n = 0; n < numSplits; n++) {
if (ip + splits[n] >= istart + minMatchLength) {
BYTE const* const split = ip + splits[n] - minMatchLength;
U64 const xxhash = XXH64(split, minMatchLength, 0);
U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
ldmEntry_t entry;
entry.offset = (U32)(split - base);
entry.checksum = (U32)(xxhash >> 32);
ZSTD_ldm_insertEntry(ldmState, hash, entry, *params);
}
}
ip += hashed;
}
}
/** ZSTD_ldm_limitTableUpdate() :
*
* Sets cctx->nextToUpdate to a position corresponding closer to anchor
* if it is far way
* (after a long match, only update tables a limited amount). */
static void ZSTD_ldm_limitTableUpdate(ZSTD_matchState_t* ms, const BYTE* anchor)
{
U32 const curr = (U32)(anchor - ms->window.base);
if (curr > ms->nextToUpdate + 1024) {
ms->nextToUpdate =
curr - MIN(512, curr - ms->nextToUpdate - 1024);
}
}
static
ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
size_t ZSTD_ldm_generateSequences_internal(
ldmState_t* ldmState, rawSeqStore_t* rawSeqStore,
ldmParams_t const* params, void const* src, size_t srcSize)
{
/* LDM parameters */
int const extDict = ZSTD_window_hasExtDict(ldmState->window);
U32 const minMatchLength = params->minMatchLength;
U32 const entsPerBucket = 1U << params->bucketSizeLog;
U32 const hBits = params->hashLog - params->bucketSizeLog;
/* Prefix and extDict parameters */
U32 const dictLimit = ldmState->window.dictLimit;
U32 const lowestIndex = extDict ? ldmState->window.lowLimit : dictLimit;
BYTE const* const base = ldmState->window.base;
BYTE const* const dictBase = extDict ? ldmState->window.dictBase : NULL;
BYTE const* const dictStart = extDict ? dictBase + lowestIndex : NULL;
BYTE const* const dictEnd = extDict ? dictBase + dictLimit : NULL;
BYTE const* const lowPrefixPtr = base + dictLimit;
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
BYTE const* const ilimit = iend - HASH_READ_SIZE;
/* Input positions */
BYTE const* anchor = istart;
BYTE const* ip = istart;
/* Rolling hash state */
ldmRollingHashState_t hashState;
/* Arrays for staged-processing */
size_t* const splits = ldmState->splitIndices;
ldmMatchCandidate_t* const candidates = ldmState->matchCandidates;
unsigned numSplits;
if (srcSize < minMatchLength)
return iend - anchor;
/* Initialize the rolling hash state with the first minMatchLength bytes */
ZSTD_ldm_gear_init(&hashState, params);
ZSTD_ldm_gear_reset(&hashState, ip, minMatchLength);
ip += minMatchLength;
while (ip < ilimit) {
size_t hashed;
unsigned n;
numSplits = 0;
hashed = ZSTD_ldm_gear_feed(&hashState, ip, ilimit - ip,
splits, &numSplits);
for (n = 0; n < numSplits; n++) {
BYTE const* const split = ip + splits[n] - minMatchLength;
U64 const xxhash = XXH64(split, minMatchLength, 0);
U32 const hash = (U32)(xxhash & (((U32)1 << hBits) - 1));
candidates[n].split = split;
candidates[n].hash = hash;
candidates[n].checksum = (U32)(xxhash >> 32);
candidates[n].bucket = ZSTD_ldm_getBucket(ldmState, hash, *params);
PREFETCH_L1(candidates[n].bucket);
}
for (n = 0; n < numSplits; n++) {
size_t forwardMatchLength = 0, backwardMatchLength = 0,
bestMatchLength = 0, mLength;
U32 offset;
BYTE const* const split = candidates[n].split;
U32 const checksum = candidates[n].checksum;
U32 const hash = candidates[n].hash;
ldmEntry_t* const bucket = candidates[n].bucket;
ldmEntry_t const* cur;
ldmEntry_t const* bestEntry = NULL;
ldmEntry_t newEntry;
newEntry.offset = (U32)(split - base);
newEntry.checksum = checksum;
/* If a split point would generate a sequence overlapping with
* the previous one, we merely register it in the hash table and
* move on */
if (split < anchor) {
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
continue;
}
for (cur = bucket; cur < bucket + entsPerBucket; cur++) {
size_t curForwardMatchLength, curBackwardMatchLength,
curTotalMatchLength;
if (cur->checksum != checksum || cur->offset <= lowestIndex) {
continue;
}
if (extDict) {
BYTE const* const curMatchBase =
cur->offset < dictLimit ? dictBase : base;
BYTE const* const pMatch = curMatchBase + cur->offset;
BYTE const* const matchEnd =
cur->offset < dictLimit ? dictEnd : iend;
BYTE const* const lowMatchPtr =
cur->offset < dictLimit ? dictStart : lowPrefixPtr;
curForwardMatchLength =
ZSTD_count_2segments(split, pMatch, iend, matchEnd, lowPrefixPtr);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength = ZSTD_ldm_countBackwardsMatch_2segments(
split, anchor, pMatch, lowMatchPtr, dictStart, dictEnd);
} else { /* !extDict */
BYTE const* const pMatch = base + cur->offset;
curForwardMatchLength = ZSTD_count(split, pMatch, iend);
if (curForwardMatchLength < minMatchLength) {
continue;
}
curBackwardMatchLength =
ZSTD_ldm_countBackwardsMatch(split, anchor, pMatch, lowPrefixPtr);
}
curTotalMatchLength = curForwardMatchLength + curBackwardMatchLength;
if (curTotalMatchLength > bestMatchLength) {
bestMatchLength = curTotalMatchLength;
forwardMatchLength = curForwardMatchLength;
backwardMatchLength = curBackwardMatchLength;
bestEntry = cur;
}
}
/* No match found -- insert an entry into the hash table
* and process the next candidate match */
if (bestEntry == NULL) {
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
continue;
}
/* Match found */
offset = (U32)(split - base) - bestEntry->offset;
mLength = forwardMatchLength + backwardMatchLength;
{
rawSeq* const seq = rawSeqStore->seq + rawSeqStore->size;
/* Out of sequence storage */
if (rawSeqStore->size == rawSeqStore->capacity)
return ERROR(dstSize_tooSmall);
seq->litLength = (U32)(split - backwardMatchLength - anchor);
seq->matchLength = (U32)mLength;
seq->offset = offset;
rawSeqStore->size++;
}
/* Insert the current entry into the hash table --- it must be
* done after the previous block to avoid clobbering bestEntry */
ZSTD_ldm_insertEntry(ldmState, hash, newEntry, *params);
anchor = split + forwardMatchLength;
/* If we find a match that ends after the data that we've hashed
* then we have a repeating, overlapping, pattern. E.g. all zeros.
* If one repetition of the pattern matches our `stopMask` then all
* repetitions will. We don't need to insert them all into out table,
* only the first one. So skip over overlapping matches.
* This is a major speed boost (20x) for compressing a single byte
* repeated, when that byte ends up in the table.
*/
if (anchor > ip + hashed) {
ZSTD_ldm_gear_reset(&hashState, anchor - minMatchLength, minMatchLength);
/* Continue the outer loop at anchor (ip + hashed == anchor). */
ip = anchor - hashed;
break;
}
}
ip += hashed;
}
return iend - anchor;
}
/*! ZSTD_ldm_reduceTable() :
* reduce table indexes by `reducerValue` */
static void ZSTD_ldm_reduceTable(ldmEntry_t* const table, U32 const size,
U32 const reducerValue)
{
U32 u;
for (u = 0; u < size; u++) {
if (table[u].offset < reducerValue) table[u].offset = 0;
else table[u].offset -= reducerValue;
}
}
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldmState, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize)
{
U32 const maxDist = 1U << params->windowLog;
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
size_t const kMaxChunkSize = 1 << 20;
size_t const nbChunks = (srcSize / kMaxChunkSize) + ((srcSize % kMaxChunkSize) != 0);
size_t chunk;
size_t leftoverSize = 0;
assert(ZSTD_CHUNKSIZE_MAX >= kMaxChunkSize);
