mirror of
				https://github.com/facebook/zstd.git
				synced 2025-10-31 16:47:48 +02:00 
			
		
		
		
	
		
			
				
	
	
		
			2312 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2312 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) Meta Platforms, Inc. and affiliates.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * This source code is licensed under both the BSD-style license (found in the
 | |
|  * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 | |
|  * in the COPYING file in the root directory of this source tree).
 | |
|  * You may select, at your option, one of the above-listed licenses.
 | |
|  */
 | |
| 
 | |
| /* zstd_decompress_block :
 | |
|  * this module takes care of decompressing _compressed_ block */
 | |
| 
 | |
| /*-*******************************************************
 | |
| *  Dependencies
 | |
| *********************************************************/
 | |
| #include "../common/zstd_deps.h"   /* ZSTD_memcpy, ZSTD_memmove, ZSTD_memset */
 | |
| #include "../common/compiler.h"    /* prefetch */
 | |
| #include "../common/mem.h"         /* low level memory routines */
 | |
| #include <stddef.h>
 | |
| #define FSE_STATIC_LINKING_ONLY
 | |
| #include "../common/fse.h"
 | |
| #include "../common/huf.h"
 | |
| #include "../common/zstd_internal.h"
 | |
| #include "zstd_decompress_internal.h"   /* ZSTD_DCtx */
 | |
| #include "zstd_decompress_block.h"
 | |
| #include "../common/bits.h"  /* ZSTD_highbit32 */
 | |
| 
 | |
| /*_*******************************************************
 | |
| *  Macros
 | |
| **********************************************************/
 | |
| 
 | |
| /* These two optional macros force the use one way or another of the two
 | |
|  * ZSTD_decompressSequences implementations. You can't force in both directions
 | |
|  * at the same time.
 | |
|  */
 | |
| #if defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
 | |
|     defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
 | |
| #error "Cannot force the use of the short and the long ZSTD_decompressSequences variants!"
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /*_*******************************************************
 | |
| *  Memory operations
 | |
| **********************************************************/
 | |
| static void ZSTD_copy4(void* dst, const void* src) { ZSTD_memcpy(dst, src, 4); }
 | |
| 
 | |
| 
 | |
| /*-*************************************************************
 | |
|  *   Block decoding
 | |
|  ***************************************************************/
 | |
| 
 | |
| static size_t ZSTD_blockSizeMax(ZSTD_DCtx const* dctx)
 | |
| {
 | |
|     size_t const blockSizeMax = dctx->isFrameDecompression ? dctx->fParams.blockSizeMax : ZSTD_BLOCKSIZE_MAX;
 | |
|     assert(blockSizeMax <= ZSTD_BLOCKSIZE_MAX);
 | |
|     return blockSizeMax;
 | |
| }
 | |
| 
 | |
| /*! ZSTD_getcBlockSize() :
 | |
|  *  Provides the size of compressed block from block header `src` */
 | |
| size_t ZSTD_getcBlockSize(const void* src, size_t srcSize,
 | |
|                           blockProperties_t* bpPtr)
 | |
| {
 | |
|     RETURN_ERROR_IF(srcSize < ZSTD_blockHeaderSize, srcSize_wrong, "");
 | |
| 
 | |
|     {   U32 const cBlockHeader = MEM_readLE24(src);
 | |
|         U32 const cSize = cBlockHeader >> 3;
 | |
|         bpPtr->lastBlock = cBlockHeader & 1;
 | |
|         bpPtr->blockType = (blockType_e)((cBlockHeader >> 1) & 3);
 | |
|         bpPtr->origSize = cSize;   /* only useful for RLE */
 | |
|         if (bpPtr->blockType == bt_rle) return 1;
 | |
|         RETURN_ERROR_IF(bpPtr->blockType == bt_reserved, corruption_detected, "");
 | |
|         return cSize;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Allocate buffer for literals, either overlapping current dst, or split between dst and litExtraBuffer, or stored entirely within litExtraBuffer */
 | |
| static void ZSTD_allocateLiteralsBuffer(ZSTD_DCtx* dctx, void* const dst, const size_t dstCapacity, const size_t litSize,
 | |
|     const streaming_operation streaming, const size_t expectedWriteSize, const unsigned splitImmediately)
 | |
| {
 | |
|     size_t const blockSizeMax = ZSTD_blockSizeMax(dctx);
 | |
|     assert(litSize <= blockSizeMax);
 | |
|     assert(dctx->isFrameDecompression || streaming == not_streaming);
 | |
|     assert(expectedWriteSize <= blockSizeMax);
 | |
|     if (streaming == not_streaming && dstCapacity > blockSizeMax + WILDCOPY_OVERLENGTH + litSize + WILDCOPY_OVERLENGTH) {
 | |
|         /* If we aren't streaming, we can just put the literals after the output
 | |
|          * of the current block. We don't need to worry about overwriting the
 | |
|          * extDict of our window, because it doesn't exist.
 | |
|          * So if we have space after the end of the block, just put it there.
 | |
|          */
 | |
|         dctx->litBuffer = (BYTE*)dst + blockSizeMax + WILDCOPY_OVERLENGTH;
 | |
|         dctx->litBufferEnd = dctx->litBuffer + litSize;
 | |
|         dctx->litBufferLocation = ZSTD_in_dst;
 | |
|     } else if (litSize <= ZSTD_LITBUFFEREXTRASIZE) {
 | |
|         /* Literals fit entirely within the extra buffer, put them there to avoid
 | |
|          * having to split the literals.
 | |
|          */
 | |
|         dctx->litBuffer = dctx->litExtraBuffer;
 | |
|         dctx->litBufferEnd = dctx->litBuffer + litSize;
 | |
|         dctx->litBufferLocation = ZSTD_not_in_dst;
 | |
|     } else {
 | |
|         assert(blockSizeMax > ZSTD_LITBUFFEREXTRASIZE);
 | |
|         /* Literals must be split between the output block and the extra lit
 | |
|          * buffer. We fill the extra lit buffer with the tail of the literals,
 | |
|          * and put the rest of the literals at the end of the block, with
 | |
|          * WILDCOPY_OVERLENGTH of buffer room to allow for overreads.
 | |
|          * This MUST not write more than our maxBlockSize beyond dst, because in
 | |
|          * streaming mode, that could overwrite part of our extDict window.
 | |
|          */
 | |
|         if (splitImmediately) {
 | |
|             /* won't fit in litExtraBuffer, so it will be split between end of dst and extra buffer */
 | |
|             dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
 | |
|             dctx->litBufferEnd = dctx->litBuffer + litSize - ZSTD_LITBUFFEREXTRASIZE;
 | |
|         } else {
 | |
|             /* initially this will be stored entirely in dst during huffman decoding, it will partially be shifted to litExtraBuffer after */
 | |
|             dctx->litBuffer = (BYTE*)dst + expectedWriteSize - litSize;
 | |
|             dctx->litBufferEnd = (BYTE*)dst + expectedWriteSize;
 | |
|         }
 | |
|         dctx->litBufferLocation = ZSTD_split;
 | |
|         assert(dctx->litBufferEnd <= (BYTE*)dst + expectedWriteSize);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*! ZSTD_decodeLiteralsBlock() :
 | |
|  * Where it is possible to do so without being stomped by the output during decompression, the literals block will be stored
 | |
|  * in the dstBuffer.  If there is room to do so, it will be stored in full in the excess dst space after where the current
 | |
|  * block will be output.  Otherwise it will be stored at the end of the current dst blockspace, with a small portion being
 | |
|  * stored in dctx->litExtraBuffer to help keep it "ahead" of the current output write.
 | |
|  *
 | |
|  * @return : nb of bytes read from src (< srcSize )
 | |
|  *  note : symbol not declared but exposed for fullbench */
 | |
| static size_t ZSTD_decodeLiteralsBlock(ZSTD_DCtx* dctx,
 | |
|                           const void* src, size_t srcSize,   /* note : srcSize < BLOCKSIZE */
 | |
|                           void* dst, size_t dstCapacity, const streaming_operation streaming)
 | |
| {
 | |
|     DEBUGLOG(5, "ZSTD_decodeLiteralsBlock");
 | |
|     RETURN_ERROR_IF(srcSize < MIN_CBLOCK_SIZE, corruption_detected, "");
 | |
| 
 | |
|     {   const BYTE* const istart = (const BYTE*) src;
 | |
|         SymbolEncodingType_e const litEncType = (SymbolEncodingType_e)(istart[0] & 3);
 | |
|         size_t const blockSizeMax = ZSTD_blockSizeMax(dctx);
 | |
| 
 | |
|         switch(litEncType)
 | |
|         {
 | |
|         case set_repeat:
 | |
|             DEBUGLOG(5, "set_repeat flag : re-using stats from previous compressed literals block");
 | |
|             RETURN_ERROR_IF(dctx->litEntropy==0, dictionary_corrupted, "");
 | |
|             ZSTD_FALLTHROUGH;
 | |
| 
 | |
|         case set_compressed:
 | |
|             RETURN_ERROR_IF(srcSize < 5, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need up to 5 for case 3");
 | |
|             {   size_t lhSize, litSize, litCSize;
 | |
|                 U32 singleStream=0;
 | |
|                 U32 const lhlCode = (istart[0] >> 2) & 3;
 | |
|                 U32 const lhc = MEM_readLE32(istart);
 | |
|                 size_t hufSuccess;
 | |
|                 size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
 | |
|                 int const flags = 0
 | |
|                     | (ZSTD_DCtx_get_bmi2(dctx) ? HUF_flags_bmi2 : 0)
 | |
|                     | (dctx->disableHufAsm ? HUF_flags_disableAsm : 0);
 | |
|                 switch(lhlCode)
 | |
|                 {
 | |
|                 case 0: case 1: default:   /* note : default is impossible, since lhlCode into [0..3] */
 | |
|                     /* 2 - 2 - 10 - 10 */
 | |
|                     singleStream = !lhlCode;
 | |
|                     lhSize = 3;
 | |
|                     litSize  = (lhc >> 4) & 0x3FF;
 | |
|                     litCSize = (lhc >> 14) & 0x3FF;
 | |
|                     break;
 | |
|                 case 2:
 | |
|                     /* 2 - 2 - 14 - 14 */
 | |
|                     lhSize = 4;
 | |
|                     litSize  = (lhc >> 4) & 0x3FFF;
 | |
|                     litCSize = lhc >> 18;
 | |
|                     break;
 | |
|                 case 3:
 | |
|                     /* 2 - 2 - 18 - 18 */
 | |
|                     lhSize = 5;
 | |
|                     litSize  = (lhc >> 4) & 0x3FFFF;
 | |
|                     litCSize = (lhc >> 22) + ((size_t)istart[4] << 10);
 | |
|                     break;
 | |
|                 }
 | |
|                 RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
 | |
|                 RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
 | |
|                 if (!singleStream)
 | |
|                     RETURN_ERROR_IF(litSize < MIN_LITERALS_FOR_4_STREAMS, literals_headerWrong,
 | |
|                         "Not enough literals (%zu) for the 4-streams mode (min %u)",
 | |
|                         litSize, MIN_LITERALS_FOR_4_STREAMS);
 | |
|                 RETURN_ERROR_IF(litCSize + lhSize > srcSize, corruption_detected, "");
 | |
|                 RETURN_ERROR_IF(expectedWriteSize < litSize , dstSize_tooSmall, "");
 | |
|                 ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 0);
 | |
| 
 | |
|                 /* prefetch huffman table if cold */
 | |
|                 if (dctx->ddictIsCold && (litSize > 768 /* heuristic */)) {
 | |
|                     PREFETCH_AREA(dctx->HUFptr, sizeof(dctx->entropy.hufTable));
 | |
|                 }
 | |
| 
 | |
|                 if (litEncType==set_repeat) {
 | |
|                     if (singleStream) {
 | |
|                         hufSuccess = HUF_decompress1X_usingDTable(
 | |
|                             dctx->litBuffer, litSize, istart+lhSize, litCSize,
 | |
|                             dctx->HUFptr, flags);
 | |
|                     } else {
 | |
|                         assert(litSize >= MIN_LITERALS_FOR_4_STREAMS);
 | |
|                         hufSuccess = HUF_decompress4X_usingDTable(
 | |
|                             dctx->litBuffer, litSize, istart+lhSize, litCSize,
 | |
|                             dctx->HUFptr, flags);
 | |
|                     }
 | |
|                 } else {
 | |
|                     if (singleStream) {
 | |
| #if defined(HUF_FORCE_DECOMPRESS_X2)
 | |
|                         hufSuccess = HUF_decompress1X_DCtx_wksp(
 | |
|                             dctx->entropy.hufTable, dctx->litBuffer, litSize,
 | |
|                             istart+lhSize, litCSize, dctx->workspace,
 | |
|                             sizeof(dctx->workspace), flags);
 | |
| #else
 | |
|                         hufSuccess = HUF_decompress1X1_DCtx_wksp(
 | |
|                             dctx->entropy.hufTable, dctx->litBuffer, litSize,
 | |
|                             istart+lhSize, litCSize, dctx->workspace,
 | |
|                             sizeof(dctx->workspace), flags);
 | |
| #endif
 | |
|                     } else {
 | |
|                         hufSuccess = HUF_decompress4X_hufOnly_wksp(
 | |
|                             dctx->entropy.hufTable, dctx->litBuffer, litSize,
 | |
|                             istart+lhSize, litCSize, dctx->workspace,
 | |
|                             sizeof(dctx->workspace), flags);
 | |
|                     }
 | |
|                 }
 | |
|                 if (dctx->litBufferLocation == ZSTD_split)
 | |
|                 {
 | |
|                     assert(litSize > ZSTD_LITBUFFEREXTRASIZE);
 | |
|                     ZSTD_memcpy(dctx->litExtraBuffer, dctx->litBufferEnd - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
 | |
|                     ZSTD_memmove(dctx->litBuffer + ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH, dctx->litBuffer, litSize - ZSTD_LITBUFFEREXTRASIZE);
 | |
|                     dctx->litBuffer += ZSTD_LITBUFFEREXTRASIZE - WILDCOPY_OVERLENGTH;
 | |
|                     dctx->litBufferEnd -= WILDCOPY_OVERLENGTH;
 | |
|                     assert(dctx->litBufferEnd <= (BYTE*)dst + blockSizeMax);
 | |
|                 }
 | |
| 
 | |
|                 RETURN_ERROR_IF(HUF_isError(hufSuccess), corruption_detected, "");
 | |
| 
 | |
|                 dctx->litPtr = dctx->litBuffer;
 | |
|                 dctx->litSize = litSize;
 | |
|                 dctx->litEntropy = 1;
 | |
|                 if (litEncType==set_compressed) dctx->HUFptr = dctx->entropy.hufTable;
 | |
|                 return litCSize + lhSize;
 | |
|             }
 | |
| 
 | |
|         case set_basic:
 | |
|             {   size_t litSize, lhSize;
 | |
|                 U32 const lhlCode = ((istart[0]) >> 2) & 3;
 | |
|                 size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
 | |
|                 switch(lhlCode)
 | |
|                 {
 | |
|                 case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
 | |
|                     lhSize = 1;
 | |
|                     litSize = istart[0] >> 3;
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     lhSize = 2;
 | |
|                     litSize = MEM_readLE16(istart) >> 4;
 | |
|                     break;
 | |
|                 case 3:
 | |
|                     lhSize = 3;
 | |
|                     RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize = 3");
 | |
|                     litSize = MEM_readLE24(istart) >> 4;
 | |
|                     break;
 | |
|                 }
 | |
| 
 | |
|                 RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
 | |
|                 RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
 | |
|                 RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
 | |
|                 ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
 | |
|                 if (lhSize+litSize+WILDCOPY_OVERLENGTH > srcSize) {  /* risk reading beyond src buffer with wildcopy */
 | |
|                     RETURN_ERROR_IF(litSize+lhSize > srcSize, corruption_detected, "");
 | |
|                     if (dctx->litBufferLocation == ZSTD_split)
 | |
|                     {
 | |
|                         ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize - ZSTD_LITBUFFEREXTRASIZE);
 | |
|                         ZSTD_memcpy(dctx->litExtraBuffer, istart + lhSize + litSize - ZSTD_LITBUFFEREXTRASIZE, ZSTD_LITBUFFEREXTRASIZE);
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         ZSTD_memcpy(dctx->litBuffer, istart + lhSize, litSize);
 | |
|                     }
 | |
|                     dctx->litPtr = dctx->litBuffer;
 | |
|                     dctx->litSize = litSize;
 | |
|                     return lhSize+litSize;
 | |
|                 }
 | |
|                 /* direct reference into compressed stream */
 | |
|                 dctx->litPtr = istart+lhSize;
 | |
|                 dctx->litSize = litSize;
 | |
|                 dctx->litBufferEnd = dctx->litPtr + litSize;
 | |
|                 dctx->litBufferLocation = ZSTD_not_in_dst;
 | |
|                 return lhSize+litSize;
 | |
|             }
 | |
| 
 | |
|         case set_rle:
 | |
|             {   U32 const lhlCode = ((istart[0]) >> 2) & 3;
 | |
|                 size_t litSize, lhSize;
 | |
|                 size_t expectedWriteSize = MIN(blockSizeMax, dstCapacity);
 | |
|                 switch(lhlCode)
 | |
|                 {
 | |
|                 case 0: case 2: default:   /* note : default is impossible, since lhlCode into [0..3] */
 | |
|                     lhSize = 1;
 | |
|                     litSize = istart[0] >> 3;
 | |
|                     break;
 | |
|                 case 1:
 | |
|                     lhSize = 2;
 | |
|                     RETURN_ERROR_IF(srcSize<3, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 3");
 | |
|                     litSize = MEM_readLE16(istart) >> 4;
 | |
|                     break;
 | |
|                 case 3:
 | |
|                     lhSize = 3;
 | |
|                     RETURN_ERROR_IF(srcSize<4, corruption_detected, "srcSize >= MIN_CBLOCK_SIZE == 2; here we need lhSize+1 = 4");
 | |
|                     litSize = MEM_readLE24(istart) >> 4;
 | |
|                     break;
 | |
|                 }
 | |
|                 RETURN_ERROR_IF(litSize > 0 && dst == NULL, dstSize_tooSmall, "NULL not handled");
 | |
|                 RETURN_ERROR_IF(litSize > blockSizeMax, corruption_detected, "");
 | |
|                 RETURN_ERROR_IF(expectedWriteSize < litSize, dstSize_tooSmall, "");
 | |
|                 ZSTD_allocateLiteralsBuffer(dctx, dst, dstCapacity, litSize, streaming, expectedWriteSize, 1);
 | |
|                 if (dctx->litBufferLocation == ZSTD_split)
 | |
|                 {
 | |
|                     ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize - ZSTD_LITBUFFEREXTRASIZE);
 | |
|                     ZSTD_memset(dctx->litExtraBuffer, istart[lhSize], ZSTD_LITBUFFEREXTRASIZE);
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     ZSTD_memset(dctx->litBuffer, istart[lhSize], litSize);
 | |
|                 }
 | |
|                 dctx->litPtr = dctx->litBuffer;
 | |
|                 dctx->litSize = litSize;
 | |
|                 return lhSize+1;
 | |
|             }
 | |
|         default:
 | |
|             RETURN_ERROR(corruption_detected, "impossible");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Hidden declaration for fullbench */
 | |
| size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
 | |
|                           const void* src, size_t srcSize,
 | |
|                           void* dst, size_t dstCapacity);
 | |
| size_t ZSTD_decodeLiteralsBlock_wrapper(ZSTD_DCtx* dctx,
 | |
|                           const void* src, size_t srcSize,
 | |
|                           void* dst, size_t dstCapacity)
 | |
| {
 | |
|     dctx->isFrameDecompression = 0;
 | |
|     return ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, not_streaming);
 | |
| }
 | |
| 
 | |
| /* Default FSE distribution tables.
