The sequence section starts with a number, which tells how sequences are present in the section.
If this number if 0, the section automatically ends.
The number 0 can be represented using the 1 byte or the 2 bytes formats.
That's because the 2-bytes formats fully overlaps the 1 byte format.
However, when 0 is represented using the 2-bytes format,
the decoder was expecting the sequence section to continue,
and was looking for FSE tables, which is incorrect.
Fixed this behavior, in both the reference decoder and the educational behavior.
In practice, this behavior never happens,
because the encoder will always select the 1-byte format to represent 0,
since this is more efficient.
Completed the fix with a new golden sample for tests,
a clarification of the specification,
and a decoder errata paragraph.
Inlining `BIT_reloadDStream` provided >3% decompression speed improvement for
clang PGO-optimized zstd binary, measured using the Silesia corpus with
compression level 1. The win comes from improved register allocation which leads
to fewer spills and reloads. Take a look at this comparison of
profile-annotated hot assembly before and after this change:
https://www.diffchecker.com/UjDGIyLz/. The diff is a bit messy, but notice three
fewer moves after inlining.
In general LLVM's register allocator works better when it can see more code. For
example, when the register allocator sees a call instruction, it partitions the
registers into caller registers and callee registers, and it is not free to do
whatever it wants with all the registers for the current function. Inlining the
callee lets the register allocation access all registers and use them more
flexsibly.
Part 2 of #3528
Adds hash salt that helps to avoid regressions where consecutive compressions use the same tag space with similar data (running zstd -b5e7 enwik8 -B128K reproduces this regression).
- Adds memory type that is guaranteed to have been initialized at least once in the workspace's lifetime.
- Changes tag space in row hash to be based on init once memory.
* Fixes zstd-dll build (https://github.com/facebook/zstd/issues/3492):
- Adds pool.o and threading.o dependency to the zstd-dll target
- Moves custom allocation functions into header to avoid needing to add dependency on common.o
- Adds test target for zstd-dll
- Adds github workflow that buildis zstd-dll
* fix and test MSVC AVX2 build
* treat msbuild warnings as errors
* fix incorrect MSVC 2019 compiler warning
* fix MSVC error D9035: option 'Gm' has been deprecated and will be removed in a future release
The previous code had an issue when `bitsConsumed == 32` it would read 0
bits for the `ofBits` read, which violates the precondition of
`BIT_readBitsFast()`. This can happen when the stream is corrupted.
Fix thie issue by always reading the maximum possible number of extra
bits. I've measured neutral decoding performance, likely because this
branch is unlikely, but this should be faster anyways. And if not, it is
only 32-bit decoding, so performance isn't as critical.
Credit to OSS-Fuzz
Delete all unused FSE functions, now that we are no longer syncing
to/from upstream.
This avoids confusion about Zstd's stack usage like in Issue #3453.
It also removes dead code, which is always a plus.
Add generic C versions of the fast decoding loops to serve architectures
that don't have an assembly implementation. Also allow selecting the C
decoding loop over the assembly decoding loop through a zstd
decompression parameter `ZSTD_d_disableHuffmanAssembly`.
I benchmarked on my Intel i9-9900K and my Macbook Air with an M1 processor.
The benchmark command forces zstd to compress without any matches, using
only literals compression, and measures only Huffman decompression speed:
```
zstd -b1e1 --compress-literals --zstd=tlen=131072 silesia.tar
```
The new fast decoding loops outperform the previous implementation uniformly,
but don't beat the x86-64 assembly. Additionally, the fast C decoding loops suffer
from the same stability problems that we've seen in the past, where the assembly
version doesn't. So even though clang gets close to assembly on x86-64, it still
has stability issues.
| Arch | Function | Compiler | Default (MB/s) | Assembly (MB/s) | Fast (MB/s) |
|---------|----------------|--------------|----------------|-----------------|-------------|
| x86-64 | decompress 4X1 | gcc-12.2.0 | 1029.6 | 1308.1 | 1208.1 |
| x86-64 | decompress 4X1 | clang-14.0.6 | 1019.3 | 1305.6 | 1276.3 |
| x86-64 | decompress 4X2 | gcc-12.2.0 | 1348.5 | 1657.0 | 1374.1 |
| x86-64 | decompress 4X2 | clang-14.0.6 | 1027.6 | 1659.9 | 1468.1 |
| aarch64 | decompress 4X1 | clang-12.0.5 | 1081.0 | N/A | 1234.9 |
| aarch64 | decompress 4X2 | clang-12.0.5 | 1270.0 | N/A | 1516.6 |
* Add a function and macro ZSTD_decompressionMargin() that computes the
decompression margin for in-place decompression. The function computes
a tight margin that works in all cases, and the macro computes an upper
bound that will only work if flush isn't used.
* When doing in-place decompression, make sure that our output buffer
doesn't overlap with the input buffer. This ensures that we don't
decide to use the portion of the output buffer that overlaps the input
buffer for temporary memory, like for literals.