/* Check that ZSTD_window_update() has been called for this chunk prior
* to passing it to this function.
*/
assert(ldmState->window.nextSrc >= (BYTE const*)src + srcSize);
/* The input could be very large (in zstdmt), so it must be broken up into
* chunks to enforce the maximum distance and handle overflow correction.
*/
assert(sequences->pos <= sequences->size);
assert(sequences->size <= sequences->capacity);
for (chunk = 0; chunk < nbChunks && sequences->size < sequences->capacity; ++chunk) {
BYTE const* const chunkStart = istart + chunk * kMaxChunkSize;
size_t const remaining = (size_t)(iend - chunkStart);
BYTE const *const chunkEnd =
(remaining < kMaxChunkSize) ? iend : chunkStart + kMaxChunkSize;
size_t const chunkSize = chunkEnd - chunkStart;
size_t newLeftoverSize;
size_t const prevSize = sequences->size;
assert(chunkStart < iend);
/* 1. Perform overflow correction if necessary. */
if (ZSTD_window_needOverflowCorrection(ldmState->window, 0, maxDist, ldmState->loadedDictEnd, chunkStart, chunkEnd)) {
U32 const ldmHSize = 1U << params->hashLog;
U32 const correction = ZSTD_window_correctOverflow(
&ldmState->window, /* cycleLog */ 0, maxDist, chunkStart);
ZSTD_ldm_reduceTable(ldmState->hashTable, ldmHSize, correction);
/* invalidate dictionaries on overflow correction */
ldmState->loadedDictEnd = 0;
}
/* 2. We enforce the maximum offset allowed.
*
* kMaxChunkSize should be small enough that we don't lose too much of
* the window through early invalidation.
* TODO: * Test the chunk size.
* * Try invalidation after the sequence generation and test the
* offset against maxDist directly.
*
* NOTE: Because of dictionaries + sequence splitting we MUST make sure
* that any offset used is valid at the END of the sequence, since it may
* be split into two sequences. This condition holds when using
* ZSTD_window_enforceMaxDist(), but if we move to checking offsets
* against maxDist directly, we'll have to carefully handle that case.
*/
ZSTD_window_enforceMaxDist(&ldmState->window, chunkEnd, maxDist, &ldmState->loadedDictEnd, NULL);
/* 3. Generate the sequences for the chunk, and get newLeftoverSize. */
newLeftoverSize = ZSTD_ldm_generateSequences_internal(
ldmState, sequences, params, chunkStart, chunkSize);
if (ZSTD_isError(newLeftoverSize))
return newLeftoverSize;
/* 4. We add the leftover literals from previous iterations to the first
* newly generated sequence, or add the `newLeftoverSize` if none are
* generated.
*/
/* Prepend the leftover literals from the last call */
if (prevSize < sequences->size) {
sequences->seq[prevSize].litLength += (U32)leftoverSize;
leftoverSize = newLeftoverSize;
} else {
assert(newLeftoverSize == chunkSize);
leftoverSize += chunkSize;
}
}
return 0;
}
void
ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize, U32 const minMatch)
{
while (srcSize > 0 && rawSeqStore->pos < rawSeqStore->size) {
rawSeq* seq = rawSeqStore->seq + rawSeqStore->pos;
if (srcSize <= seq->litLength) {
/* Skip past srcSize literals */
seq->litLength -= (U32)srcSize;
return;
}
srcSize -= seq->litLength;
seq->litLength = 0;
if (srcSize < seq->matchLength) {
/* Skip past the first srcSize of the match */
seq->matchLength -= (U32)srcSize;
if (seq->matchLength < minMatch) {
/* The match is too short, omit it */
if (rawSeqStore->pos + 1 < rawSeqStore->size) {
seq[1].litLength += seq[0].matchLength;
}
rawSeqStore->pos++;
}
return;
}
srcSize -= seq->matchLength;
seq->matchLength = 0;
rawSeqStore->pos++;
}
}
/**
* If the sequence length is longer than remaining then the sequence is split
* between this block and the next.
*
* Returns the current sequence to handle, or if the rest of the block should
* be literals, it returns a sequence with offset == 0.
*/
static rawSeq maybeSplitSequence(rawSeqStore_t* rawSeqStore,
U32 const remaining, U32 const minMatch)
{
rawSeq sequence = rawSeqStore->seq[rawSeqStore->pos];
assert(sequence.offset > 0);
/* Likely: No partial sequence */
if (remaining >= sequence.litLength + sequence.matchLength) {
rawSeqStore->pos++;
return sequence;
}
/* Cut the sequence short (offset == 0 ==> rest is literals). */
if (remaining <= sequence.litLength) {
sequence.offset = 0;
} else if (remaining < sequence.litLength + sequence.matchLength) {
sequence.matchLength = remaining - sequence.litLength;
if (sequence.matchLength < minMatch) {
sequence.offset = 0;
}
}
/* Skip past `remaining` bytes for the future sequences. */
ZSTD_ldm_skipSequences(rawSeqStore, remaining, minMatch);
return sequence;
}
void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes) {
U32 currPos = (U32)(rawSeqStore->posInSequence + nbBytes);
while (currPos && rawSeqStore->pos < rawSeqStore->size) {
rawSeq currSeq = rawSeqStore->seq[rawSeqStore->pos];
if (currPos >= currSeq.litLength + currSeq.matchLength) {
currPos -= currSeq.litLength + currSeq.matchLength;
rawSeqStore->pos++;
} else {
rawSeqStore->posInSequence = currPos;
break;
}
}
if (currPos == 0 || rawSeqStore->pos == rawSeqStore->size) {
rawSeqStore->posInSequence = 0;
}
}
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_paramSwitch_e useRowMatchFinder,
void const* src, size_t srcSize)
{
const ZSTD_compressionParameters* const cParams = &ms->cParams;
unsigned const minMatch = cParams->minMatch;
ZSTD_blockCompressor const blockCompressor =
ZSTD_selectBlockCompressor(cParams->strategy, useRowMatchFinder, ZSTD_matchState_dictMode(ms));
/* Input bounds */
BYTE const* const istart = (BYTE const*)src;
BYTE const* const iend = istart + srcSize;
/* Input positions */
BYTE const* ip = istart;
DEBUGLOG(5, "ZSTD_ldm_blockCompress: srcSize=%zu", srcSize);
/* If using opt parser, use LDMs only as candidates rather than always accepting them */
if (cParams->strategy >= ZSTD_btopt) {
size_t lastLLSize;
ms->ldmSeqStore = rawSeqStore;
lastLLSize = blockCompressor(ms, seqStore, rep, src, srcSize);
ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore, srcSize);
return lastLLSize;
}
assert(rawSeqStore->pos <= rawSeqStore->size);
assert(rawSeqStore->size <= rawSeqStore->capacity);
/* Loop through each sequence and apply the block compressor to the literals */
while (rawSeqStore->pos < rawSeqStore->size && ip < iend) {
/* maybeSplitSequence updates rawSeqStore->pos */
rawSeq const sequence = maybeSplitSequence(rawSeqStore,
(U32)(iend - ip), minMatch);
/* End signal */
if (sequence.offset == 0)
break;
assert(ip + sequence.litLength + sequence.matchLength <= iend);
/* Fill tables for block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, ip);
/* Run the block compressor */
DEBUGLOG(5, "pos %u : calling block compressor on segment of size %u", (unsigned)(ip-istart), sequence.litLength);
{
int i;
size_t const newLitLength =
blockCompressor(ms, seqStore, rep, ip, sequence.litLength);
ip += sequence.litLength;
/* Update the repcodes */
for (i = ZSTD_REP_NUM - 1; i > 0; i--)
rep[i] = rep[i-1];
rep[0] = sequence.offset;
/* Store the sequence */
ZSTD_storeSeq(seqStore, newLitLength, ip - newLitLength, iend,
OFFSET_TO_OFFBASE(sequence.offset),
sequence.matchLength);
ip += sequence.matchLength;
}
}
/* Fill the tables for the block compressor */
ZSTD_ldm_limitTableUpdate(ms, ip);
ZSTD_ldm_fillFastTables(ms, ip);
/* Compress the last literals */
return blockCompressor(ms, seqStore, rep, ip, iend - ip);
}
#endif /* USE_EXTERNAL_ZSTD */