 | |
|  * These are pre-calculated FSE decoding tables using default distributions as defined in specification :
 | |
|  * https://github.com/facebook/zstd/blob/release/doc/zstd_compression_format.md#default-distributions
 | |
|  * They were generated programmatically with following method :
 | |
|  * - start from default distributions, present in /lib/common/zstd_internal.h
 | |
|  * - generate tables normally, using ZSTD_buildFSETable()
 | |
|  * - printout the content of tables
 | |
|  * - prettify output, report below, test with fuzzer to ensure it's correct */
 | |
| 
 | |
| /* Default FSE distribution table for Literal Lengths */
 | |
| static const ZSTD_seqSymbol LL_defaultDTable[(1<<LL_DEFAULTNORMLOG)+1] = {
 | |
|      {  1,  1,  1, LL_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
 | |
|      /* nextState, nbAddBits, nbBits, baseVal */
 | |
|      {  0,  0,  4,    0},  { 16,  0,  4,    0},
 | |
|      { 32,  0,  5,    1},  {  0,  0,  5,    3},
 | |
|      {  0,  0,  5,    4},  {  0,  0,  5,    6},
 | |
|      {  0,  0,  5,    7},  {  0,  0,  5,    9},
 | |
|      {  0,  0,  5,   10},  {  0,  0,  5,   12},
 | |
|      {  0,  0,  6,   14},  {  0,  1,  5,   16},
 | |
|      {  0,  1,  5,   20},  {  0,  1,  5,   22},
 | |
|      {  0,  2,  5,   28},  {  0,  3,  5,   32},
 | |
|      {  0,  4,  5,   48},  { 32,  6,  5,   64},
 | |
|      {  0,  7,  5,  128},  {  0,  8,  6,  256},
 | |
|      {  0, 10,  6, 1024},  {  0, 12,  6, 4096},
 | |
|      { 32,  0,  4,    0},  {  0,  0,  4,    1},
 | |
|      {  0,  0,  5,    2},  { 32,  0,  5,    4},
 | |
|      {  0,  0,  5,    5},  { 32,  0,  5,    7},
 | |
|      {  0,  0,  5,    8},  { 32,  0,  5,   10},
 | |
|      {  0,  0,  5,   11},  {  0,  0,  6,   13},
 | |
|      { 32,  1,  5,   16},  {  0,  1,  5,   18},
 | |
|      { 32,  1,  5,   22},  {  0,  2,  5,   24},
 | |
|      { 32,  3,  5,   32},  {  0,  3,  5,   40},
 | |
|      {  0,  6,  4,   64},  { 16,  6,  4,   64},
 | |
|      { 32,  7,  5,  128},  {  0,  9,  6,  512},
 | |
|      {  0, 11,  6, 2048},  { 48,  0,  4,    0},
 | |
|      { 16,  0,  4,    1},  { 32,  0,  5,    2},
 | |
|      { 32,  0,  5,    3},  { 32,  0,  5,    5},
 | |
|      { 32,  0,  5,    6},  { 32,  0,  5,    8},
 | |
|      { 32,  0,  5,    9},  { 32,  0,  5,   11},
 | |
|      { 32,  0,  5,   12},  {  0,  0,  6,   15},
 | |
|      { 32,  1,  5,   18},  { 32,  1,  5,   20},
 | |
|      { 32,  2,  5,   24},  { 32,  2,  5,   28},
 | |
|      { 32,  3,  5,   40},  { 32,  4,  5,   48},
 | |
|      {  0, 16,  6,65536},  {  0, 15,  6,32768},
 | |
|      {  0, 14,  6,16384},  {  0, 13,  6, 8192},
 | |
| };   /* LL_defaultDTable */
 | |
| 
 | |
| /* Default FSE distribution table for Offset Codes */
 | |
| static const ZSTD_seqSymbol OF_defaultDTable[(1<<OF_DEFAULTNORMLOG)+1] = {
 | |
|     {  1,  1,  1, OF_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
 | |
|     /* nextState, nbAddBits, nbBits, baseVal */
 | |
|     {  0,  0,  5,    0},     {  0,  6,  4,   61},
 | |
|     {  0,  9,  5,  509},     {  0, 15,  5,32765},
 | |
|     {  0, 21,  5,2097149},   {  0,  3,  5,    5},
 | |
|     {  0,  7,  4,  125},     {  0, 12,  5, 4093},
 | |
|     {  0, 18,  5,262141},    {  0, 23,  5,8388605},
 | |
|     {  0,  5,  5,   29},     {  0,  8,  4,  253},
 | |
|     {  0, 14,  5,16381},     {  0, 20,  5,1048573},
 | |
|     {  0,  2,  5,    1},     { 16,  7,  4,  125},
 | |
|     {  0, 11,  5, 2045},     {  0, 17,  5,131069},
 | |
|     {  0, 22,  5,4194301},   {  0,  4,  5,   13},
 | |
|     { 16,  8,  4,  253},     {  0, 13,  5, 8189},
 | |
|     {  0, 19,  5,524285},    {  0,  1,  5,    1},
 | |
|     { 16,  6,  4,   61},     {  0, 10,  5, 1021},
 | |
|     {  0, 16,  5,65533},     {  0, 28,  5,268435453},
 | |
|     {  0, 27,  5,134217725}, {  0, 26,  5,67108861},
 | |
|     {  0, 25,  5,33554429},  {  0, 24,  5,16777213},
 | |
| };   /* OF_defaultDTable */
 | |
| 
 | |
| 
 | |
| /* Default FSE distribution table for Match Lengths */
 | |
| static const ZSTD_seqSymbol ML_defaultDTable[(1<<ML_DEFAULTNORMLOG)+1] = {
 | |
|     {  1,  1,  1, ML_DEFAULTNORMLOG},  /* header : fastMode, tableLog */
 | |
|     /* nextState, nbAddBits, nbBits, baseVal */
 | |
|     {  0,  0,  6,    3},  {  0,  0,  4,    4},
 | |
|     { 32,  0,  5,    5},  {  0,  0,  5,    6},
 | |
|     {  0,  0,  5,    8},  {  0,  0,  5,    9},
 | |
|     {  0,  0,  5,   11},  {  0,  0,  6,   13},
 | |
|     {  0,  0,  6,   16},  {  0,  0,  6,   19},
 | |
|     {  0,  0,  6,   22},  {  0,  0,  6,   25},
 | |
|     {  0,  0,  6,   28},  {  0,  0,  6,   31},
 | |
|     {  0,  0,  6,   34},  {  0,  1,  6,   37},
 | |
|     {  0,  1,  6,   41},  {  0,  2,  6,   47},
 | |
|     {  0,  3,  6,   59},  {  0,  4,  6,   83},
 | |
|     {  0,  7,  6,  131},  {  0,  9,  6,  515},
 | |
|     { 16,  0,  4,    4},  {  0,  0,  4,    5},
 | |
|     { 32,  0,  5,    6},  {  0,  0,  5,    7},
 | |
|     { 32,  0,  5,    9},  {  0,  0,  5,   10},
 | |
|     {  0,  0,  6,   12},  {  0,  0,  6,   15},
 | |
|     {  0,  0,  6,   18},  {  0,  0,  6,   21},
 | |
|     {  0,  0,  6,   24},  {  0,  0,  6,   27},
 | |
|     {  0,  0,  6,   30},  {  0,  0,  6,   33},
 | |
|     {  0,  1,  6,   35},  {  0,  1,  6,   39},
 | |
|     {  0,  2,  6,   43},  {  0,  3,  6,   51},
 | |
|     {  0,  4,  6,   67},  {  0,  5,  6,   99},
 | |
|     {  0,  8,  6,  259},  { 32,  0,  4,    4},
 | |
|     { 48,  0,  4,    4},  { 16,  0,  4,    5},
 | |
|     { 32,  0,  5,    7},  { 32,  0,  5,    8},
 | |
|     { 32,  0,  5,   10},  { 32,  0,  5,   11},
 | |
|     {  0,  0,  6,   14},  {  0,  0,  6,   17},
 | |
|     {  0,  0,  6,   20},  {  0,  0,  6,   23},
 | |
|     {  0,  0,  6,   26},  {  0,  0,  6,   29},
 | |
|     {  0,  0,  6,   32},  {  0, 16,  6,65539},
 | |
|     {  0, 15,  6,32771},  {  0, 14,  6,16387},
 | |
|     {  0, 13,  6, 8195},  {  0, 12,  6, 4099},
 | |
|     {  0, 11,  6, 2051},  {  0, 10,  6, 1027},
 | |
| };   /* ML_defaultDTable */
 | |
| 
 | |
| 
 | |
| static void ZSTD_buildSeqTable_rle(ZSTD_seqSymbol* dt, U32 baseValue, U8 nbAddBits)
 | |
| {
 | |
|     void* ptr = dt;
 | |
|     ZSTD_seqSymbol_header* const DTableH = (ZSTD_seqSymbol_header*)ptr;
 | |
|     ZSTD_seqSymbol* const cell = dt + 1;
 | |
| 
 | |
|     DTableH->tableLog = 0;
 | |
|     DTableH->fastMode = 0;
 | |
| 
 | |
|     cell->nbBits = 0;
 | |
|     cell->nextState = 0;
 | |
|     assert(nbAddBits < 255);
 | |
|     cell->nbAdditionalBits = nbAddBits;
 | |
|     cell->baseValue = baseValue;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ZSTD_buildFSETable() :
 | |
|  * generate FSE decoding table for one symbol (ll, ml or off)
 | |
|  * cannot fail if input is valid =>
 | |
|  * all inputs are presumed validated at this stage */
 | |
| FORCE_INLINE_TEMPLATE
 | |
| void ZSTD_buildFSETable_body(ZSTD_seqSymbol* dt,
 | |
|             const short* normalizedCounter, unsigned maxSymbolValue,
 | |
|             const U32* baseValue, const U8* nbAdditionalBits,
 | |
|             unsigned tableLog, void* wksp, size_t wkspSize)
 | |
| {
 | |
|     ZSTD_seqSymbol* const tableDecode = dt+1;
 | |
|     U32 const maxSV1 = maxSymbolValue + 1;
 | |
|     U32 const tableSize = 1 << tableLog;
 | |
| 
 | |
|     U16* symbolNext = (U16*)wksp;
 | |
|     BYTE* spread = (BYTE*)(symbolNext + MaxSeq + 1);
 | |
|     U32 highThreshold = tableSize - 1;
 | |
| 
 | |
| 
 | |
|     /* Sanity Checks */
 | |
|     assert(maxSymbolValue <= MaxSeq);
 | |
|     assert(tableLog <= MaxFSELog);
 | |
|     assert(wkspSize >= ZSTD_BUILD_FSE_TABLE_WKSP_SIZE);
 | |
|     (void)wkspSize;
 | |
|     /* Init, lay down lowprob symbols */
 | |
|     {   ZSTD_seqSymbol_header DTableH;
 | |
|         DTableH.tableLog = tableLog;
 | |
|         DTableH.fastMode = 1;
 | |
|         {   S16 const largeLimit= (S16)(1 << (tableLog-1));
 | |
|             U32 s;
 | |
|             for (s=0; s<maxSV1; s++) {
 | |
|                 if (normalizedCounter[s]==-1) {
 | |
|                     tableDecode[highThreshold--].baseValue = s;
 | |
|                     symbolNext[s] = 1;
 | |
|                 } else {
 | |
|                     if (normalizedCounter[s] >= largeLimit) DTableH.fastMode=0;
 | |
|                     assert(normalizedCounter[s]>=0);
 | |
|                     symbolNext[s] = (U16)normalizedCounter[s];
 | |
|         }   }   }
 | |
|         ZSTD_memcpy(dt, &DTableH, sizeof(DTableH));
 | |
|     }
 | |
| 
 | |
|     /* Spread symbols */
 | |
|     assert(tableSize <= 512);
 | |
|     /* Specialized symbol spreading for the case when there are
 | |
|      * no low probability (-1 count) symbols. When compressing
 | |
|      * small blocks we avoid low probability symbols to hit this
 | |
|      * case, since header decoding speed matters more.
