Reduces memory when blocks are guaranteed to be smaller than allowed by
the format. This is useful for streaming compression in conjunction with
ZSTD_c_maxBlockSize.
This PR saves 2 * (formatMaxBlockSize - paramMaxBlockSize) when streaming.
Once it is rebased on top of PR #3616 it will save
3 * (formatMaxBlockSize - paramMaxBlockSize).
Allocate half the memory for tag space, which means that we get one less slot for an actual tag (needs to be used for next position index).
The results is a slight loss in compression ratio (up to 0.2%) and some regressions/improvements to speed depending on level and sample. In turn, we get to save 16% of the hash table's space (5 bytes per entry instead of 6 bytes per entry).
* Add ZSTD_setFParams() and ZSTD_setParams()
* Modify ZSTD_setCParams() to use ZSTD_setParameter() to avoid a second path setting parameters
* Add unit tests
* Update documentation to suggest using them to replace deprecated functions
Fixes#3396.
The block splitter confuses sequences with literal length == 65536 that use a
repeat offset code. It interprets this as literal length == 0 when deciding the
meaning of the repeat offset, and corrupts the repeat offset history. This is
benign, merely causing suboptimal compression performance, if the confused
history is flushed before the end of the block, e.g. if there are 3 consecutive
non-repeat code sequences after the mistake. It also is only triggered if the
block splitter decided to split the block.
All that to say: This is a rare bug, and requires quite a few conditions to
trigger. However, the good news is that if you have a way to validate that the
decompressed data is correct, e.g. you've enabled zstd's checksum or have a
checksum elsewhere, the original data is very likely recoverable. So if you were
affected by this bug please reach out.
The fix is to remind the block splitter that the literal length is actually 64K.
The test case is a bit tricky to set up, but I've managed to reproduce the issue.
Thanks to @danlark1 for alerting us to the issue and providing us a reproducer!
Add generic C versions of the fast decoding loops to serve architectures
that don't have an assembly implementation. Also allow selecting the C
decoding loop over the assembly decoding loop through a zstd
decompression parameter `ZSTD_d_disableHuffmanAssembly`.
I benchmarked on my Intel i9-9900K and my Macbook Air with an M1 processor.
The benchmark command forces zstd to compress without any matches, using
only literals compression, and measures only Huffman decompression speed:
```
zstd -b1e1 --compress-literals --zstd=tlen=131072 silesia.tar
```
The new fast decoding loops outperform the previous implementation uniformly,
but don't beat the x86-64 assembly. Additionally, the fast C decoding loops suffer
from the same stability problems that we've seen in the past, where the assembly
version doesn't. So even though clang gets close to assembly on x86-64, it still
has stability issues.
| Arch | Function | Compiler | Default (MB/s) | Assembly (MB/s) | Fast (MB/s) |
|---------|----------------|--------------|----------------|-----------------|-------------|
| x86-64 | decompress 4X1 | gcc-12.2.0 | 1029.6 | 1308.1 | 1208.1 |
| x86-64 | decompress 4X1 | clang-14.0.6 | 1019.3 | 1305.6 | 1276.3 |
| x86-64 | decompress 4X2 | gcc-12.2.0 | 1348.5 | 1657.0 | 1374.1 |
| x86-64 | decompress 4X2 | clang-14.0.6 | 1027.6 | 1659.9 | 1468.1 |
| aarch64 | decompress 4X1 | clang-12.0.5 | 1081.0 | N/A | 1234.9 |
| aarch64 | decompress 4X2 | clang-12.0.5 | 1270.0 | N/A | 1516.6 |
* Cap shortCache chainLog to 24
* Cap row match finder hashLog so that rowLog <= 24
* Add unit tests to expose all cases. The row match finder unit tests
are only run in 64-bit mode, because they allocate ~1GB.
Fixes#3336
The timer storage type is no longer dependent on OS.
This will make it possible to re-enable posix precise timers
since the timer storage type will no longer be sensible to #include order.
See #3168 for details of pbs of previous interface.
Suggestion by @terrelln
* Add a function and macro ZSTD_decompressionMargin() that computes the
decompression margin for in-place decompression. The function computes
a tight margin that works in all cases, and the macro computes an upper
bound that will only work if flush isn't used.
* When doing in-place decompression, make sure that our output buffer
doesn't overlap with the input buffer. This ensures that we don't
decide to use the portion of the output buffer that overlaps the input
buffer for temporary memory, like for literals.
* Add a simple unit test.
* Add in-place decompression to the simple_round_trip and
stream_round_trip fuzzers. This should help verify that our margin stays
correct.
Inspired by #3395,
offer a new capability to set all parameters defined in a ZSTD_compressionParameters structure
with a single symbol invocation
to improve user code brevity.
```
for f in $(find . \( -path ./.git -o -path ./tests/fuzz/corpora \) -prune -o -type f);
do
sed -i 's/Facebook, Inc\./Meta Platforms, Inc. and affiliates./' $f;
done
```
1. If threads are resized the threads' `ZSTD_pthread_t` might move
while the worker still holds a pointer into it (see more details in #3120).
2. The join operation was waiting for a thread and then return its `thread.arg`
as a return value, but since the `ZSTD_pthread_t thread` was passed by value it
would have a stale `arg` that wouldn't match the thread's actual return value.
This fix changes the `ZSTD_pthread_join` API and removes support for returning
a value. This means that we are diverging from the `pthread_join` API and this
is no longer just an alias.
In the future, if needed, we could return a Windows thread's return value using
`GetExitCodeThread`, but as this path wouldn't be excised in any case, it's
preferable to not add it right now.
* Extract out common portion of `lib/Makefile` into `lib/libzstd.mk`.
Most relevantly, the way we find library files.
* Use `lib/libzstd.mk` in the other Makefiles instead of repeating the
same code.
* Add a test `tests/test-variants.sh` that checks that the builds of
`make -C programs allVariants` are correct, and run it in Actions.
* Adds support for ASM files in the CMake build.
The Meson build is not updated because it lists every file in zstd,
and supports ASM off the bat, so the Huffman ASM commit will just add
the ASM file to the list.
The Visual Studios build is not updated because I'm not adding ASM
support to Visual Studios yet.
better for large files, and sources with relatively "stable" entropy,
like silesia.tar.
slightly worse for files with rapidly changing entropy,
like Calgary.tar/.
Updated small files tests in fuzzer
As a library, the default shouldn't be to write anything on console.
`cover` and `fastcover` have a `g_displayLevel` variable to control this behavior.
It's now set to 0 (no display) by default.
Setting notification to a higher level should be an explicit operation by a console application.
It's a bit strange, because this is hitting the dictionary special case where
the dictionary is contiguous with the input and still runs in the single-
segment path.
We should probably change that to hit the `extDict` path instead?