120
vendor/github.com/DataDog/zstd/zstd_ldm.h generated vendored Normal file
View File

@ -0,0 +1,120 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LDM_H
#define ZSTD_LDM_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h" /* ldmParams_t, U32 */
#include "zstd.h" /* ZSTD_CCtx, size_t */
/*-*************************************
* Long distance matching
***************************************/
#define ZSTD_LDM_DEFAULT_WINDOW_LOG ZSTD_WINDOWLOG_LIMIT_DEFAULT
void ZSTD_ldm_fillHashTable(
ldmState_t* state, const BYTE* ip,
const BYTE* iend, ldmParams_t const* params);
/**
* ZSTD_ldm_generateSequences():
*
* Generates the sequences using the long distance match finder.
* Generates long range matching sequences in `sequences`, which parse a prefix
* of the source. `sequences` must be large enough to store every sequence,
* which can be checked with `ZSTD_ldm_getMaxNbSeq()`.
* @returns 0 or an error code.
*
* NOTE: The user must have called ZSTD_window_update() for all of the input
* they have, even if they pass it to ZSTD_ldm_generateSequences() in chunks.
* NOTE: This function returns an error if it runs out of space to store
* sequences.
*/
size_t ZSTD_ldm_generateSequences(
ldmState_t* ldms, rawSeqStore_t* sequences,
ldmParams_t const* params, void const* src, size_t srcSize);
/**
* ZSTD_ldm_blockCompress():
*
* Compresses a block using the predefined sequences, along with a secondary
* block compressor. The literals section of every sequence is passed to the
* secondary block compressor, and those sequences are interspersed with the
* predefined sequences. Returns the length of the last literals.
* Updates `rawSeqStore.pos` to indicate how many sequences have been consumed.
* `rawSeqStore.seq` may also be updated to split the last sequence between two
* blocks.
* @return The length of the last literals.
*
* NOTE: The source must be at most the maximum block size, but the predefined
* sequences can be any size, and may be longer than the block. In the case that
* they are longer than the block, the last sequences may need to be split into
* two. We handle that case correctly, and update `rawSeqStore` appropriately.
* NOTE: This function does not return any errors.
*/
size_t ZSTD_ldm_blockCompress(rawSeqStore_t* rawSeqStore,
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
ZSTD_paramSwitch_e useRowMatchFinder,
void const* src, size_t srcSize);
/**
* ZSTD_ldm_skipSequences():
*
* Skip past `srcSize` bytes worth of sequences in `rawSeqStore`.
* Avoids emitting matches less than `minMatch` bytes.
* Must be called for data that is not passed to ZSTD_ldm_blockCompress().
*/
void ZSTD_ldm_skipSequences(rawSeqStore_t* rawSeqStore, size_t srcSize,
U32 const minMatch);
/* ZSTD_ldm_skipRawSeqStoreBytes():
* Moves forward in rawSeqStore by nbBytes, updating fields 'pos' and 'posInSequence'.
* Not to be used in conjunction with ZSTD_ldm_skipSequences().
* Must be called for data with is not passed to ZSTD_ldm_blockCompress().
*/
void ZSTD_ldm_skipRawSeqStoreBytes(rawSeqStore_t* rawSeqStore, size_t nbBytes);
/** ZSTD_ldm_getTableSize() :
* Estimate the space needed for long distance matching tables or 0 if LDM is
* disabled.
*/
size_t ZSTD_ldm_getTableSize(ldmParams_t params);
/** ZSTD_ldm_getSeqSpace() :
* Return an upper bound on the number of sequences that can be produced by
* the long distance matcher, or 0 if LDM is disabled.
*/
size_t ZSTD_ldm_getMaxNbSeq(ldmParams_t params, size_t maxChunkSize);
/** ZSTD_ldm_adjustParameters() :
* If the params->hashRateLog is not set, set it to its default value based on
* windowLog and params->hashLog.
*
* Ensures that params->bucketSizeLog is <= params->hashLog (setting it to
* params->hashLog if it is not).
*
* Ensures that the minMatchLength >= targetLength during optimal parsing.
*/
void ZSTD_ldm_adjustParameters(ldmParams_t* params,
ZSTD_compressionParameters const* cParams);
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_FAST_H */
#endif /* USE_EXTERNAL_ZSTD */

109
vendor/github.com/DataDog/zstd/zstd_ldm_geartab.h generated vendored Normal file
View File

@ -0,0 +1,109 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LDM_GEARTAB_H
#define ZSTD_LDM_GEARTAB_H
#include "compiler.h" /* UNUSED_ATTR */
#include "mem.h" /* U64 */
static UNUSED_ATTR const U64 ZSTD_ldm_gearTab[256] = {
0xf5b8f72c5f77775c, 0x84935f266b7ac412, 0xb647ada9ca730ccc,
0xb065bb4b114fb1de, 0x34584e7e8c3a9fd0, 0x4e97e17c6ae26b05,
0x3a03d743bc99a604, 0xcecd042422c4044f, 0x76de76c58524259e,
0x9c8528f65badeaca, 0x86563706e2097529, 0x2902475fa375d889,
0xafb32a9739a5ebe6, 0xce2714da3883e639, 0x21eaf821722e69e,
0x37b628620b628, 0x49a8d455d88caf5, 0x8556d711e6958140,
0x4f7ae74fc605c1f, 0x829f0c3468bd3a20, 0x4ffdc885c625179e,
0x8473de048a3daf1b, 0x51008822b05646b2, 0x69d75d12b2d1cc5f,
0x8c9d4a19159154bc, 0xc3cc10f4abbd4003, 0xd06ddc1cecb97391,
0xbe48e6e7ed80302e, 0x3481db31cee03547, 0xacc3f67cdaa1d210,
0x65cb771d8c7f96cc, 0x8eb27177055723dd, 0xc789950d44cd94be,
0x934feadc3700b12b, 0x5e485f11edbdf182, 0x1e2e2a46fd64767a,
0x2969ca71d82efa7c, 0x9d46e9935ebbba2e, 0xe056b67e05e6822b,
0x94d73f55739d03a0, 0xcd7010bdb69b5a03, 0x455ef9fcd79b82f4,
0x869cb54a8749c161, 0x38d1a4fa6185d225, 0xb475166f94bbe9bb,
0xa4143548720959f1, 0x7aed4780ba6b26ba, 0xd0ce264439e02312,
0x84366d746078d508, 0xa8ce973c72ed17be, 0x21c323a29a430b01,
0x9962d617e3af80ee, 0xab0ce91d9c8cf75b, 0x530e8ee6d19a4dbc,
0x2ef68c0cf53f5d72, 0xc03a681640a85506, 0x496e4e9f9c310967,
0x78580472b59b14a0, 0x273824c23b388577, 0x66bf923ad45cb553,
0x47ae1a5a2492ba86, 0x35e304569e229659, 0x4765182a46870b6f,
0x6cbab625e9099412, 0xddac9a2e598522c1, 0x7172086e666624f2,
0xdf5003ca503b7837, 0x88c0c1db78563d09, 0x58d51865acfc289d,
0x177671aec65224f1, 0xfb79d8a241e967d7, 0x2be1e101cad9a49a,
0x6625682f6e29186b, 0x399553457ac06e50, 0x35dffb4c23abb74,
0x429db2591f54aade, 0xc52802a8037d1009, 0x6acb27381f0b25f3,
0xf45e2551ee4f823b, 0x8b0ea2d99580c2f7, 0x3bed519cbcb4e1e1,
0xff452823dbb010a, 0x9d42ed614f3dd267, 0x5b9313c06257c57b,
0xa114b8008b5e1442, 0xc1fe311c11c13d4b, 0x66e8763ea34c5568,
0x8b982af1c262f05d, 0xee8876faaa75fbb7, 0x8a62a4d0d172bb2a,
0xc13d94a3b7449a97, 0x6dbbba9dc15d037c, 0xc786101f1d92e0f1,
0xd78681a907a0b79b, 0xf61aaf2962c9abb9, 0x2cfd16fcd3cb7ad9,
0x868c5b6744624d21, 0x25e650899c74ddd7, 0xba042af4a7c37463,
0x4eb1a539465a3eca, 0xbe09dbf03b05d5ca, 0x774e5a362b5472ba,
0x47a1221229d183cd, 0x504b0ca18ef5a2df, 0xdffbdfbde2456eb9,
0x46cd2b2fbee34634, 0xf2aef8fe819d98c3, 0x357f5276d4599d61,
0x24a5483879c453e3, 0x88026889192b4b9, 0x28da96671782dbec,
0x4ef37c40588e9aaa, 0x8837b90651bc9fb3, 0xc164f741d3f0e5d6,
0xbc135a0a704b70ba, 0x69cd868f7622ada, 0xbc37ba89e0b9c0ab,
0x47c14a01323552f6, 0x4f00794bacee98bb, 0x7107de7d637a69d5,
0x88af793bb6f2255e, 0xf3c6466b8799b598, 0xc288c616aa7f3b59,
0x81ca63cf42fca3fd, 0x88d85ace36a2674b, 0xd056bd3792389e7,
0xe55c396c4e9dd32d, 0xbefb504571e6c0a6, 0x96ab32115e91e8cc,
0xbf8acb18de8f38d1, 0x66dae58801672606, 0x833b6017872317fb,
0xb87c16f2d1c92864, 0xdb766a74e58b669c, 0x89659f85c61417be,
0xc8daad856011ea0c, 0x76a4b565b6fe7eae, 0xa469d085f6237312,
0xaaf0365683a3e96c, 0x4dbb746f8424f7b8, 0x638755af4e4acc1,
0x3d7807f5bde64486, 0x17be6d8f5bbb7639, 0x903f0cd44dc35dc,
0x67b672eafdf1196c, 0xa676ff93ed4c82f1, 0x521d1004c5053d9d,
0x37ba9ad09ccc9202, 0x84e54d297aacfb51, 0xa0b4b776a143445,
0x820d471e20b348e, 0x1874383cb83d46dc, 0x97edeec7a1efe11c,
0xb330e50b1bdc42aa, 0x1dd91955ce70e032, 0xa514cdb88f2939d5,
0x2791233fd90db9d3, 0x7b670a4cc50f7a9b, 0x77c07d2a05c6dfa5,
0xe3778b6646d0a6fa, 0xb39c8eda47b56749, 0x933ed448addbef28,
0xaf846af6ab7d0bf4, 0xe5af208eb666e49, 0x5e6622f73534cd6a,
0x297daeca42ef5b6e, 0x862daef3d35539a6, 0xe68722498f8e1ea9,
0x981c53093dc0d572, 0xfa09b0bfbf86fbf5, 0x30b1e96166219f15,
0x70e7d466bdc4fb83, 0x5a66736e35f2a8e9, 0xcddb59d2b7c1baef,
0xd6c7d247d26d8996, 0xea4e39eac8de1ba3, 0x539c8bb19fa3aff2,
0x9f90e4c5fd508d8, 0xa34e5956fbaf3385, 0x2e2f8e151d3ef375,
0x173691e9b83faec1, 0xb85a8d56bf016379, 0x8382381267408ae3,
0xb90f901bbdc0096d, 0x7c6ad32933bcec65, 0x76bb5e2f2c8ad595,
0x390f851a6cf46d28, 0xc3e6064da1c2da72, 0xc52a0c101cfa5389,
0xd78eaf84a3fbc530, 0x3781b9e2288b997e, 0x73c2f6dea83d05c4,
0x4228e364c5b5ed7, 0x9d7a3edf0da43911, 0x8edcfeda24686756,
0x5e7667a7b7a9b3a1, 0x4c4f389fa143791d, 0xb08bc1023da7cddc,
0x7ab4be3ae529b1cc, 0x754e6132dbe74ff9, 0x71635442a839df45,
0x2f6fb1643fbe52de, 0x961e0a42cf7a8177, 0xf3b45d83d89ef2ea,
0xee3de4cf4a6e3e9b, 0xcd6848542c3295e7, 0xe4cee1664c78662f,
0x9947548b474c68c4, 0x25d73777a5ed8b0b, 0xc915b1d636b7fc,
0x21c2ba75d9b0d2da, 0x5f6b5dcf608a64a1, 0xdcf333255ff9570c,
0x633b922418ced4ee, 0xc136dde0b004b34a, 0x58cc83b05d4b2f5a,
0x5eb424dda28e42d2, 0x62df47369739cd98, 0xb4e0b42485e4ce17,
0x16e1f0c1f9a8d1e7, 0x8ec3916707560ebf, 0x62ba6e2df2cc9db3,
0xcbf9f4ff77d83a16, 0x78d9d7d07d2bbcc4, 0xef554ce1e02c41f4,
0x8d7581127eccf94d, 0xa9b53336cb3c8a05, 0x38c42c0bf45c4f91,
0x640893cdf4488863, 0x80ec34bc575ea568, 0x39f324f5b48eaa40,
0xe9d9ed1f8eff527f, 0x9224fc058cc5a214, 0xbaba00b04cfe7741,
0x309a9f120fcf52af, 0xa558f3ec65626212, 0x424bec8b7adabe2f,
0x41622513a6aea433, 0xb88da2d5324ca798, 0xd287733b245528a4,
0x9a44697e6d68aec3, 0x7b1093be2f49bb28, 0x50bbec632e3d8aad,
0x6cd90723e1ea8283, 0x897b9e7431b02bf3, 0x219efdcb338a7047,
0x3b0311f0a27c0656, 0xdb17bf91c0db96e7, 0x8cd4fd6b4e85a5b2,
0xfab071054ba6409d, 0x40d6fe831fa9dfd9, 0xaf358debad7d791e,
0xeb8d0e25a65e3e58, 0xbbcbd3df14e08580, 0xcf751f27ecdab2b,
0x2b4da14f2613d8f4
};
#endif /* ZSTD_LDM_GEARTAB_H */
#endif /* USE_EXTERNAL_ZSTD */