 | |
|      */
 | |
|     if (highThreshold == tableSize - 1) {
 | |
|         size_t const tableMask = tableSize-1;
 | |
|         size_t const step = FSE_TABLESTEP(tableSize);
 | |
|         /* First lay down the symbols in order.
 | |
|          * We use a uint64_t to lay down 8 bytes at a time. This reduces branch
 | |
|          * misses since small blocks generally have small table logs, so nearly
 | |
|          * all symbols have counts <= 8. We ensure we have 8 bytes at the end of
 | |
|          * our buffer to handle the over-write.
 | |
|          */
 | |
|         {
 | |
|             U64 const add = 0x0101010101010101ull;
 | |
|             size_t pos = 0;
 | |
|             U64 sv = 0;
 | |
|             U32 s;
 | |
|             for (s=0; s<maxSV1; ++s, sv += add) {
 | |
|                 int i;
 | |
|                 int const n = normalizedCounter[s];
 | |
|                 MEM_write64(spread + pos, sv);
 | |
|                 for (i = 8; i < n; i += 8) {
 | |
|                     MEM_write64(spread + pos + i, sv);
 | |
|                 }
 | |
|                 assert(n>=0);
 | |
|                 pos += (size_t)n;
 | |
|             }
 | |
|         }
 | |
|         /* Now we spread those positions across the table.
 | |
|          * The benefit of doing it in two stages is that we avoid the
 | |
|          * variable size inner loop, which caused lots of branch misses.
 | |
|          * Now we can run through all the positions without any branch misses.
 | |
|          * We unroll the loop twice, since that is what empirically worked best.
 | |
|          */
 | |
|         {
 | |
|             size_t position = 0;
 | |
|             size_t s;
 | |
|             size_t const unroll = 2;
 | |
|             assert(tableSize % unroll == 0); /* FSE_MIN_TABLELOG is 5 */
 | |
|             for (s = 0; s < (size_t)tableSize; s += unroll) {
 | |
|                 size_t u;
 | |
|                 for (u = 0; u < unroll; ++u) {
 | |
|                     size_t const uPosition = (position + (u * step)) & tableMask;
 | |
|                     tableDecode[uPosition].baseValue = spread[s + u];
 | |
|                 }
 | |
|                 position = (position + (unroll * step)) & tableMask;
 | |
|             }
 | |
|             assert(position == 0);
 | |
|         }
 | |
|     } else {
 | |
|         U32 const tableMask = tableSize-1;
 | |
|         U32 const step = FSE_TABLESTEP(tableSize);
 | |
|         U32 s, position = 0;
 | |
|         for (s=0; s<maxSV1; s++) {
 | |
|             int i;
 | |
|             int const n = normalizedCounter[s];
 | |
|             for (i=0; i<n; i++) {
 | |
|                 tableDecode[position].baseValue = s;
 | |
|                 position = (position + step) & tableMask;
 | |
|                 while (UNLIKELY(position > highThreshold)) position = (position + step) & tableMask;   /* lowprob area */
 | |
|         }   }
 | |
|         assert(position == 0); /* position must reach all cells once, otherwise normalizedCounter is incorrect */
 | |
|     }
 | |
| 
 | |
|     /* Build Decoding table */
 | |
|     {
 | |
|         U32 u;
 | |
|         for (u=0; u<tableSize; u++) {
 | |
|             U32 const symbol = tableDecode[u].baseValue;
 | |
|             U32 const nextState = symbolNext[symbol]++;
 | |
|             tableDecode[u].nbBits = (BYTE) (tableLog - ZSTD_highbit32(nextState) );
 | |
|             tableDecode[u].nextState = (U16) ( (nextState << tableDecode[u].nbBits) - tableSize);
 | |
|             assert(nbAdditionalBits[symbol] < 255);
 | |
|             tableDecode[u].nbAdditionalBits = nbAdditionalBits[symbol];
 | |
|             tableDecode[u].baseValue = baseValue[symbol];
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Avoids the FORCE_INLINE of the _body() function. */
 | |
| static void ZSTD_buildFSETable_body_default(ZSTD_seqSymbol* dt,
 | |
|             const short* normalizedCounter, unsigned maxSymbolValue,
 | |
|             const U32* baseValue, const U8* nbAdditionalBits,
 | |
|             unsigned tableLog, void* wksp, size_t wkspSize)
 | |
| {
 | |
|     ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
 | |
|             baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
 | |
| }
 | |
| 
 | |
| #if DYNAMIC_BMI2
 | |
| BMI2_TARGET_ATTRIBUTE static void ZSTD_buildFSETable_body_bmi2(ZSTD_seqSymbol* dt,
 | |
|             const short* normalizedCounter, unsigned maxSymbolValue,
 | |
|             const U32* baseValue, const U8* nbAdditionalBits,
 | |
|             unsigned tableLog, void* wksp, size_t wkspSize)
 | |
| {
 | |
|     ZSTD_buildFSETable_body(dt, normalizedCounter, maxSymbolValue,
 | |
|             baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void ZSTD_buildFSETable(ZSTD_seqSymbol* dt,
 | |
|             const short* normalizedCounter, unsigned maxSymbolValue,
 | |
|             const U32* baseValue, const U8* nbAdditionalBits,
 | |
|             unsigned tableLog, void* wksp, size_t wkspSize, int bmi2)
 | |
| {
 | |
| #if DYNAMIC_BMI2
 | |
|     if (bmi2) {
 | |
|         ZSTD_buildFSETable_body_bmi2(dt, normalizedCounter, maxSymbolValue,
 | |
|                 baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
 | |
|         return;
 | |
|     }
 | |
| #endif
 | |
|     (void)bmi2;
 | |
|     ZSTD_buildFSETable_body_default(dt, normalizedCounter, maxSymbolValue,
 | |
|             baseValue, nbAdditionalBits, tableLog, wksp, wkspSize);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*! ZSTD_buildSeqTable() :
 | |
|  * @return : nb bytes read from src,
 | |
|  *           or an error code if it fails */
 | |
| static size_t ZSTD_buildSeqTable(ZSTD_seqSymbol* DTableSpace, const ZSTD_seqSymbol** DTablePtr,
 | |
|                                  SymbolEncodingType_e type, unsigned max, U32 maxLog,
 | |
|                                  const void* src, size_t srcSize,
 | |
|                                  const U32* baseValue, const U8* nbAdditionalBits,
 | |
|                                  const ZSTD_seqSymbol* defaultTable, U32 flagRepeatTable,
 | |
|                                  int ddictIsCold, int nbSeq, U32* wksp, size_t wkspSize,
 | |
|                                  int bmi2)
 | |
| {
 | |
|     switch(type)
 | |
|     {
 | |
|     case set_rle :
 | |
|         RETURN_ERROR_IF(!srcSize, srcSize_wrong, "");
 | |
|         RETURN_ERROR_IF((*(const BYTE*)src) > max, corruption_detected, "");
 | |
|         {   U32 const symbol = *(const BYTE*)src;
 | |
|             U32 const baseline = baseValue[symbol];
 | |
|             U8 const nbBits = nbAdditionalBits[symbol];
 | |
|             ZSTD_buildSeqTable_rle(DTableSpace, baseline, nbBits);
 | |
|         }
 | |
|         *DTablePtr = DTableSpace;
 | |
|         return 1;
 | |
|     case set_basic :
 | |
|         *DTablePtr = defaultTable;
 | |
|         return 0;
 | |
|     case set_repeat:
 | |
|         RETURN_ERROR_IF(!flagRepeatTable, corruption_detected, "");
 | |
|         /* prefetch FSE table if used */
 | |
|         if (ddictIsCold && (nbSeq > 24 /* heuristic */)) {
 | |
|             const void* const pStart = *DTablePtr;
 | |
|             size_t const pSize = sizeof(ZSTD_seqSymbol) * (SEQSYMBOL_TABLE_SIZE(maxLog));
 | |
|             PREFETCH_AREA(pStart, pSize);
 | |
|         }
 | |
|         return 0;
 | |
|     case set_compressed :
 | |
|         {   unsigned tableLog;
 | |
|             S16 norm[MaxSeq+1];
 | |
|             size_t const headerSize = FSE_readNCount(norm, &max, &tableLog, src, srcSize);
 | |
|             RETURN_ERROR_IF(FSE_isError(headerSize), corruption_detected, "");
 | |
|             RETURN_ERROR_IF(tableLog > maxLog, corruption_detected, "");
 | |
|             ZSTD_buildFSETable(DTableSpace, norm, max, baseValue, nbAdditionalBits, tableLog, wksp, wkspSize, bmi2);
 | |
|             *DTablePtr = DTableSpace;
 | |
|             return headerSize;
 | |
|         }
 | |
|     default :
 | |
|         assert(0);
 | |
|         RETURN_ERROR(GENERIC, "impossible");
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t ZSTD_decodeSeqHeaders(ZSTD_DCtx* dctx, int* nbSeqPtr,
 | |
|                              const void* src, size_t srcSize)
 | |
| {
 | |
|     const BYTE* const istart = (const BYTE*)src;
 | |
|     const BYTE* const iend = istart + srcSize;
 | |
|     const BYTE* ip = istart;
 | |
|     int nbSeq;
 | |
|     DEBUGLOG(5, "ZSTD_decodeSeqHeaders");
 | |
| 
 | |
|     /* check */
 | |
|     RETURN_ERROR_IF(srcSize < MIN_SEQUENCES_SIZE, srcSize_wrong, "");
 | |
| 
 | |
|     /* SeqHead */
 | |
|     nbSeq = *ip++;
 | |
|     if (nbSeq > 0x7F) {
 | |
|         if (nbSeq == 0xFF) {
 | |
|             RETURN_ERROR_IF(ip+2 > iend, srcSize_wrong, "");
 | |
|             nbSeq = MEM_readLE16(ip) + LONGNBSEQ;
 | |
|             ip+=2;
 | |
|         } else {
 | |
|             RETURN_ERROR_IF(ip >= iend, srcSize_wrong, "");
 | |
|             nbSeq = ((nbSeq-0x80)<<8) + *ip++;
 | |
|         }
 | |
|     }
 | |
|     *nbSeqPtr = nbSeq;
 | |
| 
 | |
|     if (nbSeq == 0) {
 | |
|         /* No sequence : section ends immediately */
 | |
|         RETURN_ERROR_IF(ip != iend, corruption_detected,
 | |
|             "extraneous data present in the Sequences section");
 | |
|         return (size_t)(ip - istart);
 | |
|     }
 | |
| 
 | |
|     /* FSE table descriptors */
 | |
|     RETURN_ERROR_IF(ip+1 > iend, srcSize_wrong, ""); /* minimum possible size: 1 byte for symbol encoding types */
 | |
|     RETURN_ERROR_IF(*ip & 3, corruption_detected, ""); /* The last field, Reserved, must be all-zeroes. */
 | |
|     {   SymbolEncodingType_e const LLtype = (SymbolEncodingType_e)(*ip >> 6);
 | |
|         SymbolEncodingType_e const OFtype = (SymbolEncodingType_e)((*ip >> 4) & 3);
 | |
|         SymbolEncodingType_e const MLtype = (SymbolEncodingType_e)((*ip >> 2) & 3);
 | |
|         ip++;
 | |
| 
 | |
|         /* Build DTables */
 | |
|         assert(ip <= iend);
 | |
|         {   size_t const llhSize = ZSTD_buildSeqTable(dctx->entropy.LLTable, &dctx->LLTptr,
 | |
|                                                       LLtype, MaxLL, LLFSELog,
 | |
|                                                       ip, (size_t)(iend-ip),
 | |
|                                                       LL_base, LL_bits,
 | |
|                                                       LL_defaultDTable, dctx->fseEntropy,
 | |
|                                                       dctx->ddictIsCold, nbSeq,
 | |
|                                                       dctx->workspace, sizeof(dctx->workspace),
 | |
|                                                       ZSTD_DCtx_get_bmi2(dctx));
 | |
|             RETURN_ERROR_IF(ZSTD_isError(llhSize), corruption_detected, "ZSTD_buildSeqTable failed");
 | |
|             ip += llhSize;
 | |
|         }
 | |
| 
 | |
|         assert(ip <= iend);
 | |
|         {   size_t const ofhSize = ZSTD_buildSeqTable(dctx->entropy.OFTable, &dctx->OFTptr,
 | |
|                                                       OFtype, MaxOff, OffFSELog,
 | |
|                                                       ip, (size_t)(iend-ip),
 | |
|                                                       OF_base, OF_bits,
 | |
|                                                       OF_defaultDTable, dctx->fseEntropy,
 | |
|                                                       dctx->ddictIsCold, nbSeq,
 | |
|                                                       dctx->workspace, sizeof(dctx->workspace),
 | |
|                                                       ZSTD_DCtx_get_bmi2(dctx));
 | |
|             RETURN_ERROR_IF(ZSTD_isError(ofhSize), corruption_detected, "ZSTD_buildSeqTable failed");
 | |
|             ip += ofhSize;
 | |
|         }
 | |
| 
 | |
|         assert(ip <= iend);
 | |
|         {   size_t const mlhSize = ZSTD_buildSeqTable(dctx->entropy.MLTable, &dctx->MLTptr,
 | |
|                                                       MLtype, MaxML, MLFSELog,
 | |
|                                                       ip, (size_t)(iend-ip),
 | |
|                                                       ML_base, ML_bits,
 | |
|                                                       ML_defaultDTable, dctx->fseEntropy,
 | |
|                                                       dctx->ddictIsCold, nbSeq,
 | |
|                                                       dctx->workspace, sizeof(dctx->workspace),
 | |
|                                                       ZSTD_DCtx_get_bmi2(dctx));
 | |
|             RETURN_ERROR_IF(ZSTD_isError(mlhSize), corruption_detected, "ZSTD_buildSeqTable failed");
 | |
|             ip += mlhSize;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (size_t)(ip-istart);
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef struct {
 | |
|     size_t litLength;
 | |
|     size_t matchLength;
 | |
|     size_t offset;
 | |
| } seq_t;
 | |
| 
 | |
| typedef struct {
 | |
|     size_t state;
 | |
|     const ZSTD_seqSymbol* table;
 | |
| } ZSTD_fseState;
 | |
| 
 | |
| typedef struct {
 | |
|     BIT_DStream_t DStream;
 | |
|     ZSTD_fseState stateLL;
 | |
|     ZSTD_fseState stateOffb;
 | |
|     ZSTD_fseState stateML;
 | |
|     size_t prevOffset[ZSTD_REP_NUM];
 | |
| } seqState_t;
 | |
| 
 | |
| /*! ZSTD_overlapCopy8() :
 | |
|  *  Copies 8 bytes from ip to op and updates op and ip where ip <= op.