* Add a simple unit test.
* Add in-place decompression to the simple_round_trip and
stream_round_trip fuzzers. This should help verify that our margin stays
correct.
A minor change in 5434de0 changed a `<=` into a `<`,
and as an indirect consequence allowed compression attempt of literals when there are only 6 literals to compress
(previous limit was effectively 7 literals).
This is not in itself a problem, as the threshold is merely an heuristic,
but it emerged a bug that has always been there, and was just never triggered so far due to the previous limit.
This bug would make the literal compressor believes that all literals are the same symbol,
but for the exact case where nbLiterals==6, plus a pretty wild combination of other limit conditions,
this outcome could be false, resulting in data corruption.
Replaced the blind heuristic by an actual test for all limit cases,
so that even if the threshold is changed again in the future,
the detection of RLE mode will remain reliable.
Reported by @shulib :
the specification for 4-streams mode
doesn't work when the amount of literals to compress is 5 bytes.
Extending it, it also doesn't work for sizes 1 or 2.
This patch updates the specification and the implementation
to require a minimum of 6 literals to trigger or accept the 4-streams mode.
The impact is expected to be a no-op :
the 4-streams mode is never triggered for such small quantity of literals anyway,
since it would be wasteful (it costs ~7.3 bytes more than single-stream mode).
An informal lower limit is set at ~256 bytes,
so the technical minimum is very far from this limit.
This is just meant for completeness of the specification.
```
for f in $(find . \( -path ./.git -o -path ./tests/fuzz/corpora \) -prune -o -type f);
do
sed -i 's/Facebook, Inc\./Meta Platforms, Inc. and affiliates./' $f;
done
```
When spawning a Windows thread we have small worker wrapper function that translates
between the interfaces of Windows and POSIX threads.
This wrapper is given a pointer that might get stale before the worker starts running,
resulting in UB and crashes.
This commit adds synchronization so that we know the wrapper has finished reading the data
it needs before we allow the main thread to resume execution.
1. If threads are resized the threads' `ZSTD_pthread_t` might move
while the worker still holds a pointer into it (see more details in #3120).
2. The join operation was waiting for a thread and then return its `thread.arg`
as a return value, but since the `ZSTD_pthread_t thread` was passed by value it
would have a stale `arg` that wouldn't match the thread's actual return value.
This fix changes the `ZSTD_pthread_join` API and removes support for returning
a value. This means that we are diverging from the `pthread_join` API and this
is no longer just an alias.
In the future, if needed, we could return a Windows thread's return value using
`GetExitCodeThread`, but as this path wouldn't be excised in any case, it's
preferable to not add it right now.
Instead of using packed attribute hack, just use aligned attribute. It
improves code generation on armv6 and armv7, and slightly improves code
generation on aarch64. GCC generates identical code to regular aligned
access on ARMv6 for all versions between 4.5 and trunk, except GCC 5
which is buggy and generates the same (bad) code as packed access:
https://gcc.godbolt.org/z/hq37rz7sb
Use a switch statement to select the search function instead of an
indirect function call. This results in a sizable performance win.
This PR is a modification of the approach taken in PR #2828.
When I measured performance for that commit, it was neutral.
However, I now see a performance regression on gcc, but still
neutral on clang. I'm measuring on the same platform, but with
newer compilers. The new approach beats both the current dev
branch and the baseline before PR #2828 was merged.
This PR is necessary for Issue #3275, to update zstd in the kernel.
Without this PR there is a large regression in greedy - btlazy2
compression speed. With this PR it is about neutral.
gcc version: 12.2.0
clang version: 14.0.6
dataset: silesia.tar
| Compiler | Level | Dev Speed (MB/s) | PR Speed (MB/s) | Delta |
|----------|-------|------------------|-----------------|--------|
| gcc | 5 | 102.6 | 113.7 | +10.8% |
| gcc | 7 | 66.6 | 74.8 | +12.3% |
| gcc | 9 | 51.5 | 58.9 | +14.3% |
| gcc | 13 | 14.3 | 14.3 | +0.0% |
| clang | 5 | 108.1 | 114.8 | +6.2% |
| clang | 7 | 68.5 | 72.3 | +5.5% |
| clang | 9 | 53.2 | 56.2 | +5.6% |
| clang | 13 | 14.3 | 14.7 | +2.8% |
The binary size stays just about the same for clang and gcc, measured
using the `size` command:
| Compiler | Branch | Text | Data | BSS | Total |
|----------|--------|---------|------|-----|---------|
| gcc | dev | 1127950 | 3312 | 280 | 1131542 |
| gcc | PR | 1123422 | 2512 | 280 | 1126214 |
| clang | dev | 1046254 | 3256 | 216 | 1049726 |
| clang | PR | 1048198 | 2296 | 216 | 1050710 |