455
vendor/github.com/DataDog/zstd/zstd_legacy.h generated vendored Normal file
View File

@ -0,0 +1,455 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_LEGACY_H
#define ZSTD_LEGACY_H
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include "mem.h" /* MEM_STATIC */
#include "error_private.h" /* ERROR */
#include "zstd_internal.h" /* ZSTD_inBuffer, ZSTD_outBuffer, ZSTD_frameSizeInfo */
#if !defined (ZSTD_LEGACY_SUPPORT) || (ZSTD_LEGACY_SUPPORT == 0)
# undef ZSTD_LEGACY_SUPPORT
# define ZSTD_LEGACY_SUPPORT 8
#endif
#if (ZSTD_LEGACY_SUPPORT <= 1)
# include "zstd_v01.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
# include "zstd_v02.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
# include "zstd_v03.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
# include "zstd_v04.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
# include "zstd_v05.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
# include "zstd_v06.h"
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
# include "zstd_v07.h"
#endif
/** ZSTD_isLegacy() :
@return : > 0 if supported by legacy decoder. 0 otherwise.
return value is the version.
*/
MEM_STATIC unsigned ZSTD_isLegacy(const void* src, size_t srcSize)
{
U32 magicNumberLE;
if (srcSize<4) return 0;
magicNumberLE = MEM_readLE32(src);
switch(magicNumberLE)
{
#if (ZSTD_LEGACY_SUPPORT <= 1)
case ZSTDv01_magicNumberLE:return 1;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
case ZSTDv02_magicNumber : return 2;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
case ZSTDv03_magicNumber : return 3;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
case ZSTDv04_magicNumber : return 4;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case ZSTDv05_MAGICNUMBER : return 5;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case ZSTDv06_MAGICNUMBER : return 6;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case ZSTDv07_MAGICNUMBER : return 7;
#endif
default : return 0;
}
}
MEM_STATIC unsigned long long ZSTD_getDecompressedSize_legacy(const void* src, size_t srcSize)
{
U32 const version = ZSTD_isLegacy(src, srcSize);
if (version < 5) return 0; /* no decompressed size in frame header, or not a legacy format */
#if (ZSTD_LEGACY_SUPPORT <= 5)
if (version==5) {
ZSTDv05_parameters fParams;
size_t const frResult = ZSTDv05_getFrameParams(&fParams, src, srcSize);
if (frResult != 0) return 0;
return fParams.srcSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
if (version==6) {
ZSTDv06_frameParams fParams;
size_t const frResult = ZSTDv06_getFrameParams(&fParams, src, srcSize);
if (frResult != 0) return 0;
return fParams.frameContentSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
if (version==7) {
ZSTDv07_frameParams fParams;
size_t const frResult = ZSTDv07_getFrameParams(&fParams, src, srcSize);
if (frResult != 0) return 0;
return fParams.frameContentSize;
}
#endif
return 0; /* should not be possible */
}
MEM_STATIC size_t ZSTD_decompressLegacy(
void* dst, size_t dstCapacity,
const void* src, size_t compressedSize,
const void* dict,size_t dictSize)
{
U32 const version = ZSTD_isLegacy(src, compressedSize);
char x;
/* Avoid passing NULL to legacy decoding. */
if (dst == NULL) {
assert(dstCapacity == 0);
dst = &x;
}
if (src == NULL) {
assert(compressedSize == 0);
src = &x;
}
if (dict == NULL) {
assert(dictSize == 0);
dict = &x;
}
(void)dst; (void)dstCapacity; (void)dict; (void)dictSize; /* unused when ZSTD_LEGACY_SUPPORT >= 8 */
switch(version)
{
#if (ZSTD_LEGACY_SUPPORT <= 1)
case 1 :
return ZSTDv01_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
case 2 :
return ZSTDv02_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
case 3 :
return ZSTDv03_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
return ZSTDv04_decompress(dst, dstCapacity, src, compressedSize);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
{ size_t result;
ZSTDv05_DCtx* const zd = ZSTDv05_createDCtx();
if (zd==NULL) return ERROR(memory_allocation);
result = ZSTDv05_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
ZSTDv05_freeDCtx(zd);
return result;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
{ size_t result;
ZSTDv06_DCtx* const zd = ZSTDv06_createDCtx();
if (zd==NULL) return ERROR(memory_allocation);
result = ZSTDv06_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
ZSTDv06_freeDCtx(zd);
return result;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
{ size_t result;
ZSTDv07_DCtx* const zd = ZSTDv07_createDCtx();
if (zd==NULL) return ERROR(memory_allocation);
result = ZSTDv07_decompress_usingDict(zd, dst, dstCapacity, src, compressedSize, dict, dictSize);
ZSTDv07_freeDCtx(zd);
return result;
}
#endif
default :
return ERROR(prefix_unknown);
}
}
MEM_STATIC ZSTD_frameSizeInfo ZSTD_findFrameSizeInfoLegacy(const void *src, size_t srcSize)
{
ZSTD_frameSizeInfo frameSizeInfo;
U32 const version = ZSTD_isLegacy(src, srcSize);
switch(version)
{
#if (ZSTD_LEGACY_SUPPORT <= 1)
case 1 :
ZSTDv01_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 2)
case 2 :
ZSTDv02_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 3)
case 3 :
ZSTDv03_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
ZSTDv04_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
ZSTDv05_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
ZSTDv06_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
ZSTDv07_findFrameSizeInfoLegacy(src, srcSize,
&frameSizeInfo.compressedSize,
&frameSizeInfo.decompressedBound);
break;
#endif
default :
frameSizeInfo.compressedSize = ERROR(prefix_unknown);
frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
break;
}
if (!ZSTD_isError(frameSizeInfo.compressedSize) && frameSizeInfo.compressedSize > srcSize) {
frameSizeInfo.compressedSize = ERROR(srcSize_wrong);
frameSizeInfo.decompressedBound = ZSTD_CONTENTSIZE_ERROR;
}
/* In all cases, decompressedBound == nbBlocks * ZSTD_BLOCKSIZE_MAX.
* So we can compute nbBlocks without having to change every function.
*/
if (frameSizeInfo.decompressedBound != ZSTD_CONTENTSIZE_ERROR) {
assert((frameSizeInfo.decompressedBound & (ZSTD_BLOCKSIZE_MAX - 1)) == 0);
frameSizeInfo.nbBlocks = (size_t)(frameSizeInfo.decompressedBound / ZSTD_BLOCKSIZE_MAX);
}
return frameSizeInfo;
}
MEM_STATIC size_t ZSTD_findFrameCompressedSizeLegacy(const void *src, size_t srcSize)
{
ZSTD_frameSizeInfo frameSizeInfo = ZSTD_findFrameSizeInfoLegacy(src, srcSize);
return frameSizeInfo.compressedSize;
}
MEM_STATIC size_t ZSTD_freeLegacyStreamContext(void* legacyContext, U32 version)
{
switch(version)
{
default :
case 1 :
case 2 :
case 3 :
(void)legacyContext;
return ERROR(version_unsupported);
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 : return ZBUFFv04_freeDCtx((ZBUFFv04_DCtx*)legacyContext);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 : return ZBUFFv05_freeDCtx((ZBUFFv05_DCtx*)legacyContext);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 : return ZBUFFv06_freeDCtx((ZBUFFv06_DCtx*)legacyContext);
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 : return ZBUFFv07_freeDCtx((ZBUFFv07_DCtx*)legacyContext);
#endif
}
}
MEM_STATIC size_t ZSTD_initLegacyStream(void** legacyContext, U32 prevVersion, U32 newVersion,
const void* dict, size_t dictSize)
{
char x;
/* Avoid passing NULL to legacy decoding. */
if (dict == NULL) {
assert(dictSize == 0);
dict = &x;
}
DEBUGLOG(5, "ZSTD_initLegacyStream for v0.%u", newVersion);
if (prevVersion != newVersion) ZSTD_freeLegacyStreamContext(*legacyContext, prevVersion);
switch(newVersion)
{
default :
case 1 :
case 2 :
case 3 :
(void)dict; (void)dictSize;
return 0;
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
{
ZBUFFv04_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv04_createDCtx() : (ZBUFFv04_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv04_decompressInit(dctx);
ZBUFFv04_decompressWithDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
{
ZBUFFv05_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv05_createDCtx() : (ZBUFFv05_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv05_decompressInitDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
{
ZBUFFv06_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv06_createDCtx() : (ZBUFFv06_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv06_decompressInitDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
{
ZBUFFv07_DCtx* dctx = (prevVersion != newVersion) ? ZBUFFv07_createDCtx() : (ZBUFFv07_DCtx*)*legacyContext;
if (dctx==NULL) return ERROR(memory_allocation);
ZBUFFv07_decompressInitDictionary(dctx, dict, dictSize);
*legacyContext = dctx;
return 0;
}
#endif
}
}
MEM_STATIC size_t ZSTD_decompressLegacyStream(void* legacyContext, U32 version,
ZSTD_outBuffer* output, ZSTD_inBuffer* input)
{
static char x;
/* Avoid passing NULL to legacy decoding. */
if (output->dst == NULL) {
assert(output->size == 0);
output->dst = &x;
}
if (input->src == NULL) {
assert(input->size == 0);
input->src = &x;
}
DEBUGLOG(5, "ZSTD_decompressLegacyStream for v0.%u", version);
switch(version)
{
default :
case 1 :
case 2 :
case 3 :
(void)legacyContext; (void)output; (void)input;
return ERROR(version_unsupported);
#if (ZSTD_LEGACY_SUPPORT <= 4)
case 4 :
{
ZBUFFv04_DCtx* dctx = (ZBUFFv04_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv04_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 5)
case 5 :
{
ZBUFFv05_DCtx* dctx = (ZBUFFv05_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv05_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 6)
case 6 :
{
ZBUFFv06_DCtx* dctx = (ZBUFFv06_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv06_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
#if (ZSTD_LEGACY_SUPPORT <= 7)
case 7 :
{
ZBUFFv07_DCtx* dctx = (ZBUFFv07_DCtx*) legacyContext;
const void* src = (const char*)input->src + input->pos;
size_t readSize = input->size - input->pos;
void* dst = (char*)output->dst + output->pos;
size_t decodedSize = output->size - output->pos;
size_t const hintSize = ZBUFFv07_decompressContinue(dctx, dst, &decodedSize, src, &readSize);
output->pos += decodedSize;
input->pos += readSize;
return hintSize;
}
#endif
}
}
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_LEGACY_H */
#endif /* USE_EXTERNAL_ZSTD */