 | |
|  *  If the offset is < 8 then the offset is spread to at least 8 bytes.
 | |
|  *
 | |
|  *  Precondition: *ip <= *op
 | |
|  *  Postcondition: *op - *op >= 8
 | |
|  */
 | |
| HINT_INLINE void ZSTD_overlapCopy8(BYTE** op, BYTE const** ip, size_t offset)
 | |
| {
 | |
|     assert(*ip <= *op);
 | |
|     if (offset < 8) {
 | |
|         /* close range match, overlap */
 | |
|         static const U32 dec32table[] = { 0, 1, 2, 1, 4, 4, 4, 4 };   /* added */
 | |
|         static const int dec64table[] = { 8, 8, 8, 7, 8, 9,10,11 };   /* subtracted */
 | |
|         int const sub2 = dec64table[offset];
 | |
|         (*op)[0] = (*ip)[0];
 | |
|         (*op)[1] = (*ip)[1];
 | |
|         (*op)[2] = (*ip)[2];
 | |
|         (*op)[3] = (*ip)[3];
 | |
|         *ip += dec32table[offset];
 | |
|         ZSTD_copy4(*op+4, *ip);
 | |
|         *ip -= sub2;
 | |
|     } else {
 | |
|         ZSTD_copy8(*op, *ip);
 | |
|     }
 | |
|     *ip += 8;
 | |
|     *op += 8;
 | |
|     assert(*op - *ip >= 8);
 | |
| }
 | |
| 
 | |
| /*! ZSTD_safecopy() :
 | |
|  *  Specialized version of memcpy() that is allowed to READ up to WILDCOPY_OVERLENGTH past the input buffer
 | |
|  *  and write up to 16 bytes past oend_w (op >= oend_w is allowed).
 | |
|  *  This function is only called in the uncommon case where the sequence is near the end of the block. It
 | |
|  *  should be fast for a single long sequence, but can be slow for several short sequences.
 | |
|  *
 | |
|  *  @param ovtype controls the overlap detection
 | |
|  *         - ZSTD_no_overlap: The source and destination are guaranteed to be at least WILDCOPY_VECLEN bytes apart.
 | |
|  *         - ZSTD_overlap_src_before_dst: The src and dst may overlap and may be any distance apart.
 | |
|  *           The src buffer must be before the dst buffer.
 | |
|  */
 | |
| static void
 | |
| ZSTD_safecopy(BYTE* op, const BYTE* const oend_w, BYTE const* ip, size_t length, ZSTD_overlap_e ovtype)
 | |
| {
 | |
|     ptrdiff_t const diff = op - ip;
 | |
|     BYTE* const oend = op + length;
 | |
| 
 | |
|     assert((ovtype == ZSTD_no_overlap && (diff <= -8 || diff >= 8 || op >= oend_w)) ||
 | |
|            (ovtype == ZSTD_overlap_src_before_dst && diff >= 0));
 | |
| 
 | |
|     if (length < 8) {
 | |
|         /* Handle short lengths. */
 | |
|         while (op < oend) *op++ = *ip++;
 | |
|         return;
 | |
|     }
 | |
|     if (ovtype == ZSTD_overlap_src_before_dst) {
 | |
|         /* Copy 8 bytes and ensure the offset >= 8 when there can be overlap. */
 | |
|         assert(length >= 8);
 | |
|         assert(diff > 0);
 | |
|         ZSTD_overlapCopy8(&op, &ip, (size_t)diff);
 | |
|         length -= 8;
 | |
|         assert(op - ip >= 8);
 | |
|         assert(op <= oend);
 | |
|     }
 | |
| 
 | |
|     if (oend <= oend_w) {
 | |
|         /* No risk of overwrite. */
 | |
|         ZSTD_wildcopy(op, ip, length, ovtype);
 | |
|         return;
 | |
|     }
 | |
|     if (op <= oend_w) {
 | |
|         /* Wildcopy until we get close to the end. */
 | |
|         assert(oend > oend_w);
 | |
|         ZSTD_wildcopy(op, ip, (size_t)(oend_w - op), ovtype);
 | |
|         ip += oend_w - op;
 | |
|         op += oend_w - op;
 | |
|     }
 | |
|     /* Handle the leftovers. */
 | |
|     while (op < oend) *op++ = *ip++;
 | |
| }
 | |
| 
 | |
| /* ZSTD_safecopyDstBeforeSrc():
 | |
|  * This version allows overlap with dst before src, or handles the non-overlap case with dst after src
 | |
|  * Kept separate from more common ZSTD_safecopy case to avoid performance impact to the safecopy common case */
 | |
| static void ZSTD_safecopyDstBeforeSrc(BYTE* op, const BYTE* ip, size_t length)
 | |
| {
 | |
|     ptrdiff_t const diff = op - ip;
 | |
|     BYTE* const oend = op + length;
 | |
| 
 | |
|     if (length < 8 || diff > -8) {
 | |
|         /* Handle short lengths, close overlaps, and dst not before src. */
 | |
|         while (op < oend) *op++ = *ip++;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (op <= oend - WILDCOPY_OVERLENGTH && diff < -WILDCOPY_VECLEN) {
 | |
|         ZSTD_wildcopy(op, ip, (size_t)(oend - WILDCOPY_OVERLENGTH - op), ZSTD_no_overlap);
 | |
|         ip += oend - WILDCOPY_OVERLENGTH - op;
 | |
|         op += oend - WILDCOPY_OVERLENGTH - op;
 | |
|     }
 | |
| 
 | |
|     /* Handle the leftovers. */
 | |
|     while (op < oend) *op++ = *ip++;
 | |
| }
 | |
| 
 | |
| /* ZSTD_execSequenceEnd():
 | |
|  * This version handles cases that are near the end of the output buffer. It requires
 | |
|  * more careful checks to make sure there is no overflow. By separating out these hard
 | |
|  * and unlikely cases, we can speed up the common cases.
 | |
|  *
 | |
|  * NOTE: This function needs to be fast for a single long sequence, but doesn't need
 | |
|  * to be optimized for many small sequences, since those fall into ZSTD_execSequence().
 | |
|  */
 | |
| FORCE_NOINLINE
 | |
| ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
 | |
| size_t ZSTD_execSequenceEnd(BYTE* op,
 | |
|     BYTE* const oend, seq_t sequence,
 | |
|     const BYTE** litPtr, const BYTE* const litLimit,
 | |
|     const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
 | |
| {
 | |
|     BYTE* const oLitEnd = op + sequence.litLength;
 | |
|     size_t const sequenceLength = sequence.litLength + sequence.matchLength;
 | |
|     const BYTE* const iLitEnd = *litPtr + sequence.litLength;
 | |
|     const BYTE* match = oLitEnd - sequence.offset;
 | |
|     BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;
 | |
| 
 | |
|     /* bounds checks : careful of address space overflow in 32-bit mode */
 | |
|     RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
 | |
|     RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
 | |
|     assert(op < op + sequenceLength);
 | |
|     assert(oLitEnd < op + sequenceLength);
 | |
| 
 | |
|     /* copy literals */
 | |
|     ZSTD_safecopy(op, oend_w, *litPtr, sequence.litLength, ZSTD_no_overlap);
 | |
|     op = oLitEnd;
 | |
|     *litPtr = iLitEnd;
 | |
| 
 | |
|     /* copy Match */
 | |
|     if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
 | |
|         /* offset beyond prefix */
 | |
|         RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
 | |
|         match = dictEnd - (prefixStart - match);
 | |
|         if (match + sequence.matchLength <= dictEnd) {
 | |
|             ZSTD_memmove(oLitEnd, match, sequence.matchLength);
 | |
|             return sequenceLength;
 | |
|         }
 | |
|         /* span extDict & currentPrefixSegment */
 | |
|         {   size_t const length1 = (size_t)(dictEnd - match);
 | |
|             ZSTD_memmove(oLitEnd, match, length1);
 | |
|             op = oLitEnd + length1;
 | |
|             sequence.matchLength -= length1;
 | |
|             match = prefixStart;
 | |
|         }
 | |
|     }
 | |
|     ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
 | |
|     return sequenceLength;
 | |
| }
 | |
| 
 | |
| /* ZSTD_execSequenceEndSplitLitBuffer():
 | |
|  * This version is intended to be used during instances where the litBuffer is still split.  It is kept separate to avoid performance impact for the good case.
 | |
|  */
 | |
| FORCE_NOINLINE
 | |
| ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
 | |
| size_t ZSTD_execSequenceEndSplitLitBuffer(BYTE* op,
 | |
|     BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
 | |
|     const BYTE** litPtr, const BYTE* const litLimit,
 | |
|     const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
 | |
| {
 | |
|     BYTE* const oLitEnd = op + sequence.litLength;
 | |
|     size_t const sequenceLength = sequence.litLength + sequence.matchLength;
 | |
|     const BYTE* const iLitEnd = *litPtr + sequence.litLength;
 | |
|     const BYTE* match = oLitEnd - sequence.offset;
 | |
| 
 | |
| 
 | |
|     /* bounds checks : careful of address space overflow in 32-bit mode */
 | |
|     RETURN_ERROR_IF(sequenceLength > (size_t)(oend - op), dstSize_tooSmall, "last match must fit within dstBuffer");
 | |
|     RETURN_ERROR_IF(sequence.litLength > (size_t)(litLimit - *litPtr), corruption_detected, "try to read beyond literal buffer");
 | |
|     assert(op < op + sequenceLength);
 | |
|     assert(oLitEnd < op + sequenceLength);
 | |
| 
 | |
|     /* copy literals */
 | |
|     RETURN_ERROR_IF(op > *litPtr && op < *litPtr + sequence.litLength, dstSize_tooSmall, "output should not catch up to and overwrite literal buffer");
 | |
|     ZSTD_safecopyDstBeforeSrc(op, *litPtr, sequence.litLength);
 | |
|     op = oLitEnd;
 | |
|     *litPtr = iLitEnd;
 | |
| 
 | |
|     /* copy Match */
 | |
|     if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
 | |
|         /* offset beyond prefix */
 | |
|         RETURN_ERROR_IF(sequence.offset > (size_t)(oLitEnd - virtualStart), corruption_detected, "");
 | |
|         match = dictEnd - (prefixStart - match);
 | |
|         if (match + sequence.matchLength <= dictEnd) {
 | |
|             ZSTD_memmove(oLitEnd, match, sequence.matchLength);
 | |
|             return sequenceLength;
 | |
|         }
 | |
|         /* span extDict & currentPrefixSegment */
 | |
|         {   size_t const length1 = (size_t)(dictEnd - match);
 | |
|             ZSTD_memmove(oLitEnd, match, length1);
 | |
|             op = oLitEnd + length1;
 | |
|             sequence.matchLength -= length1;
 | |
|             match = prefixStart;
 | |
|         }
 | |
|     }
 | |
|     ZSTD_safecopy(op, oend_w, match, sequence.matchLength, ZSTD_overlap_src_before_dst);
 | |
|     return sequenceLength;
 | |
| }
 | |
| 
 | |
| HINT_INLINE
 | |
| ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
 | |
| size_t ZSTD_execSequence(BYTE* op,
 | |
|     BYTE* const oend, seq_t sequence,
 | |
|     const BYTE** litPtr, const BYTE* const litLimit,
 | |
|     const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
 | |
| {
 | |
|     BYTE* const oLitEnd = op + sequence.litLength;
 | |
|     size_t const sequenceLength = sequence.litLength + sequence.matchLength;
 | |
|     BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
 | |
|     BYTE* const oend_w = oend - WILDCOPY_OVERLENGTH;   /* risk : address space underflow on oend=NULL */
 | |
|     const BYTE* const iLitEnd = *litPtr + sequence.litLength;
 | |
|     const BYTE* match = oLitEnd - sequence.offset;
 | |
| 
 | |
|     assert(op != NULL /* Precondition */);
 | |
|     assert(oend_w < oend /* No underflow */);
 | |
| 
 | |
| #if defined(__aarch64__)
 | |
|     /* prefetch sequence starting from match that will be used for copy later */
 | |
|     PREFETCH_L1(match);
 | |
| #endif
 | |
|     /* Handle edge cases in a slow path:
 | |
|      *   - Read beyond end of literals
 | |
|      *   - Match end is within WILDCOPY_OVERLIMIT of oend
 | |
|      *   - 32-bit mode and the match length overflows
 | |
|      */
 | |
|     if (UNLIKELY(
 | |
|         iLitEnd > litLimit ||
 | |
|         oMatchEnd > oend_w ||
 | |
|         (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
 | |
|         return ZSTD_execSequenceEnd(op, oend, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
 | |
| 
 | |
|     /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
 | |
|     assert(op <= oLitEnd /* No overflow */);
 | |
|     assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
 | |
|     assert(oMatchEnd <= oend /* No underflow */);
 | |
|     assert(iLitEnd <= litLimit /* Literal length is in bounds */);
 | |
|     assert(oLitEnd <= oend_w /* Can wildcopy literals */);
 | |
|     assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
 | |
| 
 | |
|     /* Copy Literals:
 | |
|      * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
 | |
|      * We likely don't need the full 32-byte wildcopy.
 | |
|      */
 | |
|     assert(WILDCOPY_OVERLENGTH >= 16);
 | |
|     ZSTD_copy16(op, (*litPtr));
 | |
|     if (UNLIKELY(sequence.litLength > 16)) {
 | |
|         ZSTD_wildcopy(op + 16, (*litPtr) + 16, sequence.litLength - 16, ZSTD_no_overlap);
 | |
|     }
 | |
|     op = oLitEnd;
 | |
|     *litPtr = iLitEnd;   /* update for next sequence */
 | |
| 
 | |
|     /* Copy Match */
 | |
|     if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
 | |
|         /* offset beyond prefix -> go into extDict */
 | |
|         RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
 | |
|         match = dictEnd + (match - prefixStart);
 | |
|         if (match + sequence.matchLength <= dictEnd) {
 | |
|             ZSTD_memmove(oLitEnd, match, sequence.matchLength);
 | |
|             return sequenceLength;
 | |
|         }
 | |
|         /* span extDict & currentPrefixSegment */
 | |
|         {   size_t const length1 = (size_t)(dictEnd - match);
 | |
|             ZSTD_memmove(oLitEnd, match, length1);
 | |
|             op = oLitEnd + length1;
 | |
|             sequence.matchLength -= length1;
 | |
|             match = prefixStart;
 | |
|         }
 | |
|     }
 | |
|     /* Match within prefix of 1 or more bytes */
 | |
|     assert(op <= oMatchEnd);
 | |
|     assert(oMatchEnd <= oend_w);
 | |
|     assert(match >= prefixStart);
 | |
|     assert(sequence.matchLength >= 1);
 | |
| 
 | |
|     /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
 | |
|      * without overlap checking.
 | |
|      */
 | |
|     if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
 | |
|         /* We bet on a full wildcopy for matches, since we expect matches to be
 | |
|          * longer than literals (in general). In silesia, ~10% of matches are longer
 | |
|          * than 16 bytes.
