Add generic C versions of the fast decoding loops to serve architectures
that don't have an assembly implementation. Also allow selecting the C
decoding loop over the assembly decoding loop through a zstd
decompression parameter `ZSTD_d_disableHuffmanAssembly`.
I benchmarked on my Intel i9-9900K and my Macbook Air with an M1 processor.
The benchmark command forces zstd to compress without any matches, using
only literals compression, and measures only Huffman decompression speed:
```
zstd -b1e1 --compress-literals --zstd=tlen=131072 silesia.tar
```
The new fast decoding loops outperform the previous implementation uniformly,
but don't beat the x86-64 assembly. Additionally, the fast C decoding loops suffer
from the same stability problems that we've seen in the past, where the assembly
version doesn't. So even though clang gets close to assembly on x86-64, it still
has stability issues.
| Arch | Function | Compiler | Default (MB/s) | Assembly (MB/s) | Fast (MB/s) |
|---------|----------------|--------------|----------------|-----------------|-------------|
| x86-64 | decompress 4X1 | gcc-12.2.0 | 1029.6 | 1308.1 | 1208.1 |
| x86-64 | decompress 4X1 | clang-14.0.6 | 1019.3 | 1305.6 | 1276.3 |
| x86-64 | decompress 4X2 | gcc-12.2.0 | 1348.5 | 1657.0 | 1374.1 |
| x86-64 | decompress 4X2 | clang-14.0.6 | 1027.6 | 1659.9 | 1468.1 |
| aarch64 | decompress 4X1 | clang-12.0.5 | 1081.0 | N/A | 1234.9 |
| aarch64 | decompress 4X2 | clang-12.0.5 | 1270.0 | N/A | 1516.6 |
```
for f in $(find . \( -path ./.git -o -path ./tests/fuzz/corpora \) -prune -o -type f);
do
sed -i 's/Facebook, Inc\./Meta Platforms, Inc. and affiliates./' $f;
done
```
* When dynamic dispatching to bmi2 add lzcnt and bmi to the
TARGET_ATTRIBUTE.
* Centralize the bmi2 TARGET_ATTRIBUTE definition to
BMI2_TARGET_ATTRIBUTE so we can change it in the future.
* Only enable bmi2 when both bmi1 & bmi2 are supported. There shouldn't
be any cases where bmi2 is supported but bmi1 isn't. But, since we are
using the instruction we should check bmi1 as well.
* Add a Huffman round trip fuzzer
* Fix two minor bugs in Huffman that aren't exposed in zstd
- Incorrect weight comparison (weights are allowed to be equal to
table log).
- HUF_compress1X_usingCTable_internal() can return compressed
size >= source size, so the assert that `cSize <= 65535` isn't
correct, and it needs to be checked instead.
* Switch to yearless copyright per FB policy
* Fix up SPDX-License-Identifier lines in `contrib/linux-kernel` sources
* Add zstd copyright/license header to the `contrib/linux-kernel` sources
* Update the `tests/test-license.py` to check for yearless copyright
* Improvements to `tests/test-license.py`
* Check `contrib/linux-kernel` in `tests/test-license.py`
* Fix bug introduced in PR #2271
* Fix long-standing bug that is impossible to trigger inside of zstd
* Add a fuzzer that makes sure the normalized count always round trips
correctly
* All copyright lines now have -2020 instead of -present
* All copyright lines include "Facebook, Inc"
* All licenses are now standardized
The copyright in `threading.{h,c}` is not changed because it comes from
zstdmt.
The copyright and license of `divsufsort.{h,c}` is not changed.
This edge case is only possible with the new optimal encoding selector,
since before zstd would always choose `set_basic` for small numbers of
sequences.
Fix `FSE_readNCount()` to support buffers < 4 bytes.
Credit to OSS-Fuzz
If `weightTotal == 0`, then `BIT_highbit32(weightTotal)` is
undefined behavior in the case that it calls `__builtin_clz()`.
If `tableLog == HUF_TABLELOG_ABSOLUTEMAX` then we will access one
byte beyond the end of the buffer.