1579
vendor/github.com/DataDog/zstd/zstd_opt.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

83
vendor/github.com/DataDog/zstd/zstd_opt.h generated vendored Normal file
View File

@ -0,0 +1,83 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_OPT_H
#define ZSTD_OPT_H
#if defined (__cplusplus)
extern "C" {
#endif
#include "zstd_compress_internal.h"
#if !defined(ZSTD_EXCLUDE_BTLAZY2_BLOCK_COMPRESSOR) \
|| !defined(ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR) \
|| !defined(ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR)
/* used in ZSTD_loadDictionaryContent() */
void ZSTD_updateTree(ZSTD_matchState_t* ms, const BYTE* ip, const BYTE* iend);
#endif
#ifndef ZSTD_EXCLUDE_BTOPT_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_btopt(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btopt_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btopt_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#define ZSTD_COMPRESSBLOCK_BTOPT ZSTD_compressBlock_btopt
#define ZSTD_COMPRESSBLOCK_BTOPT_DICTMATCHSTATE ZSTD_compressBlock_btopt_dictMatchState
#define ZSTD_COMPRESSBLOCK_BTOPT_EXTDICT ZSTD_compressBlock_btopt_extDict
#else
#define ZSTD_COMPRESSBLOCK_BTOPT NULL
#define ZSTD_COMPRESSBLOCK_BTOPT_DICTMATCHSTATE NULL
#define ZSTD_COMPRESSBLOCK_BTOPT_EXTDICT NULL
#endif
#ifndef ZSTD_EXCLUDE_BTULTRA_BLOCK_COMPRESSOR
size_t ZSTD_compressBlock_btultra(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_dictMatchState(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
size_t ZSTD_compressBlock_btultra_extDict(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
/* note : no btultra2 variant for extDict nor dictMatchState,
* because btultra2 is not meant to work with dictionaries
* and is only specific for the first block (no prefix) */
size_t ZSTD_compressBlock_btultra2(
ZSTD_matchState_t* ms, seqStore_t* seqStore, U32 rep[ZSTD_REP_NUM],
void const* src, size_t srcSize);
#define ZSTD_COMPRESSBLOCK_BTULTRA ZSTD_compressBlock_btultra
#define ZSTD_COMPRESSBLOCK_BTULTRA_DICTMATCHSTATE ZSTD_compressBlock_btultra_dictMatchState
#define ZSTD_COMPRESSBLOCK_BTULTRA_EXTDICT ZSTD_compressBlock_btultra_extDict
#define ZSTD_COMPRESSBLOCK_BTULTRA2 ZSTD_compressBlock_btultra2
#else
#define ZSTD_COMPRESSBLOCK_BTULTRA NULL
#define ZSTD_COMPRESSBLOCK_BTULTRA_DICTMATCHSTATE NULL
#define ZSTD_COMPRESSBLOCK_BTULTRA_EXTDICT NULL
#define ZSTD_COMPRESSBLOCK_BTULTRA2 NULL
#endif
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_OPT_H */
#endif /* USE_EXTERNAL_ZSTD */

555
vendor/github.com/DataDog/zstd/zstd_stream.go generated vendored Normal file
View File