 | |
|          */
 | |
|         ZSTD_wildcopy(op, match, sequence.matchLength, ZSTD_no_overlap);
 | |
|         return sequenceLength;
 | |
|     }
 | |
|     assert(sequence.offset < WILDCOPY_VECLEN);
 | |
| 
 | |
|     /* Copy 8 bytes and spread the offset to be >= 8. */
 | |
|     ZSTD_overlapCopy8(&op, &match, sequence.offset);
 | |
| 
 | |
|     /* If the match length is > 8 bytes, then continue with the wildcopy. */
 | |
|     if (sequence.matchLength > 8) {
 | |
|         assert(op < oMatchEnd);
 | |
|         ZSTD_wildcopy(op, match, sequence.matchLength - 8, ZSTD_overlap_src_before_dst);
 | |
|     }
 | |
|     return sequenceLength;
 | |
| }
 | |
| 
 | |
| HINT_INLINE
 | |
| ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
 | |
| size_t ZSTD_execSequenceSplitLitBuffer(BYTE* op,
 | |
|     BYTE* const oend, const BYTE* const oend_w, seq_t sequence,
 | |
|     const BYTE** litPtr, const BYTE* const litLimit,
 | |
|     const BYTE* const prefixStart, const BYTE* const virtualStart, const BYTE* const dictEnd)
 | |
| {
 | |
|     BYTE* const oLitEnd = op + sequence.litLength;
 | |
|     size_t const sequenceLength = sequence.litLength + sequence.matchLength;
 | |
|     BYTE* const oMatchEnd = op + sequenceLength;   /* risk : address space overflow (32-bits) */
 | |
|     const BYTE* const iLitEnd = *litPtr + sequence.litLength;
 | |
|     const BYTE* match = oLitEnd - sequence.offset;
 | |
| 
 | |
|     assert(op != NULL /* Precondition */);
 | |
|     assert(oend_w < oend /* No underflow */);
 | |
|     /* Handle edge cases in a slow path:
 | |
|      *   - Read beyond end of literals
 | |
|      *   - Match end is within WILDCOPY_OVERLIMIT of oend
 | |
|      *   - 32-bit mode and the match length overflows
 | |
|      */
 | |
|     if (UNLIKELY(
 | |
|             iLitEnd > litLimit ||
 | |
|             oMatchEnd > oend_w ||
 | |
|             (MEM_32bits() && (size_t)(oend - op) < sequenceLength + WILDCOPY_OVERLENGTH)))
 | |
|         return ZSTD_execSequenceEndSplitLitBuffer(op, oend, oend_w, sequence, litPtr, litLimit, prefixStart, virtualStart, dictEnd);
 | |
| 
 | |
|     /* Assumptions (everything else goes into ZSTD_execSequenceEnd()) */
 | |
|     assert(op <= oLitEnd /* No overflow */);
 | |
|     assert(oLitEnd < oMatchEnd /* Non-zero match & no overflow */);
 | |
|     assert(oMatchEnd <= oend /* No underflow */);
 | |
|     assert(iLitEnd <= litLimit /* Literal length is in bounds */);
 | |
|     assert(oLitEnd <= oend_w /* Can wildcopy literals */);
 | |
|     assert(oMatchEnd <= oend_w /* Can wildcopy matches */);
 | |
| 
 | |
|     /* Copy Literals:
 | |
|      * Split out litLength <= 16 since it is nearly always true. +1.6% on gcc-9.
 | |
|      * We likely don't need the full 32-byte wildcopy.
 | |
|      */
 | |
|     assert(WILDCOPY_OVERLENGTH >= 16);
 | |
|     ZSTD_copy16(op, (*litPtr));
 | |
|     if (UNLIKELY(sequence.litLength > 16)) {
 | |
|         ZSTD_wildcopy(op+16, (*litPtr)+16, sequence.litLength-16, ZSTD_no_overlap);
 | |
|     }
 | |
|     op = oLitEnd;
 | |
|     *litPtr = iLitEnd;   /* update for next sequence */
 | |
| 
 | |
|     /* Copy Match */
 | |
|     if (sequence.offset > (size_t)(oLitEnd - prefixStart)) {
 | |
|         /* offset beyond prefix -> go into extDict */
 | |
|         RETURN_ERROR_IF(UNLIKELY(sequence.offset > (size_t)(oLitEnd - virtualStart)), corruption_detected, "");
 | |
|         match = dictEnd + (match - prefixStart);
 | |
|         if (match + sequence.matchLength <= dictEnd) {
 | |
|             ZSTD_memmove(oLitEnd, match, sequence.matchLength);
 | |
|             return sequenceLength;
 | |
|         }
 | |
|         /* span extDict & currentPrefixSegment */
 | |
|         {   size_t const length1 = (size_t)(dictEnd - match);
 | |
|             ZSTD_memmove(oLitEnd, match, length1);
 | |
|             op = oLitEnd + length1;
 | |
|             sequence.matchLength -= length1;
 | |
|             match = prefixStart;
 | |
|     }   }
 | |
|     /* Match within prefix of 1 or more bytes */
 | |
|     assert(op <= oMatchEnd);
 | |
|     assert(oMatchEnd <= oend_w);
 | |
|     assert(match >= prefixStart);
 | |
|     assert(sequence.matchLength >= 1);
 | |
| 
 | |
|     /* Nearly all offsets are >= WILDCOPY_VECLEN bytes, which means we can use wildcopy
 | |
|      * without overlap checking.
 | |
|      */
 | |
|     if (LIKELY(sequence.offset >= WILDCOPY_VECLEN)) {
 | |
|         /* We bet on a full wildcopy for matches, since we expect matches to be
 | |
|          * longer than literals (in general). In silesia, ~10% of matches are longer
 | |
|          * than 16 bytes.
 | |
|          */
 | |
|         ZSTD_wildcopy(op, match, sequence.matchLength, ZSTD_no_overlap);
 | |
|         return sequenceLength;
 | |
|     }
 | |
|     assert(sequence.offset < WILDCOPY_VECLEN);
 | |
| 
 | |
|     /* Copy 8 bytes and spread the offset to be >= 8. */
 | |
|     ZSTD_overlapCopy8(&op, &match, sequence.offset);
 | |
| 
 | |
|     /* If the match length is > 8 bytes, then continue with the wildcopy. */
 | |
|     if (sequence.matchLength > 8) {
 | |
|         assert(op < oMatchEnd);
 | |
|         ZSTD_wildcopy(op, match, sequence.matchLength-8, ZSTD_overlap_src_before_dst);
 | |
|     }
 | |
|     return sequenceLength;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| ZSTD_initFseState(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, const ZSTD_seqSymbol* dt)
 | |
| {
 | |
|     const void* ptr = dt;
 | |
|     const ZSTD_seqSymbol_header* const DTableH = (const ZSTD_seqSymbol_header*)ptr;
 | |
|     DStatePtr->state = BIT_readBits(bitD, DTableH->tableLog);
 | |
|     DEBUGLOG(6, "ZSTD_initFseState : val=%u using %u bits",
 | |
|                 (U32)DStatePtr->state, DTableH->tableLog);
 | |
|     BIT_reloadDStream(bitD);
 | |
|     DStatePtr->table = dt + 1;
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE void
 | |
| ZSTD_updateFseStateWithDInfo(ZSTD_fseState* DStatePtr, BIT_DStream_t* bitD, U16 nextState, U32 nbBits)
 | |
| {
 | |
|     size_t const lowBits = BIT_readBits(bitD, nbBits);
 | |
|     DStatePtr->state = nextState + lowBits;
 | |
| }
 | |
| 
 | |
| /* We need to add at most (ZSTD_WINDOWLOG_MAX_32 - 1) bits to read the maximum
 | |
|  * offset bits. But we can only read at most STREAM_ACCUMULATOR_MIN_32
 | |
|  * bits before reloading. This value is the maximum number of bytes we read
 | |
|  * after reloading when we are decoding long offsets.
 | |
|  */
 | |
| #define LONG_OFFSETS_MAX_EXTRA_BITS_32                       \
 | |
|     (ZSTD_WINDOWLOG_MAX_32 > STREAM_ACCUMULATOR_MIN_32       \
 | |
|         ? ZSTD_WINDOWLOG_MAX_32 - STREAM_ACCUMULATOR_MIN_32  \
 | |
|         : 0)
 | |
| 
 | |
| typedef enum { ZSTD_lo_isRegularOffset, ZSTD_lo_isLongOffset=1 } ZSTD_longOffset_e;
 | |
| 
 | |
| /**
 | |
|  * ZSTD_decodeSequence():
 | |
|  * @p longOffsets : tells the decoder to reload more bit while decoding large offsets
 | |
|  *                  only used in 32-bit mode
 | |
|  * @return : Sequence (litL + matchL + offset)
 | |
|  */
 | |
| FORCE_INLINE_TEMPLATE seq_t
 | |
| ZSTD_decodeSequence(seqState_t* seqState, const ZSTD_longOffset_e longOffsets, const int isLastSeq)
 | |
| {
 | |
|     seq_t seq;
 | |
| #if defined(__aarch64__)
 | |
|     size_t prevOffset0 = seqState->prevOffset[0];
 | |
|     size_t prevOffset1 = seqState->prevOffset[1];
 | |
|     size_t prevOffset2 = seqState->prevOffset[2];
 | |
|     /*
 | |
|      * ZSTD_seqSymbol is a 64 bits wide structure.
 | |
|      * It can be loaded in one operation
 | |
|      * and its fields extracted by simply shifting or bit-extracting on aarch64.
 | |
|      * GCC doesn't recognize this and generates more unnecessary ldr/ldrb/ldrh
 | |
|      * operations that cause performance drop. This can be avoided by using this
 | |
|      * ZSTD_memcpy hack.
 | |
|      */
 | |
| #  if defined(__GNUC__) && !defined(__clang__)
 | |
|     ZSTD_seqSymbol llDInfoS, mlDInfoS, ofDInfoS;
 | |
|     ZSTD_seqSymbol* const llDInfo = &llDInfoS;
 | |
|     ZSTD_seqSymbol* const mlDInfo = &mlDInfoS;
 | |
|     ZSTD_seqSymbol* const ofDInfo = &ofDInfoS;
 | |
|     ZSTD_memcpy(llDInfo, seqState->stateLL.table + seqState->stateLL.state, sizeof(ZSTD_seqSymbol));
 | |
|     ZSTD_memcpy(mlDInfo, seqState->stateML.table + seqState->stateML.state, sizeof(ZSTD_seqSymbol));
 | |
|     ZSTD_memcpy(ofDInfo, seqState->stateOffb.table + seqState->stateOffb.state, sizeof(ZSTD_seqSymbol));
 | |
| #  else
 | |
|     const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state;
 | |
|     const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state;
 | |
|     const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state;
 | |
| #  endif
 | |
|     (void)longOffsets;
 | |
|     seq.matchLength = mlDInfo->baseValue;
 | |
|     seq.litLength = llDInfo->baseValue;
 | |
|     {   U32 const ofBase = ofDInfo->baseValue;
 | |
|         BYTE const llBits = llDInfo->nbAdditionalBits;
 | |
|         BYTE const mlBits = mlDInfo->nbAdditionalBits;
 | |
|         BYTE const ofBits = ofDInfo->nbAdditionalBits;
 | |
|         BYTE const totalBits = llBits+mlBits+ofBits;
 | |
| 
 | |
|         U16 const llNext = llDInfo->nextState;
 | |
|         U16 const mlNext = mlDInfo->nextState;
 | |
|         U16 const ofNext = ofDInfo->nextState;
 | |
|         U32 const llnbBits = llDInfo->nbBits;
 | |
|         U32 const mlnbBits = mlDInfo->nbBits;
 | |
|         U32 const ofnbBits = ofDInfo->nbBits;
 | |
| 
 | |
|         assert(llBits <= MaxLLBits);
 | |
|         assert(mlBits <= MaxMLBits);
 | |
|         assert(ofBits <= MaxOff);
 | |
|         /* As GCC has better branch and block analyzers, sometimes it is only
 | |
|          * valuable to mark likeliness for Clang.
 | |
|          */
 | |
| 
 | |
|         /* sequence */
 | |
|         {   size_t offset;
 | |
|             if (ofBits > 1) {
 | |
|                 ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
 | |
|                 ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
 | |
|                 ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 > LONG_OFFSETS_MAX_EXTRA_BITS_32);
 | |
|                 ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 - LONG_OFFSETS_MAX_EXTRA_BITS_32 >= MaxMLBits);
 | |
|                 offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
 | |
|                 prevOffset2 = prevOffset1;
 | |
|                 prevOffset1 = prevOffset0;
 | |
|                 prevOffset0 = offset;
 | |
|             } else {
 | |
|                 U32 const ll0 = (llDInfo->baseValue == 0);
 | |
|                 if (LIKELY((ofBits == 0))) {
 | |
|                     if (ll0) {
 | |
|                         offset = prevOffset1;
 | |
|                         prevOffset1 = prevOffset0;
 | |
|                         prevOffset0 = offset;
 | |
|                     } else {
 | |
|                         offset = prevOffset0;
 | |
|                     }
 | |
|                 } else {
 | |
|                     offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
 | |
|                     {   size_t temp = (offset == 1)   ? prevOffset1
 | |
|                                       : (offset == 3) ? prevOffset0 - 1
 | |
|                                       : (offset >= 2) ? prevOffset2
 | |
|                                       : prevOffset0;
 | |
|                         /* 0 is not valid: input corrupted => force offset to -1 =>
 | |
|                          * corruption detected at execSequence.
 | |
|                          */
 | |
|                         temp -= !temp;
 | |
|                         prevOffset2 = (offset == 1) ? prevOffset2 : prevOffset1;
 | |
|                         prevOffset1 = prevOffset0;
 | |
|                         prevOffset0 = offset = temp;
 | |
|             }   }   }
 | |
|             seq.offset = offset;
 | |
|         }
 | |
| 
 | |
|         if (mlBits > 0)
 | |
|             seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
 | |
| 
 | |
|         if (UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
 | |
|             BIT_reloadDStream(&seqState->DStream);
 | |
| 
 | |
|         /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
 | |
|         ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
 | |
| 
 | |
|         if (llBits > 0)
 | |
|             seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
 | |
| 
 | |
|         DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
 | |
|                     (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
 | |
| 
 | |
|         if (!isLastSeq) {
 | |
|             /* Don't update FSE state for last sequence. */
 | |
|             ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits);    /* <=  9 bits */
 | |
|             ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits);    /* <=  9 bits */
 | |
|             ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits);  /* <=  8 bits */
 | |
|             BIT_reloadDStream(&seqState->DStream);
 | |
|         }
 | |
|     }
 | |
|     seqState->prevOffset[0] = prevOffset0;
 | |
|     seqState->prevOffset[1] = prevOffset1;
 | |
|     seqState->prevOffset[2] = prevOffset2;
 | |
| #else   /* !defined(__aarch64__) */
 | |
|     const ZSTD_seqSymbol* const llDInfo = seqState->stateLL.table + seqState->stateLL.state;
 | |
|     const ZSTD_seqSymbol* const mlDInfo = seqState->stateML.table + seqState->stateML.state;
 | |
|     const ZSTD_seqSymbol* const ofDInfo = seqState->stateOffb.table + seqState->stateOffb.state;
 | |
|     seq.matchLength = mlDInfo->baseValue;
 | |
|     seq.litLength = llDInfo->baseValue;
 | |
|     {   U32 const ofBase = ofDInfo->baseValue;
 | |
|         BYTE const llBits = llDInfo->nbAdditionalBits;
 | |
|         BYTE const mlBits = mlDInfo->nbAdditionalBits;
 | |
|         BYTE const ofBits = ofDInfo->nbAdditionalBits;
 | |
|         BYTE const totalBits = llBits+mlBits+ofBits;
 | |
| 
 | |
|         U16 const llNext = llDInfo->nextState;
 | |
|         U16 const mlNext = mlDInfo->nextState;
 | |
|         U16 const ofNext = ofDInfo->nextState;
 | |
|         U32 const llnbBits = llDInfo->nbBits;
 | |
|         U32 const mlnbBits = mlDInfo->nbBits;
 | |
|         U32 const ofnbBits = ofDInfo->nbBits;
 | |
| 
 | |
|         assert(llBits <= MaxLLBits);
 | |
|         assert(mlBits <= MaxMLBits);
 | |
|         assert(ofBits <= MaxOff);
 | |
|         /* As GCC has better branch and block analyzers, sometimes it is only
 | |
|          * valuable to mark likeliness for Clang.
 | |
|          */
 | |
| 
 | |
|         /* sequence */
 | |
|         {   size_t offset;
 | |
|             if (ofBits > 1) {
 | |
|                 ZSTD_STATIC_ASSERT(ZSTD_lo_isLongOffset == 1);
 | |
|                 ZSTD_STATIC_ASSERT(LONG_OFFSETS_MAX_EXTRA_BITS_32 == 5);
 | |
|                 ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 > LONG_OFFSETS_MAX_EXTRA_BITS_32);
 | |
|                 ZSTD_STATIC_ASSERT(STREAM_ACCUMULATOR_MIN_32 - LONG_OFFSETS_MAX_EXTRA_BITS_32 >= MaxMLBits);
 | |
|                 if (MEM_32bits() && longOffsets && (ofBits >= STREAM_ACCUMULATOR_MIN_32)) {
 | |
|                     /* Always read extra bits, this keeps the logic simple,
 | |
|                      * avoids branches, and avoids accidentally reading 0 bits.
 | |
|                      */
 | |
|                     U32 const extraBits = LONG_OFFSETS_MAX_EXTRA_BITS_32;
 | |
|                     offset = ofBase + (BIT_readBitsFast(&seqState->DStream, ofBits - extraBits) << extraBits);
 | |
|                     BIT_reloadDStream(&seqState->DStream);
 | |
|                     offset += BIT_readBitsFast(&seqState->DStream, extraBits);
 | |
|                 } else {
 | |
|                     offset = ofBase + BIT_readBitsFast(&seqState->DStream, ofBits/*>0*/);   /* <=  (ZSTD_WINDOWLOG_MAX-1) bits */
 | |
|                     if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);
 | |
|                 }
 | |
|                 seqState->prevOffset[2] = seqState->prevOffset[1];
 | |
|                 seqState->prevOffset[1] = seqState->prevOffset[0];
 | |
|                 seqState->prevOffset[0] = offset;
 | |
|             } else {
 | |
|                 U32 const ll0 = (llDInfo->baseValue == 0);
 | |
|                 if (LIKELY((ofBits == 0))) {
 | |
|                     offset = seqState->prevOffset[ll0];
 | |
|                     seqState->prevOffset[1] = seqState->prevOffset[!ll0];
 | |
|                     seqState->prevOffset[0] = offset;
 | |
|                 } else {
 | |
|                     offset = ofBase + ll0 + BIT_readBitsFast(&seqState->DStream, 1);
 | |
|                     {   size_t temp = (offset==3) ? seqState->prevOffset[0] - 1 : seqState->prevOffset[offset];
 | |
|                         temp -= !temp; /* 0 is not valid: input corrupted => force offset to -1 => corruption detected at execSequence */
 | |
|                         if (offset != 1) seqState->prevOffset[2] = seqState->prevOffset[1];
 | |
|                         seqState->prevOffset[1] = seqState->prevOffset[0];
 | |
|                         seqState->prevOffset[0] = offset = temp;
 | |
|             }   }   }
 | |
|             seq.offset = offset;
 | |
|         }
 | |
| 
 | |
|         if (mlBits > 0)
 | |
|             seq.matchLength += BIT_readBitsFast(&seqState->DStream, mlBits/*>0*/);
 | |
| 
 | |
|         if (MEM_32bits() && (mlBits+llBits >= STREAM_ACCUMULATOR_MIN_32-LONG_OFFSETS_MAX_EXTRA_BITS_32))
 | |
|             BIT_reloadDStream(&seqState->DStream);
 | |
|         if (MEM_64bits() && UNLIKELY(totalBits >= STREAM_ACCUMULATOR_MIN_64-(LLFSELog+MLFSELog+OffFSELog)))
 | |
|             BIT_reloadDStream(&seqState->DStream);
 | |
|         /* Ensure there are enough bits to read the rest of data in 64-bit mode. */
 | |
|         ZSTD_STATIC_ASSERT(16+LLFSELog+MLFSELog+OffFSELog < STREAM_ACCUMULATOR_MIN_64);
 | |
| 
 | |
|         if (llBits > 0)
 | |
|             seq.litLength += BIT_readBitsFast(&seqState->DStream, llBits/*>0*/);
 | |
| 
 | |
|         if (MEM_32bits())
 | |
|             BIT_reloadDStream(&seqState->DStream);
 | |
| 
 | |
|         DEBUGLOG(6, "seq: litL=%u, matchL=%u, offset=%u",
 | |
|                     (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
 | |
| 
 | |
|         if (!isLastSeq) {
 | |
|             /* Don't update FSE state for last sequence. */
 | |
|             ZSTD_updateFseStateWithDInfo(&seqState->stateLL, &seqState->DStream, llNext, llnbBits);    /* <=  9 bits */
 | |
|             ZSTD_updateFseStateWithDInfo(&seqState->stateML, &seqState->DStream, mlNext, mlnbBits);    /* <=  9 bits */
 | |
|             if (MEM_32bits()) BIT_reloadDStream(&seqState->DStream);    /* <= 18 bits */
 | |
|             ZSTD_updateFseStateWithDInfo(&seqState->stateOffb, &seqState->DStream, ofNext, ofnbBits);  /* <=  8 bits */
 | |
|             BIT_reloadDStream(&seqState->DStream);
 | |
|         }
 | |
|     }
 | |
| #endif  /* defined(__aarch64__) */
 | |
| 
 | |
|     return seq;
 | |
| }
 | |
| 
 | |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
 | |
| #if DEBUGLEVEL >= 1
 | |
| static int ZSTD_dictionaryIsActive(ZSTD_DCtx const* dctx, BYTE const* prefixStart, BYTE const* oLitEnd)
 | |
| {
 | |
|     size_t const windowSize = dctx->fParams.windowSize;
 | |
|     /* No dictionary used. */
 | |
|     if (dctx->dictContentEndForFuzzing == NULL) return 0;
 | |
|     /* Dictionary is our prefix. */
 | |
|     if (prefixStart == dctx->dictContentBeginForFuzzing) return 1;
 | |
|     /* Dictionary is not our ext-dict. */
 | |
|     if (dctx->dictEnd != dctx->dictContentEndForFuzzing) return 0;
 | |
|     /* Dictionary is not within our window size. */
 | |
|     if ((size_t)(oLitEnd - prefixStart) >= windowSize) return 0;
 | |
|     /* Dictionary is active. */
 | |
|     return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void ZSTD_assertValidSequence(
 | |
|         ZSTD_DCtx const* dctx,
 | |
|         BYTE const* op, BYTE const* oend,
 | |
|         seq_t const seq,
 | |
|         BYTE const* prefixStart, BYTE const* virtualStart)
 | |
| {
 | |
| #if DEBUGLEVEL >= 1
 | |
|     if (dctx->isFrameDecompression) {
 | |
|         size_t const windowSize = dctx->fParams.windowSize;
 | |
|         size_t const sequenceSize = seq.litLength + seq.matchLength;
 | |
|         BYTE const* const oLitEnd = op + seq.litLength;
 | |
|         DEBUGLOG(6, "Checking sequence: litL=%u matchL=%u offset=%u",
 | |
|                 (U32)seq.litLength, (U32)seq.matchLength, (U32)seq.offset);
 | |
|         assert(op <= oend);
 | |
|         assert((size_t)(oend - op) >= sequenceSize);
 | |
|         assert(sequenceSize <= ZSTD_blockSizeMax(dctx));
 | |
|         if (ZSTD_dictionaryIsActive(dctx, prefixStart, oLitEnd)) {
 | |
|             size_t const dictSize = (size_t)((char const*)dctx->dictContentEndForFuzzing - (char const*)dctx->dictContentBeginForFuzzing);
 | |
|             /* Offset must be within the dictionary. */
 | |
|             assert(seq.offset <= (size_t)(oLitEnd - virtualStart));
 | |
|             assert(seq.offset <= windowSize + dictSize);
 | |
|         } else {
 | |
|             /* Offset must be within our window. */
 | |
|             assert(seq.offset <= windowSize);
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     (void)dctx, (void)op, (void)oend, (void)seq, (void)prefixStart, (void)virtualStart;
 | |
| #endif
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
 | |
| 
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE size_t
 | |
| DONT_VECTORIZE
 | |
| ZSTD_decompressSequences_bodySplitLitBuffer( ZSTD_DCtx* dctx,
 | |
|                                void* dst, size_t maxDstSize,
 | |
|                          const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                          const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     BYTE* const ostart = (BYTE*)dst;
 | |
|     BYTE* const oend = (BYTE*)ZSTD_maybeNullPtrAdd(ostart, (ptrdiff_t)maxDstSize);
 | |
|     BYTE* op = ostart;
 | |
|     const BYTE* litPtr = dctx->litPtr;
 | |
|     const BYTE* litBufferEnd = dctx->litBufferEnd;
 | |
|     const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
 | |
|     const BYTE* const vBase = (const BYTE*) (dctx->virtualStart);
 | |
|     const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
 | |
|     DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer (%i seqs)", nbSeq);
 | |
| 
 | |
|     /* Literals are split between internal buffer & output buffer */
 | |
|     if (nbSeq) {
 | |
|         seqState_t seqState;
 | |
|         dctx->fseEntropy = 1;
 | |
|         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
 | |
|         RETURN_ERROR_IF(
 | |
|             ERR_isError(BIT_initDStream(&seqState.DStream, seqStart, seqSize)),
 | |
|             corruption_detected, "");
 | |
|         ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
 | |
|         ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
 | |
|         ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
 | |
|         assert(dst != NULL);
 | |
| 
 | |
|         ZSTD_STATIC_ASSERT(
 | |
|                 BIT_DStream_unfinished < BIT_DStream_completed &&
 | |
|                 BIT_DStream_endOfBuffer < BIT_DStream_completed &&
 | |
|                 BIT_DStream_completed < BIT_DStream_overflow);
 | |
| 
 | |
|         /* decompress without overrunning litPtr begins */
 | |
|         {   seq_t sequence = {0,0,0};  /* some static analyzer believe that @sequence is not initialized (it necessarily is, since for(;;) loop as at least one iteration) */
 | |
|             /* Align the decompression loop to 32 + 16 bytes.
 | |
|                 *
 | |
|                 * zstd compiled with gcc-9 on an Intel i9-9900k shows 10% decompression
 | |
|                 * speed swings based on the alignment of the decompression loop. This
 | |
|                 * performance swing is caused by parts of the decompression loop falling
 | |
|                 * out of the DSB. The entire decompression loop should fit in the DSB,
 | |
|                 * when it can't we get much worse performance. You can measure if you've
 | |
|                 * hit the good case or the bad case with this perf command for some
 | |
|                 * compressed file test.zst:
 | |
|                 *
 | |
|                 *   perf stat -e cycles -e instructions -e idq.all_dsb_cycles_any_uops \
 | |
|                 *             -e idq.all_mite_cycles_any_uops -- ./zstd -tq test.zst
 | |
|                 *
 | |
|                 * If you see most cycles served out of the MITE you've hit the bad case.
 | |
|                 * If you see most cycles served out of the DSB you've hit the good case.
 | |
|                 * If it is pretty even then you may be in an okay case.
 | |
|                 *
 | |
|                 * This issue has been reproduced on the following CPUs:
 | |
|                 *   - Kabylake: Macbook Pro (15-inch, 2019) 2.4 GHz Intel Core i9
 | |
|                 *               Use Instruments->Counters to get DSB/MITE cycles.
 | |
|                 *               I never got performance swings, but I was able to
 | |
|                 *               go from the good case of mostly DSB to half of the
 | |
|                 *               cycles served from MITE.
 | |
|                 *   - Coffeelake: Intel i9-9900k
 | |
|                 *   - Coffeelake: Intel i7-9700k
 | |
|                 *
 | |
|                 * I haven't been able to reproduce the instability or DSB misses on any
 | |
|                 * of the following CPUS:
 | |
|                 *   - Haswell
 | |
|                 *   - Broadwell: Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40GH
 | |
|                 *   - Skylake
 | |
|                 *
 | |
|                 * Alignment is done for each of the three major decompression loops:
 | |
|                 *   - ZSTD_decompressSequences_bodySplitLitBuffer - presplit section of the literal buffer
 | |
|                 *   - ZSTD_decompressSequences_bodySplitLitBuffer - postsplit section of the literal buffer
 | |
|                 *   - ZSTD_decompressSequences_body
 | |
|                 * Alignment choices are made to minimize large swings on bad cases and influence on performance
 | |
|                 * from changes external to this code, rather than to overoptimize on the current commit.
 | |
|                 *
 | |
|                 * If you are seeing performance stability this script can help test.
 | |
|                 * It tests on 4 commits in zstd where I saw performance change.