@ -0,0 +1,555 @@
package zstd
/*
#include "zstd.h"
typedef struct compressStream2_result_s {
size_t return_code;
size_t bytes_consumed;
size_t bytes_written;
} compressStream2_result;
static void ZSTD_compressStream2_wrapper(compressStream2_result* result, ZSTD_CCtx* ctx,
void* dst, size_t maxDstSize, const void* src, size_t srcSize) {
ZSTD_outBuffer outBuffer = { dst, maxDstSize, 0 };
ZSTD_inBuffer inBuffer = { src, srcSize, 0 };
size_t retCode = ZSTD_compressStream2(ctx, &outBuffer, &inBuffer, ZSTD_e_continue);
result->return_code = retCode;
result->bytes_consumed = inBuffer.pos;
result->bytes_written = outBuffer.pos;
}
static void ZSTD_compressStream2_flush(compressStream2_result* result, ZSTD_CCtx* ctx,
void* dst, size_t maxDstSize, const void* src, size_t srcSize) {
ZSTD_outBuffer outBuffer = { dst, maxDstSize, 0 };
ZSTD_inBuffer inBuffer = { src, srcSize, 0 };
size_t retCode = ZSTD_compressStream2(ctx, &outBuffer, &inBuffer, ZSTD_e_flush);
result->return_code = retCode;
result->bytes_consumed = inBuffer.pos;
result->bytes_written = outBuffer.pos;
}
static void ZSTD_compressStream2_finish(compressStream2_result* result, ZSTD_CCtx* ctx,
void* dst, size_t maxDstSize, const void* src, size_t srcSize) {
ZSTD_outBuffer outBuffer = { dst, maxDstSize, 0 };
ZSTD_inBuffer inBuffer = { src, srcSize, 0 };
size_t retCode = ZSTD_compressStream2(ctx, &outBuffer, &inBuffer, ZSTD_e_end);
result->return_code = retCode;
result->bytes_consumed = inBuffer.pos;
result->bytes_written = outBuffer.pos;
}
// decompressStream2_result is the same as compressStream2_result, but keep 2 separate struct for easier changes
typedef struct decompressStream2_result_s {
size_t return_code;
size_t bytes_consumed;
size_t bytes_written;
} decompressStream2_result;
static void ZSTD_decompressStream_wrapper(decompressStream2_result* result, ZSTD_DCtx* ctx,
void* dst, size_t maxDstSize, const void* src, size_t srcSize) {
ZSTD_outBuffer outBuffer = { dst, maxDstSize, 0 };
ZSTD_inBuffer inBuffer = { src, srcSize, 0 };
size_t retCode = ZSTD_decompressStream(ctx, &outBuffer, &inBuffer);
result->return_code = retCode;
result->bytes_consumed = inBuffer.pos;
result->bytes_written = outBuffer.pos;
}
*/
import "C"
import (
"errors"
"fmt"
"io"
"runtime"
"sync"
"unsafe"
)
var errShortRead = errors.New("short read")
var errReaderClosed = errors.New("Reader is closed")
var ErrNoParallelSupport = errors.New("No parallel support")
// Writer is an io.WriteCloser that zstd-compresses its input.
type Writer struct {
CompressionLevel int
ctx *C.ZSTD_CCtx
dict []byte
srcBuffer []byte
dstBuffer []byte
firstError error
underlyingWriter io.Writer
resultBuffer *C.compressStream2_result
}
func resize(in []byte, newSize int) []byte {
if in == nil {
return make([]byte, newSize)
}
if newSize <= cap(in) {
return in[:newSize]
}
toAdd := newSize - len(in)
return append(in, make([]byte, toAdd)...)
}
// NewWriter creates a new Writer with default compression options. Writes to
// the writer will be written in compressed form to w.
func NewWriter(w io.Writer) *Writer {
return NewWriterLevelDict(w, DefaultCompression, nil)
}
// NewWriterLevel is like NewWriter but specifies the compression level instead
// of assuming default compression.
//
// The level can be DefaultCompression or any integer value between BestSpeed
// and BestCompression inclusive.
func NewWriterLevel(w io.Writer, level int) *Writer {
return NewWriterLevelDict(w, level, nil)
}
// NewWriterLevelDict is like NewWriterLevel but specifies a dictionary to
// compress with. If the dictionary is empty or nil it is ignored. The dictionary
// should not be modified until the writer is closed.
func NewWriterLevelDict(w io.Writer, level int, dict []byte) *Writer {
var err error
ctx := C.ZSTD_createCStream()
// Load dictionnary if any
if dict != nil {
err = getError(int(C.ZSTD_CCtx_loadDictionary(ctx,
unsafe.Pointer(&dict[0]),
C.size_t(len(dict)),
)))
}
if err == nil {
// Only set level if the ctx is not in error already
err = getError(int(C.ZSTD_CCtx_setParameter(ctx, C.ZSTD_c_compressionLevel, C.int(level))))
}
return &Writer{
CompressionLevel: level,
ctx: ctx,
dict: dict,
srcBuffer: make([]byte, 0),
dstBuffer: make([]byte, CompressBound(1024)),
firstError: err,
underlyingWriter: w,
resultBuffer: new(C.compressStream2_result),
}
}
// Write writes a compressed form of p to the underlying io.Writer.
func (w *Writer) Write(p []byte) (int, error) {
if w.firstError != nil {
return 0, w.firstError
}
if len(p) == 0 {
return 0, nil
}
// Check if dstBuffer is enough
w.dstBuffer = w.dstBuffer[0:cap(w.dstBuffer)]
if len(w.dstBuffer) < CompressBound(len(p)) {
w.dstBuffer = make([]byte, CompressBound(len(p)))
}
// Do not do an extra memcopy if zstd ingest all input data
srcData := p
fastPath := len(w.srcBuffer) == 0
if !fastPath {
w.srcBuffer = append(w.srcBuffer, p...)
srcData = w.srcBuffer
}
if len(srcData) == 0 {
// this is technically unnecessary: srcData is p or w.srcBuffer, and len() > 0 checked above
// but this ensures the code can change without dereferencing an srcData[0]
return 0, nil
}
C.ZSTD_compressStream2_wrapper(
w.resultBuffer,
w.ctx,
unsafe.Pointer(&w.dstBuffer[0]),
C.size_t(len(w.dstBuffer)),
unsafe.Pointer(&srcData[0]),
C.size_t(len(srcData)),
)
ret := int(w.resultBuffer.return_code)
if err := getError(ret); err != nil {
return 0, err
}
consumed := int(w.resultBuffer.bytes_consumed)
if !fastPath {
w.srcBuffer = w.srcBuffer[consumed:]
} else {
remaining := len(p) - consumed
if remaining > 0 {
// We still have some non-consumed data, copy remaining data to srcBuffer
// Try to not reallocate w.srcBuffer if we already have enough space
if cap(w.srcBuffer) >= remaining {
w.srcBuffer = w.srcBuffer[0:remaining]
} else {
w.srcBuffer = make([]byte, remaining)
}
copy(w.srcBuffer, p[consumed:])
}
}
written := int(w.resultBuffer.bytes_written)
// Write to underlying buffer
_, err := w.underlyingWriter.Write(w.dstBuffer[:written])
// Same behaviour as zlib, we can't know how much data we wrote, only
// if there was an error
if err != nil {
return 0, err
}
return len(p), err
}
// Flush writes any unwritten data to the underlying io.Writer.
func (w *Writer) Flush() error {
if w.firstError != nil {
return w.firstError
}
ret := 1 // So we loop at least once
for ret > 0 {
var srcPtr *byte // Do not point anywhere, if src is empty
if len(w.srcBuffer) > 0 {
srcPtr = &w.srcBuffer[0]
}
C.ZSTD_compressStream2_flush(
w.resultBuffer,
w.ctx,
unsafe.Pointer(&w.dstBuffer[0]),
C.size_t(len(w.dstBuffer)),
unsafe.Pointer(srcPtr),
C.size_t(len(w.srcBuffer)),
)
ret = int(w.resultBuffer.return_code)
if err := getError(ret); err != nil {
return err
}
w.srcBuffer = w.srcBuffer[w.resultBuffer.bytes_consumed:]
written := int(w.resultBuffer.bytes_written)
_, err := w.underlyingWriter.Write(w.dstBuffer[:written])
if err != nil {
return err
}
if ret > 0 { // We have a hint if we need to resize the dstBuffer
w.dstBuffer = w.dstBuffer[:cap(w.dstBuffer)]
if len(w.dstBuffer) < ret {
w.dstBuffer = make([]byte, ret)
}
}
}
return nil
}
// Close closes the Writer, flushing any unwritten data to the underlying
// io.Writer and freeing objects, but does not close the underlying io.Writer.
func (w *Writer) Close() error {
if w.firstError != nil {
return w.firstError
}
ret := 1 // So we loop at least once
for ret > 0 {
var srcPtr *byte // Do not point anywhere, if src is empty
if len(w.srcBuffer) > 0 {
srcPtr = &w.srcBuffer[0]
}
C.ZSTD_compressStream2_finish(
w.resultBuffer,
w.ctx,
unsafe.Pointer(&w.dstBuffer[0]),
C.size_t(len(w.dstBuffer)),
unsafe.Pointer(srcPtr),
C.size_t(len(w.srcBuffer)),
)
ret = int(w.resultBuffer.return_code)
if err := getError(ret); err != nil {
return err
}
w.srcBuffer = w.srcBuffer[w.resultBuffer.bytes_consumed:]
written := int(w.resultBuffer.bytes_written)
_, err := w.underlyingWriter.Write(w.dstBuffer[:written])
if err != nil {
C.ZSTD_freeCStream(w.ctx)
return err
}
if ret > 0 { // We have a hint if we need to resize the dstBuffer
w.dstBuffer = w.dstBuffer[:cap(w.dstBuffer)]
if len(w.dstBuffer) < ret {
w.dstBuffer = make([]byte, ret)
}
}
}
return getError(int(C.ZSTD_freeCStream(w.ctx)))
}
// Set the number of workers to run the compression in parallel using multiple threads
// If > 1, the Write() call will become asynchronous. This means data will be buffered until processed.
// If you call Write() too fast, you might incur a memory buffer up to as large as your input.
// Consider calling Flush() periodically if you need to compress a very large file that would not fit all in memory.
// By default only one worker is used.
func (w *Writer) SetNbWorkers(n int) error {
if w.firstError != nil {
return w.firstError
}
if err := getError(int(C.ZSTD_CCtx_setParameter(w.ctx, C.ZSTD_c_nbWorkers, C.int(n)))); err != nil {
w.firstError = err
// First error case, a shared libary is used, and the library was compiled without parallel support
if err.Error() == "Unsupported parameter" {
return ErrNoParallelSupport
} else {
// This could happen if a very large number is passed in, and possibly zstd refuse to create as many threads, or the OS fails to do so
return err
}
}
return nil
}
// cSize is the recommended size of reader.compressionBuffer. This func and
// invocation allow for a one-time check for validity.
var cSize = func() int {
v := int(C.ZSTD_DStreamInSize())
if v <= 0 {
panic(fmt.Errorf("ZSTD_DStreamInSize() returned invalid size: %v", v))
}
return v
}()
// dSize is the recommended size of reader.decompressionBuffer. This func and
// invocation allow for a one-time check for validity.
var dSize = func() int {
v := int(C.ZSTD_DStreamOutSize())
if v <= 0 {
panic(fmt.Errorf("ZSTD_DStreamOutSize() returned invalid size: %v", v))
}
return v
}()
// cPool is a pool of buffers for use in reader.compressionBuffer. Buffers are
// taken from the pool in NewReaderDict, returned in reader.Close(). Returns a
// pointer to a slice to avoid the extra allocation of returning the slice as a
// value.
var cPool = sync.Pool{
New: func() interface{} {
buff := make([]byte, cSize)
return &buff
},
}
// dPool is a pool of buffers for use in reader.decompressionBuffer. Buffers are
// taken from the pool in NewReaderDict, returned in reader.Close(). Returns a
// pointer to a slice to avoid the extra allocation of returning the slice as a
// value.
var dPool = sync.Pool{
New: func() interface{} {
buff := make([]byte, dSize)
return &buff
},
}
// reader is an io.ReadCloser that decompresses when read from.
type reader struct {
ctx *C.ZSTD_DCtx
compressionBuffer []byte
compressionLeft int
decompressionBuffer []byte
decompOff int
decompSize int
dict []byte
firstError error
recommendedSrcSize int
resultBuffer *C.decompressStream2_result
underlyingReader io.Reader
}
// NewReader creates a new io.ReadCloser. Reads from the returned ReadCloser
// read and decompress data from r. It is the caller's responsibility to call
// Close on the ReadCloser when done. If this is not done, underlying objects
// in the zstd library will not be freed.
func NewReader(r io.Reader) io.ReadCloser {
return NewReaderDict(r, nil)
}
// NewReaderDict is like NewReader but uses a preset dictionary. NewReaderDict
// ignores the dictionary if it is nil.
func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
var err error
ctx := C.ZSTD_createDStream()
if len(dict) == 0 {
err = getError(int(C.ZSTD_initDStream(ctx)))
} else {
err = getError(int(C.ZSTD_DCtx_reset(ctx, C.ZSTD_reset_session_only)))
if err == nil {
// Only load dictionary if we succesfully inited the context
err = getError(int(C.ZSTD_DCtx_loadDictionary(
ctx,
unsafe.Pointer(&dict[0]),
C.size_t(len(dict)))))
}
}
compressionBufferP := cPool.Get().(*[]byte)
decompressionBufferP := dPool.Get().(*[]byte)
return &reader{
ctx: ctx,
dict: dict,
compressionBuffer: *compressionBufferP,
decompressionBuffer: *decompressionBufferP,
firstError: err,
recommendedSrcSize: cSize,
resultBuffer: new(C.decompressStream2_result),
underlyingReader: r,
}
}
// Close frees the allocated C objects
func (r *reader) Close() error {
if r.firstError != nil {
return r.firstError
}
cb := r.compressionBuffer
db := r.decompressionBuffer
// Ensure that we won't resuse buffer
r.firstError = errReaderClosed
r.compressionBuffer = nil
r.decompressionBuffer = nil
cPool.Put(&cb)
dPool.Put(&db)
return getError(int(C.ZSTD_freeDStream(r.ctx)))
}
func (r *reader) Read(p []byte) (int, error) {
if r.firstError != nil {
return 0, r.firstError
}
if len(p) == 0 {
return 0, nil
}
// If we already have some uncompressed bytes, return without blocking
if r.decompSize > r.decompOff {
if r.decompSize-r.decompOff > len(p) {
copy(p, r.decompressionBuffer[r.decompOff:])
r.decompOff += len(p)
return len(p), nil
}
// From https://golang.org/pkg/io/#Reader
// > Read conventionally returns what is available instead of waiting for more.
copy(p, r.decompressionBuffer[r.decompOff:r.decompSize])
got := r.decompSize - r.decompOff
r.decompOff = r.decompSize
return got, nil
}
// Repeatedly read from the underlying reader until we get
// at least one zstd block, so that we don't block if the
// other end has flushed a block.
for {
// - If the last decompression didn't entirely fill the decompression buffer,
// zstd flushed all it could, and needs new data. In that case, do 1 Read.
// - If the last decompression did entirely fill the decompression buffer,
// it might have needed more room to decompress the input. In that case,
// don't do any unnecessary Read that might block.
needsData := r.decompSize < len(r.decompressionBuffer)
var src []byte
if !needsData {
src = r.compressionBuffer[:r.compressionLeft]
} else {
src = r.compressionBuffer
var n int
var err error
// Read until data arrives or an error occurs.
for n == 0 && err == nil {
n, err = r.underlyingReader.Read(src[r.compressionLeft:])
}
if err != nil && err != io.EOF { // Handle underlying reader errors first
return 0, fmt.Errorf("failed to read from underlying reader: %s", err)
}
if n == 0 {
// Ideally, we'd return with ErrUnexpectedEOF in all cases where the stream was unexpectedly EOF'd
// during a block or frame, i.e. when there are incomplete, pending compression data.
// However, it's hard to detect those cases with zstd. Namely, there is no way to know the size of
// the current buffered compression data in the zstd stream internal buffers.
// Best effort: throw ErrUnexpectedEOF if we still have some pending buffered compression data that
// zstd doesn't want to accept.
// If we don't have any buffered compression data but zstd still has some in its internal buffers,
// we will return with EOF instead.
if r.compressionLeft > 0 {
return 0, io.ErrUnexpectedEOF
}
return 0, io.EOF
}
src = src[:r.compressionLeft+n]
}
// C code
var srcPtr *byte // Do not point anywhere, if src is empty
if len(src) > 0 {
srcPtr = &src[0]
}
C.ZSTD_decompressStream_wrapper(
r.resultBuffer,
r.ctx,
unsafe.Pointer(&r.decompressionBuffer[0]),
C.size_t(len(r.decompressionBuffer)),
unsafe.Pointer(srcPtr),
C.size_t(len(src)),
)
retCode := int(r.resultBuffer.return_code)
// Keep src here even though we reuse later, the code might be deleted at some point
runtime.KeepAlive(src)
if err := getError(retCode); err != nil {
return 0, fmt.Errorf("failed to decompress: %s", err)
}
// Put everything in buffer
bytesConsumed := int(r.resultBuffer.bytes_consumed)
if bytesConsumed < len(src) {
left := src[bytesConsumed:]
copy(r.compressionBuffer, left)
}
r.compressionLeft = len(src) - bytesConsumed
r.decompSize = int(r.resultBuffer.bytes_written)
r.decompOff = copy(p, r.decompressionBuffer[:r.decompSize])
// Resize buffers
nsize := retCode // Hint for next src buffer size
if nsize <= 0 {
// Reset to recommended size
nsize = r.recommendedSrcSize
}
if nsize < r.compressionLeft {
nsize = r.compressionLeft
}
r.compressionBuffer = resize(r.compressionBuffer, nsize)
if r.decompOff > 0 {
return r.decompOff, nil
}
}
}