 | |
|                 *
 | |
|                 *   https://gist.github.com/terrelln/9889fc06a423fd5ca6e99351564473f4
 | |
|                 */
 | |
| #if defined(__GNUC__) && defined(__x86_64__)
 | |
|             __asm__(".p2align 6");
 | |
| #  if __GNUC__ >= 7
 | |
| 	    /* good for gcc-7, gcc-9, and gcc-11 */
 | |
|             __asm__("nop");
 | |
|             __asm__(".p2align 5");
 | |
|             __asm__("nop");
 | |
|             __asm__(".p2align 4");
 | |
| #    if __GNUC__ == 8 || __GNUC__ == 10
 | |
| 	    /* good for gcc-8 and gcc-10 */
 | |
|             __asm__("nop");
 | |
|             __asm__(".p2align 3");
 | |
| #    endif
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
|             /* Handle the initial state where litBuffer is currently split between dst and litExtraBuffer */
 | |
|             for ( ; nbSeq; nbSeq--) {
 | |
|                 sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
 | |
|                 if (litPtr + sequence.litLength > dctx->litBufferEnd) break;
 | |
|                 {   size_t const oneSeqSize = ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence.litLength - WILDCOPY_OVERLENGTH, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
 | |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
 | |
|                     assert(!ZSTD_isError(oneSeqSize));
 | |
|                     ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
 | |
| #endif
 | |
|                     if (UNLIKELY(ZSTD_isError(oneSeqSize)))
 | |
|                         return oneSeqSize;
 | |
|                     DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
 | |
|                     op += oneSeqSize;
 | |
|             }   }
 | |
|             DEBUGLOG(6, "reached: (litPtr + sequence.litLength > dctx->litBufferEnd)");
 | |
| 
 | |
|             /* If there are more sequences, they will need to read literals from litExtraBuffer; copy over the remainder from dst and update litPtr and litEnd */
 | |
|             if (nbSeq > 0) {
 | |
|                 const size_t leftoverLit = (size_t)(dctx->litBufferEnd - litPtr);
 | |
|                 assert(dctx->litBufferEnd >= litPtr);
 | |
|                 DEBUGLOG(6, "There are %i sequences left, and %zu/%zu literals left in buffer", nbSeq, leftoverLit, sequence.litLength);
 | |
|                 if (leftoverLit) {
 | |
|                     RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
 | |
|                     ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
 | |
|                     sequence.litLength -= leftoverLit;
 | |
|                     op += leftoverLit;
 | |
|                 }
 | |
|                 litPtr = dctx->litExtraBuffer;
 | |
|                 litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
 | |
|                 dctx->litBufferLocation = ZSTD_not_in_dst;
 | |
|                 {   size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
 | |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
 | |
|                     assert(!ZSTD_isError(oneSeqSize));
 | |
|                     ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
 | |
| #endif
 | |
|                     if (UNLIKELY(ZSTD_isError(oneSeqSize)))
 | |
|                         return oneSeqSize;
 | |
|                     DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
 | |
|                     op += oneSeqSize;
 | |
|                 }
 | |
|                 nbSeq--;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (nbSeq > 0) {
 | |
|             /* there is remaining lit from extra buffer */
 | |
| 
 | |
| #if defined(__GNUC__) && defined(__x86_64__)
 | |
|             __asm__(".p2align 6");
 | |
|             __asm__("nop");
 | |
| #  if __GNUC__ != 7
 | |
|             /* worse for gcc-7 better for gcc-8, gcc-9, and gcc-10 and clang */
 | |
|             __asm__(".p2align 4");
 | |
|             __asm__("nop");
 | |
|             __asm__(".p2align 3");
 | |
| #  elif __GNUC__ >= 11
 | |
|             __asm__(".p2align 3");
 | |
| #  else
 | |
|             __asm__(".p2align 5");
 | |
|             __asm__("nop");
 | |
|             __asm__(".p2align 3");
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
|             for ( ; nbSeq ; nbSeq--) {
 | |
|                 seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
 | |
|                 size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litBufferEnd, prefixStart, vBase, dictEnd);
 | |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
 | |
|                 assert(!ZSTD_isError(oneSeqSize));
 | |
|                 ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
 | |
| #endif
 | |
|                 if (UNLIKELY(ZSTD_isError(oneSeqSize)))
 | |
|                     return oneSeqSize;
 | |
|                 DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
 | |
|                 op += oneSeqSize;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* check if reached exact end */
 | |
|         DEBUGLOG(5, "ZSTD_decompressSequences_bodySplitLitBuffer: after decode loop, remaining nbSeq : %i", nbSeq);
 | |
|         RETURN_ERROR_IF(nbSeq, corruption_detected, "");
 | |
|         DEBUGLOG(5, "bitStream : start=%p, ptr=%p, bitsConsumed=%u", seqState.DStream.start, seqState.DStream.ptr, seqState.DStream.bitsConsumed);
 | |
|         RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
 | |
|         /* save reps for next block */
 | |
|         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
 | |
|     }
 | |
| 
 | |
|     /* last literal segment */
 | |
|     if (dctx->litBufferLocation == ZSTD_split) {
 | |
|         /* split hasn't been reached yet, first get dst then copy litExtraBuffer */
 | |
|         size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
 | |
|         DEBUGLOG(6, "copy last literals from segment : %u", (U32)lastLLSize);
 | |
|         RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
 | |
|         if (op != NULL) {
 | |
|             ZSTD_memmove(op, litPtr, lastLLSize);
 | |
|             op += lastLLSize;
 | |
|         }
 | |
|         litPtr = dctx->litExtraBuffer;
 | |
|         litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
 | |
|         dctx->litBufferLocation = ZSTD_not_in_dst;
 | |
|     }
 | |
|     /* copy last literals from internal buffer */
 | |
|     {   size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
 | |
|         DEBUGLOG(6, "copy last literals from internal buffer : %u", (U32)lastLLSize);
 | |
|         RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
 | |
|         if (op != NULL) {
 | |
|             ZSTD_memcpy(op, litPtr, lastLLSize);
 | |
|             op += lastLLSize;
 | |
|     }   }
 | |
| 
 | |
|     DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart));
 | |
|     return (size_t)(op - ostart);
 | |
| }
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE size_t
 | |
| DONT_VECTORIZE
 | |
| ZSTD_decompressSequences_body(ZSTD_DCtx* dctx,
 | |
|     void* dst, size_t maxDstSize,
 | |
|     const void* seqStart, size_t seqSize, int nbSeq,
 | |
|     const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     BYTE* const ostart = (BYTE*)dst;
 | |
|     BYTE* const oend = (dctx->litBufferLocation == ZSTD_not_in_dst) ?
 | |
|                         (BYTE*)ZSTD_maybeNullPtrAdd(ostart, (ptrdiff_t)maxDstSize) :
 | |
|                         dctx->litBuffer;
 | |
|     BYTE* op = ostart;
 | |
|     const BYTE* litPtr = dctx->litPtr;
 | |
|     const BYTE* const litEnd = litPtr + dctx->litSize;
 | |
|     const BYTE* const prefixStart = (const BYTE*)(dctx->prefixStart);
 | |
|     const BYTE* const vBase = (const BYTE*)(dctx->virtualStart);
 | |
|     const BYTE* const dictEnd = (const BYTE*)(dctx->dictEnd);
 | |
|     DEBUGLOG(5, "ZSTD_decompressSequences_body: nbSeq = %d", nbSeq);
 | |
| 
 | |
|     /* Regen sequences */
 | |
|     if (nbSeq) {
 | |
|         seqState_t seqState;
 | |
|         dctx->fseEntropy = 1;
 | |
|         { U32 i; for (i = 0; i < ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
 | |
|         RETURN_ERROR_IF(
 | |
|             ERR_isError(BIT_initDStream(&seqState.DStream, seqStart, seqSize)),
 | |
|             corruption_detected, "");
 | |
|         ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
 | |
|         ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
 | |
|         ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
 | |
|         assert(dst != NULL);
 | |
| 
 | |
| #if defined(__GNUC__) && defined(__x86_64__)
 | |
|             __asm__(".p2align 6");
 | |
|             __asm__("nop");
 | |
| #  if __GNUC__ >= 7
 | |
|             __asm__(".p2align 5");
 | |
|             __asm__("nop");
 | |
|             __asm__(".p2align 3");
 | |
| #  else
 | |
|             __asm__(".p2align 4");
 | |
|             __asm__("nop");
 | |
|             __asm__(".p2align 3");
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
|         for ( ; nbSeq ; nbSeq--) {
 | |
|             seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, nbSeq==1);
 | |
|             size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequence, &litPtr, litEnd, prefixStart, vBase, dictEnd);
 | |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
 | |
|             assert(!ZSTD_isError(oneSeqSize));
 | |
|             ZSTD_assertValidSequence(dctx, op, oend, sequence, prefixStart, vBase);
 | |
| #endif
 | |
|             if (UNLIKELY(ZSTD_isError(oneSeqSize)))
 | |
|                 return oneSeqSize;
 | |
|             DEBUGLOG(6, "regenerated sequence size : %u", (U32)oneSeqSize);
 | |
|             op += oneSeqSize;
 | |
|         }
 | |
| 
 | |
|         /* check if reached exact end */
 | |
|         assert(nbSeq == 0);
 | |
|         RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
 | |
|         /* save reps for next block */
 | |
|         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
 | |
|     }
 | |
| 
 | |
|     /* last literal segment */
 | |
|     {   size_t const lastLLSize = (size_t)(litEnd - litPtr);
 | |
|         DEBUGLOG(6, "copy last literals : %u", (U32)lastLLSize);
 | |
|         RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
 | |
|         if (op != NULL) {
 | |
|             ZSTD_memcpy(op, litPtr, lastLLSize);
 | |
|             op += lastLLSize;
 | |
|     }   }
 | |
| 
 | |
|     DEBUGLOG(6, "decoded block of size %u bytes", (U32)(op - ostart));
 | |
|     return (size_t)(op - ostart);
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| ZSTD_decompressSequences_default(ZSTD_DCtx* dctx,
 | |
|                                  void* dst, size_t maxDstSize,
 | |
|                            const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                            const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| ZSTD_decompressSequencesSplitLitBuffer_default(ZSTD_DCtx* dctx,
 | |
|                                                void* dst, size_t maxDstSize,
 | |
|                                          const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                                          const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
| }
 | |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
 | |
| 
 | |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
 | |
| 
 | |
| FORCE_INLINE_TEMPLATE
 | |
| 
 | |
| size_t ZSTD_prefetchMatch(size_t prefetchPos, seq_t const sequence,
 | |
|                    const BYTE* const prefixStart, const BYTE* const dictEnd)
 | |
| {
 | |
|     prefetchPos += sequence.litLength;
 | |
|     {   const BYTE* const matchBase = (sequence.offset > prefetchPos) ? dictEnd : prefixStart;
 | |
|         /* note : this operation can overflow when seq.offset is really too large, which can only happen when input is corrupted.
 | |
|          * No consequence though : memory address is only used for prefetching, not for dereferencing */
 | |
|         const BYTE* const match = (const BYTE*)ZSTD_wrappedPtrSub(ZSTD_wrappedPtrAdd(matchBase, (ptrdiff_t)prefetchPos), (ptrdiff_t)sequence.offset);
 | |
|         PREFETCH_L1(match); PREFETCH_L1(ZSTD_wrappedPtrAdd(match, CACHELINE_SIZE));   /* note : it's safe to invoke PREFETCH() on any memory address, including invalid ones */
 | |
|     }
 | |
|     return prefetchPos + sequence.matchLength;
 | |
| }
 | |
| 
 | |
| /* This decoding function employs prefetching
 | |
|  * to reduce latency impact of cache misses.
 | |
|  * It's generally employed when block contains a significant portion of long-distance matches
 | |
|  * or when coupled with a "cold" dictionary */
 | |
| FORCE_INLINE_TEMPLATE size_t
 | |
| ZSTD_decompressSequencesLong_body(
 | |
|                                ZSTD_DCtx* dctx,
 | |
|                                void* dst, size_t maxDstSize,
 | |
|                          const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                          const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     BYTE* const ostart = (BYTE*)dst;
 | |
|     BYTE* const oend = (dctx->litBufferLocation == ZSTD_in_dst) ?
 | |
|                         dctx->litBuffer :
 | |
|                         (BYTE*)ZSTD_maybeNullPtrAdd(ostart, (ptrdiff_t)maxDstSize);
 | |
|     BYTE* op = ostart;
 | |
|     const BYTE* litPtr = dctx->litPtr;
 | |
|     const BYTE* litBufferEnd = dctx->litBufferEnd;
 | |
|     const BYTE* const prefixStart = (const BYTE*) (dctx->prefixStart);
 | |
|     const BYTE* const dictStart = (const BYTE*) (dctx->virtualStart);
 | |
|     const BYTE* const dictEnd = (const BYTE*) (dctx->dictEnd);
 | |
| 
 | |
|     /* Regen sequences */
 | |
|     if (nbSeq) {
 | |
| #define STORED_SEQS 8
 | |
| #define STORED_SEQS_MASK (STORED_SEQS-1)
 | |
| #define ADVANCED_SEQS STORED_SEQS
 | |
|         seq_t sequences[STORED_SEQS];
 | |
|         int const seqAdvance = MIN(nbSeq, ADVANCED_SEQS);
 | |
|         seqState_t seqState;
 | |
|         int seqNb;
 | |
|         size_t prefetchPos = (size_t)(op-prefixStart); /* track position relative to prefixStart */
 | |
| 
 | |
|         dctx->fseEntropy = 1;
 | |
|         { int i; for (i=0; i<ZSTD_REP_NUM; i++) seqState.prevOffset[i] = dctx->entropy.rep[i]; }
 | |
|         assert(dst != NULL);
 | |
|         RETURN_ERROR_IF(
 | |
|             ERR_isError(BIT_initDStream(&seqState.DStream, seqStart, seqSize)),
 | |
|             corruption_detected, "");
 | |
|         ZSTD_initFseState(&seqState.stateLL, &seqState.DStream, dctx->LLTptr);
 | |
|         ZSTD_initFseState(&seqState.stateOffb, &seqState.DStream, dctx->OFTptr);
 | |
|         ZSTD_initFseState(&seqState.stateML, &seqState.DStream, dctx->MLTptr);
 | |
| 
 | |
|         /* prepare in advance */
 | |
|         for (seqNb=0; seqNb<seqAdvance; seqNb++) {
 | |
|             seq_t const sequence = ZSTD_decodeSequence(&seqState, isLongOffset, seqNb == nbSeq-1);
 | |
|             prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
 | |
|             sequences[seqNb] = sequence;
 | |
|         }
 | |
| 
 | |
|         /* decompress without stomping litBuffer */
 | |
|         for (; seqNb < nbSeq; seqNb++) {
 | |
|             seq_t sequence = ZSTD_decodeSequence(&seqState, isLongOffset, seqNb == nbSeq-1);
 | |
| 
 | |
|             if (dctx->litBufferLocation == ZSTD_split && litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength > dctx->litBufferEnd) {
 | |
|                 /* lit buffer is reaching split point, empty out the first buffer and transition to litExtraBuffer */
 | |
|                 const size_t leftoverLit = (size_t)(dctx->litBufferEnd - litPtr);
 | |
|                 assert(dctx->litBufferEnd >= litPtr);
 | |
|                 if (leftoverLit) {
 | |
|                     RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
 | |
|                     ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
 | |
|                     sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength -= leftoverLit;
 | |
|                     op += leftoverLit;
 | |
|                 }
 | |
|                 litPtr = dctx->litExtraBuffer;
 | |
|                 litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
 | |
|                 dctx->litBufferLocation = ZSTD_not_in_dst;
 | |
|                 {   size_t const oneSeqSize = ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
 | |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
 | |
|                     assert(!ZSTD_isError(oneSeqSize));
 | |
|                     ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
 | |
| #endif
 | |
|                     if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
 | |
| 
 | |
|                     prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
 | |
|                     sequences[seqNb & STORED_SEQS_MASK] = sequence;
 | |
|                     op += oneSeqSize;
 | |
|             }   }
 | |
|             else
 | |
|             {
 | |
|                 /* lit buffer is either wholly contained in first or second split, or not split at all*/
 | |
|                 size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
 | |
|                     ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK].litLength - WILDCOPY_OVERLENGTH, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
 | |
|                     ZSTD_execSequence(op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
 | |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
 | |
|                 assert(!ZSTD_isError(oneSeqSize));
 | |
|                 ZSTD_assertValidSequence(dctx, op, oend, sequences[(seqNb - ADVANCED_SEQS) & STORED_SEQS_MASK], prefixStart, dictStart);
 | |
| #endif
 | |
|                 if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
 | |
| 
 | |
|                 prefetchPos = ZSTD_prefetchMatch(prefetchPos, sequence, prefixStart, dictEnd);
 | |
|                 sequences[seqNb & STORED_SEQS_MASK] = sequence;
 | |
|                 op += oneSeqSize;
 | |
|             }
 | |
|         }
 | |
|         RETURN_ERROR_IF(!BIT_endOfDStream(&seqState.DStream), corruption_detected, "");
 | |
| 
 | |
|         /* finish queue */
 | |
|         seqNb -= seqAdvance;
 | |
|         for ( ; seqNb<nbSeq ; seqNb++) {
 | |
|             seq_t *sequence = &(sequences[seqNb&STORED_SEQS_MASK]);
 | |
|             if (dctx->litBufferLocation == ZSTD_split && litPtr + sequence->litLength > dctx->litBufferEnd) {
 | |
|                 const size_t leftoverLit = (size_t)(dctx->litBufferEnd - litPtr);
 | |
|                 assert(dctx->litBufferEnd >= litPtr);
 | |
|                 if (leftoverLit) {
 | |
|                     RETURN_ERROR_IF(leftoverLit > (size_t)(oend - op), dstSize_tooSmall, "remaining lit must fit within dstBuffer");
 | |
|                     ZSTD_safecopyDstBeforeSrc(op, litPtr, leftoverLit);
 | |
|                     sequence->litLength -= leftoverLit;
 | |
|                     op += leftoverLit;
 | |
|                 }
 | |
|                 litPtr = dctx->litExtraBuffer;
 | |
|                 litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
 | |
|                 dctx->litBufferLocation = ZSTD_not_in_dst;
 | |
|                 {   size_t const oneSeqSize = ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
 | |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
 | |
|                     assert(!ZSTD_isError(oneSeqSize));
 | |
|                     ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
 | |
| #endif
 | |
|                     if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
 | |
|                     op += oneSeqSize;
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 size_t const oneSeqSize = dctx->litBufferLocation == ZSTD_split ?