166
vendor/github.com/DataDog/zstd/zstd_trace.h generated vendored Normal file
View File

@ -0,0 +1,166 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_TRACE_H
#define ZSTD_TRACE_H
#if defined (__cplusplus)
extern "C" {
#endif
#include <stddef.h>
/* weak symbol support
* For now, enable conservatively:
* - Only GNUC
* - Only ELF
* - Only x86-64, i386 and aarch64
* Also, explicitly disable on platforms known not to work so they aren't
* forgotten in the future.
*/
#if !defined(ZSTD_HAVE_WEAK_SYMBOLS) && \
defined(__GNUC__) && defined(__ELF__) && \
(defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || defined(_M_IX86) || defined(__aarch64__)) && \
!defined(__APPLE__) && !defined(_WIN32) && !defined(__MINGW32__) && \
!defined(__CYGWIN__) && !defined(_AIX)
# define ZSTD_HAVE_WEAK_SYMBOLS 1
#else
# define ZSTD_HAVE_WEAK_SYMBOLS 0
#endif
#if ZSTD_HAVE_WEAK_SYMBOLS
# define ZSTD_WEAK_ATTR __attribute__((__weak__))
#else
# define ZSTD_WEAK_ATTR
#endif
/* Only enable tracing when weak symbols are available. */
#ifndef ZSTD_TRACE
# define ZSTD_TRACE ZSTD_HAVE_WEAK_SYMBOLS
#endif
#if ZSTD_TRACE
struct ZSTD_CCtx_s;
struct ZSTD_DCtx_s;
struct ZSTD_CCtx_params_s;
typedef struct {
/**
* ZSTD_VERSION_NUMBER
*
* This is guaranteed to be the first member of ZSTD_trace.
* Otherwise, this struct is not stable between versions. If
* the version number does not match your expectation, you
* should not interpret the rest of the struct.
*/
unsigned version;
/**
* Non-zero if streaming (de)compression is used.
*/
unsigned streaming;
/**
* The dictionary ID.
*/
unsigned dictionaryID;
/**
* Is the dictionary cold?
* Only set on decompression.
*/
unsigned dictionaryIsCold;
/**
* The dictionary size or zero if no dictionary.
*/
size_t dictionarySize;
/**
* The uncompressed size of the data.
*/
size_t uncompressedSize;
/**
* The compressed size of the data.
*/
size_t compressedSize;
/**
* The fully resolved CCtx parameters (NULL on decompression).
*/
struct ZSTD_CCtx_params_s const* params;
/**
* The ZSTD_CCtx pointer (NULL on decompression).
*/
struct ZSTD_CCtx_s const* cctx;
/**
* The ZSTD_DCtx pointer (NULL on compression).
*/
struct ZSTD_DCtx_s const* dctx;
} ZSTD_Trace;
/**
* A tracing context. It must be 0 when tracing is disabled.
* Otherwise, any non-zero value returned by a tracing begin()
* function is presented to any subsequent calls to end().
*
* Any non-zero value is treated as tracing is enabled and not
* interpreted by the library.
*
* Two possible uses are:
* * A timestamp for when the begin() function was called.
* * A unique key identifying the (de)compression, like the
* address of the [dc]ctx pointer if you need to track
* more information than just a timestamp.
*/
typedef unsigned long long ZSTD_TraceCtx;
/**
* Trace the beginning of a compression call.
* @param cctx The dctx pointer for the compression.
* It can be used as a key to map begin() to end().
* @returns Non-zero if tracing is enabled. The return value is
* passed to ZSTD_trace_compress_end().
*/
ZSTD_WEAK_ATTR ZSTD_TraceCtx ZSTD_trace_compress_begin(
struct ZSTD_CCtx_s const* cctx);
/**
* Trace the end of a compression call.
* @param ctx The return value of ZSTD_trace_compress_begin().
* @param trace The zstd tracing info.
*/
ZSTD_WEAK_ATTR void ZSTD_trace_compress_end(
ZSTD_TraceCtx ctx,
ZSTD_Trace const* trace);
/**
* Trace the beginning of a decompression call.
* @param dctx The dctx pointer for the decompression.
* It can be used as a key to map begin() to end().
* @returns Non-zero if tracing is enabled. The return value is
* passed to ZSTD_trace_compress_end().
*/
ZSTD_WEAK_ATTR ZSTD_TraceCtx ZSTD_trace_decompress_begin(
struct ZSTD_DCtx_s const* dctx);
/**
* Trace the end of a decompression call.
* @param ctx The return value of ZSTD_trace_decompress_begin().
* @param trace The zstd tracing info.
*/
ZSTD_WEAK_ATTR void ZSTD_trace_decompress_end(
ZSTD_TraceCtx ctx,
ZSTD_Trace const* trace);
#endif /* ZSTD_TRACE */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_TRACE_H */
#endif /* USE_EXTERNAL_ZSTD */

2130
vendor/github.com/DataDog/zstd/zstd_v01.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

97
vendor/github.com/DataDog/zstd/zstd_v01.h generated vendored Normal file
View File

@ -0,0 +1,97 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Yann Collet, Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_V01_H_28739879432
#define ZSTD_V01_H_28739879432
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Simple one-step function
***************************************/
/**
ZSTDv01_decompress() : decompress ZSTD frames compliant with v0.1.x format
compressedSize : is the exact source size
maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
It must be equal or larger than originalSize, otherwise decompression will fail.
return : the number of bytes decompressed into destination buffer (originalSize)
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv01_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv01_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.1.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv01_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/**
ZSTDv01_isError() : tells if the result of ZSTDv01_decompress() is an error
*/
unsigned ZSTDv01_isError(size_t code);
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTDv01_Dctx_s ZSTDv01_Dctx;
ZSTDv01_Dctx* ZSTDv01_createDCtx(void);
size_t ZSTDv01_freeDCtx(ZSTDv01_Dctx* dctx);
size_t ZSTDv01_decompressDCtx(void* ctx,
void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/* *************************************
* Streaming functions
***************************************/
size_t ZSTDv01_resetDCtx(ZSTDv01_Dctx* dctx);
size_t ZSTDv01_nextSrcSizeToDecompress(ZSTDv01_Dctx* dctx);
size_t ZSTDv01_decompressContinue(ZSTDv01_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTDv01_magicNumber 0xFD2FB51E /* Big Endian version */
#define ZSTDv01_magicNumberLE 0x1EB52FFD /* Little Endian version */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_V01_H_28739879432 */
#endif /* USE_EXTERNAL_ZSTD */

3468
vendor/github.com/DataDog/zstd/zstd_v02.c generated vendored Normal file

File diff suppressed because it is too large Load Diff

96
vendor/github.com/DataDog/zstd/zstd_v02.h generated vendored Normal file
View File

@ -0,0 +1,96 @@
#ifndef USE_EXTERNAL_ZSTD
/*
* Copyright (c) Yann Collet, Meta Platforms, Inc. and affiliates.
* All rights reserved.
*
* This source code is licensed under both the BSD-style license (found in the
* LICENSE file in the root directory of this source tree) and the GPLv2 (found
* in the COPYING file in the root directory of this source tree).
* You may select, at your option, one of the above-listed licenses.
*/
#ifndef ZSTD_V02_H_4174539423
#define ZSTD_V02_H_4174539423
#if defined (__cplusplus)
extern "C" {
#endif
/* *************************************
* Includes
***************************************/
#include <stddef.h> /* size_t */
/* *************************************
* Simple one-step function
***************************************/
/**
ZSTDv02_decompress() : decompress ZSTD frames compliant with v0.2.x format
compressedSize : is the exact source size
maxOriginalSize : is the size of the 'dst' buffer, which must be already allocated.
It must be equal or larger than originalSize, otherwise decompression will fail.
return : the number of bytes decompressed into destination buffer (originalSize)
or an errorCode if it fails (which can be tested using ZSTDv01_isError())
*/
size_t ZSTDv02_decompress( void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/**
ZSTDv02_findFrameSizeInfoLegacy() : get the source length and decompressed bound of a ZSTD frame compliant with v0.2.x format
srcSize : The size of the 'src' buffer, at least as large as the frame pointed to by 'src'
cSize (output parameter) : the number of bytes that would be read to decompress this frame
or an error code if it fails (which can be tested using ZSTDv01_isError())
dBound (output parameter) : an upper-bound for the decompressed size of the data in the frame
or ZSTD_CONTENTSIZE_ERROR if an error occurs
note : assumes `cSize` and `dBound` are _not_ NULL.
*/
void ZSTDv02_findFrameSizeInfoLegacy(const void *src, size_t srcSize,
size_t* cSize, unsigned long long* dBound);
/**
ZSTDv02_isError() : tells if the result of ZSTDv02_decompress() is an error
*/
unsigned ZSTDv02_isError(size_t code);
/* *************************************
* Advanced functions
***************************************/
typedef struct ZSTDv02_Dctx_s ZSTDv02_Dctx;
ZSTDv02_Dctx* ZSTDv02_createDCtx(void);
size_t ZSTDv02_freeDCtx(ZSTDv02_Dctx* dctx);
size_t ZSTDv02_decompressDCtx(void* ctx,
void* dst, size_t maxOriginalSize,
const void* src, size_t compressedSize);
/* *************************************
* Streaming functions
***************************************/
size_t ZSTDv02_resetDCtx(ZSTDv02_Dctx* dctx);
size_t ZSTDv02_nextSrcSizeToDecompress(ZSTDv02_Dctx* dctx);
size_t ZSTDv02_decompressContinue(ZSTDv02_Dctx* dctx, void* dst, size_t maxDstSize, const void* src, size_t srcSize);
/**
Use above functions alternatively.
ZSTD_nextSrcSizeToDecompress() tells how much bytes to provide as 'srcSize' to ZSTD_decompressContinue().
ZSTD_decompressContinue() will use previous data blocks to improve compression if they are located prior to current block.
Result is the number of bytes regenerated within 'dst'.
It can be zero, which is not an error; it just means ZSTD_decompressContinue() has decoded some header.
*/
/* *************************************
* Prefix - version detection
***************************************/
#define ZSTDv02_magicNumber 0xFD2FB522 /* v0.2 */
#if defined (__cplusplus)
}
#endif
#endif /* ZSTD_V02_H_4174539423 */
#endif /* USE_EXTERNAL_ZSTD */

Some files were not shown because too many files have changed in this diff Show More