 | |
|                     ZSTD_execSequenceSplitLitBuffer(op, oend, litPtr + sequence->litLength - WILDCOPY_OVERLENGTH, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd) :
 | |
|                     ZSTD_execSequence(op, oend, *sequence, &litPtr, litBufferEnd, prefixStart, dictStart, dictEnd);
 | |
| #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && defined(FUZZING_ASSERT_VALID_SEQUENCE)
 | |
|                 assert(!ZSTD_isError(oneSeqSize));
 | |
|                 ZSTD_assertValidSequence(dctx, op, oend, sequences[seqNb&STORED_SEQS_MASK], prefixStart, dictStart);
 | |
| #endif
 | |
|                 if (ZSTD_isError(oneSeqSize)) return oneSeqSize;
 | |
|                 op += oneSeqSize;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* save reps for next block */
 | |
|         { U32 i; for (i=0; i<ZSTD_REP_NUM; i++) dctx->entropy.rep[i] = (U32)(seqState.prevOffset[i]); }
 | |
|     }
 | |
| 
 | |
|     /* last literal segment */
 | |
|     if (dctx->litBufferLocation == ZSTD_split) { /* first deplete literal buffer in dst, then copy litExtraBuffer */
 | |
|         size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
 | |
|         assert(litBufferEnd >= litPtr);
 | |
|         RETURN_ERROR_IF(lastLLSize > (size_t)(oend - op), dstSize_tooSmall, "");
 | |
|         if (op != NULL) {
 | |
|             ZSTD_memmove(op, litPtr, lastLLSize);
 | |
|             op += lastLLSize;
 | |
|         }
 | |
|         litPtr = dctx->litExtraBuffer;
 | |
|         litBufferEnd = dctx->litExtraBuffer + ZSTD_LITBUFFEREXTRASIZE;
 | |
|     }
 | |
|     {   size_t const lastLLSize = (size_t)(litBufferEnd - litPtr);
 | |
|         assert(litBufferEnd >= litPtr);
 | |
|         RETURN_ERROR_IF(lastLLSize > (size_t)(oend-op), dstSize_tooSmall, "");
 | |
|         if (op != NULL) {
 | |
|             ZSTD_memmove(op, litPtr, lastLLSize);
 | |
|             op += lastLLSize;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (size_t)(op - ostart);
 | |
| }
 | |
| 
 | |
| static size_t
 | |
| ZSTD_decompressSequencesLong_default(ZSTD_DCtx* dctx,
 | |
|                                  void* dst, size_t maxDstSize,
 | |
|                            const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                            const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
| }
 | |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
 | |
| 
 | |
| 
 | |
| 
 | |
| #if DYNAMIC_BMI2
 | |
| 
 | |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
 | |
| static BMI2_TARGET_ATTRIBUTE size_t
 | |
| DONT_VECTORIZE
 | |
| ZSTD_decompressSequences_bmi2(ZSTD_DCtx* dctx,
 | |
|                                  void* dst, size_t maxDstSize,
 | |
|                            const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                            const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     return ZSTD_decompressSequences_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
| }
 | |
| static BMI2_TARGET_ATTRIBUTE size_t
 | |
| DONT_VECTORIZE
 | |
| ZSTD_decompressSequencesSplitLitBuffer_bmi2(ZSTD_DCtx* dctx,
 | |
|                                  void* dst, size_t maxDstSize,
 | |
|                            const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                            const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     return ZSTD_decompressSequences_bodySplitLitBuffer(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
| }
 | |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
 | |
| 
 | |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
 | |
| static BMI2_TARGET_ATTRIBUTE size_t
 | |
| ZSTD_decompressSequencesLong_bmi2(ZSTD_DCtx* dctx,
 | |
|                                  void* dst, size_t maxDstSize,
 | |
|                            const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                            const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     return ZSTD_decompressSequencesLong_body(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
| }
 | |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
 | |
| 
 | |
| #endif /* DYNAMIC_BMI2 */
 | |
| 
 | |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
 | |
| static size_t
 | |
| ZSTD_decompressSequences(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
 | |
|                    const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                    const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     DEBUGLOG(5, "ZSTD_decompressSequences");
 | |
| #if DYNAMIC_BMI2
 | |
|     if (ZSTD_DCtx_get_bmi2(dctx)) {
 | |
|         return ZSTD_decompressSequences_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
|     }
 | |
| #endif
 | |
|     return ZSTD_decompressSequences_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
| }
 | |
| static size_t
 | |
| ZSTD_decompressSequencesSplitLitBuffer(ZSTD_DCtx* dctx, void* dst, size_t maxDstSize,
 | |
|                                  const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                                  const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     DEBUGLOG(5, "ZSTD_decompressSequencesSplitLitBuffer");
 | |
| #if DYNAMIC_BMI2
 | |
|     if (ZSTD_DCtx_get_bmi2(dctx)) {
 | |
|         return ZSTD_decompressSequencesSplitLitBuffer_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
|     }
 | |
| #endif
 | |
|     return ZSTD_decompressSequencesSplitLitBuffer_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
| }
 | |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG */
 | |
| 
 | |
| 
 | |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
 | |
| /* ZSTD_decompressSequencesLong() :
 | |
|  * decompression function triggered when a minimum share of offsets is considered "long",
 | |
|  * aka out of cache.
 | |
|  * note : "long" definition seems overloaded here, sometimes meaning "wider than bitstream register", and sometimes meaning "farther than memory cache distance".
 | |
|  * This function will try to mitigate main memory latency through the use of prefetching */
 | |
| static size_t
 | |
| ZSTD_decompressSequencesLong(ZSTD_DCtx* dctx,
 | |
|                              void* dst, size_t maxDstSize,
 | |
|                              const void* seqStart, size_t seqSize, int nbSeq,
 | |
|                              const ZSTD_longOffset_e isLongOffset)
 | |
| {
 | |
|     DEBUGLOG(5, "ZSTD_decompressSequencesLong");
 | |
| #if DYNAMIC_BMI2
 | |
|     if (ZSTD_DCtx_get_bmi2(dctx)) {
 | |
|         return ZSTD_decompressSequencesLong_bmi2(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
|     }
 | |
| #endif
 | |
|   return ZSTD_decompressSequencesLong_default(dctx, dst, maxDstSize, seqStart, seqSize, nbSeq, isLongOffset);
 | |
| }
 | |
| #endif /* ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT */
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * @returns The total size of the history referenceable by zstd, including
 | |
|  * both the prefix and the extDict. At @p op any offset larger than this
 | |
|  * is invalid.
 | |
|  */
 | |
| static size_t ZSTD_totalHistorySize(void* curPtr, const void* virtualStart)
 | |
| {
 | |
|     return (size_t)((char*)curPtr - (const char*)virtualStart);
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     unsigned longOffsetShare;
 | |
|     unsigned maxNbAdditionalBits;
 | |
| } ZSTD_OffsetInfo;
 | |
| 
 | |
| /* ZSTD_getOffsetInfo() :
 | |
|  * condition : offTable must be valid
 | |
|  * @return : "share" of long offsets (arbitrarily defined as > (1<<23))
 | |
|  *           compared to maximum possible of (1<<OffFSELog),
 | |
|  *           as well as the maximum number additional bits required.
 | |
|  */
 | |
| static ZSTD_OffsetInfo
 | |
| ZSTD_getOffsetInfo(const ZSTD_seqSymbol* offTable, int nbSeq)
 | |
| {
 | |
|     ZSTD_OffsetInfo info = {0, 0};
 | |
|     /* If nbSeq == 0, then the offTable is uninitialized, but we have
 | |
|      * no sequences, so both values should be 0.
 | |
|      */
 | |
|     if (nbSeq != 0) {
 | |
|         const void* ptr = offTable;
 | |
|         U32 const tableLog = ((const ZSTD_seqSymbol_header*)ptr)[0].tableLog;
 | |
|         const ZSTD_seqSymbol* table = offTable + 1;
 | |
|         U32 const max = 1 << tableLog;
 | |
|         U32 u;
 | |
|         DEBUGLOG(5, "ZSTD_getLongOffsetsShare: (tableLog=%u)", tableLog);
 | |
| 
 | |
|         assert(max <= (1 << OffFSELog));  /* max not too large */
 | |
|         for (u=0; u<max; u++) {
 | |
|             info.maxNbAdditionalBits = MAX(info.maxNbAdditionalBits, table[u].nbAdditionalBits);
 | |
|             if (table[u].nbAdditionalBits > 22) info.longOffsetShare += 1;
 | |
|         }
 | |
| 
 | |
|         assert(tableLog <= OffFSELog);
 | |
|         info.longOffsetShare <<= (OffFSELog - tableLog);  /* scale to OffFSELog */
 | |
|     }
 | |
| 
 | |
|     return info;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * @returns The maximum offset we can decode in one read of our bitstream, without
 | |
|  * reloading more bits in the middle of the offset bits read. Any offsets larger
 | |
|  * than this must use the long offset decoder.
 | |
|  */
 | |
| static size_t ZSTD_maxShortOffset(void)
 | |
| {
 | |
|     if (MEM_64bits()) {
 | |
|         /* We can decode any offset without reloading bits.
 | |
|          * This might change if the max window size grows.
 | |
|          */
 | |
|         ZSTD_STATIC_ASSERT(ZSTD_WINDOWLOG_MAX <= 31);
 | |
|         return (size_t)-1;
 | |
|     } else {
 | |
|         /* The maximum offBase is (1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1.
 | |
|          * This offBase would require STREAM_ACCUMULATOR_MIN extra bits.
 | |
|          * Then we have to subtract ZSTD_REP_NUM to get the maximum possible offset.
 | |
|          */
 | |
|         size_t const maxOffbase = ((size_t)1 << (STREAM_ACCUMULATOR_MIN + 1)) - 1;
 | |
|         size_t const maxOffset = maxOffbase - ZSTD_REP_NUM;
 | |
|         assert(ZSTD_highbit32((U32)maxOffbase) == STREAM_ACCUMULATOR_MIN);
 | |
|         return maxOffset;
 | |
|     }
 | |
| }
 | |
| 
 | |
| size_t
 | |
| ZSTD_decompressBlock_internal(ZSTD_DCtx* dctx,
 | |
|                               void* dst, size_t dstCapacity,
 | |
|                         const void* src, size_t srcSize, const streaming_operation streaming)
 | |
| {   /* blockType == blockCompressed */
 | |
|     const BYTE* ip = (const BYTE*)src;
 | |
|     DEBUGLOG(5, "ZSTD_decompressBlock_internal (cSize : %u)", (unsigned)srcSize);
 | |
| 
 | |
|     /* Note : the wording of the specification
 | |
|      * allows compressed block to be sized exactly ZSTD_blockSizeMax(dctx).
 | |
|      * This generally does not happen, as it makes little sense,
 | |
|      * since an uncompressed block would feature same size and have no decompression cost.
 | |
|      * Also, note that decoder from reference libzstd before < v1.5.4
 | |
|      * would consider this edge case as an error.
 | |
|      * As a consequence, avoid generating compressed blocks of size ZSTD_blockSizeMax(dctx)
 | |
|      * for broader compatibility with the deployed ecosystem of zstd decoders */
 | |
|     RETURN_ERROR_IF(srcSize > ZSTD_blockSizeMax(dctx), srcSize_wrong, "");
 | |
| 
 | |
|     /* Decode literals section */
 | |
|     {   size_t const litCSize = ZSTD_decodeLiteralsBlock(dctx, src, srcSize, dst, dstCapacity, streaming);
 | |
|         DEBUGLOG(5, "ZSTD_decodeLiteralsBlock : cSize=%u, nbLiterals=%zu", (U32)litCSize, dctx->litSize);
 | |
|         if (ZSTD_isError(litCSize)) return litCSize;
 | |
|         ip += litCSize;
 | |
|         srcSize -= litCSize;
 | |
|     }
 | |
| 
 | |
|     /* Build Decoding Tables */
 | |
|     {
 | |
|         /* Compute the maximum block size, which must also work when !frame and fParams are unset.
 | |
|          * Additionally, take the min with dstCapacity to ensure that the totalHistorySize fits in a size_t.
 | |
|          */
 | |
|         size_t const blockSizeMax = MIN(dstCapacity, ZSTD_blockSizeMax(dctx));
 | |
|         size_t const totalHistorySize = ZSTD_totalHistorySize(ZSTD_maybeNullPtrAdd(dst, (ptrdiff_t)blockSizeMax), (BYTE const*)dctx->virtualStart);
 | |
|         /* isLongOffset must be true if there are long offsets.
 | |
|          * Offsets are long if they are larger than ZSTD_maxShortOffset().
 | |
|          * We don't expect that to be the case in 64-bit mode.
 | |
|          *
 | |
|          * We check here to see if our history is large enough to allow long offsets.
 | |
|          * If it isn't, then we can't possible have (valid) long offsets. If the offset
 | |
|          * is invalid, then it is okay to read it incorrectly.
 | |
|          *
 | |
|          * If isLongOffsets is true, then we will later check our decoding table to see
 | |
|          * if it is even possible to generate long offsets.
 | |
|          */
 | |
|         ZSTD_longOffset_e isLongOffset = (ZSTD_longOffset_e)(MEM_32bits() && (totalHistorySize > ZSTD_maxShortOffset()));
 | |
|         /* These macros control at build-time which decompressor implementation
 | |
|          * we use. If neither is defined, we do some inspection and dispatch at
 | |
|          * runtime.
 | |
|          */
 | |
| #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
 | |
|     !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
 | |
|         int usePrefetchDecoder = dctx->ddictIsCold;
 | |
| #else
 | |
|         /* Set to 1 to avoid computing offset info if we don't need to.
 | |
|          * Otherwise this value is ignored.
 | |
|          */
 | |
|         int usePrefetchDecoder = 1;
 | |
| #endif
 | |
|         int nbSeq;
 | |
|         size_t const seqHSize = ZSTD_decodeSeqHeaders(dctx, &nbSeq, ip, srcSize);
 | |
|         if (ZSTD_isError(seqHSize)) return seqHSize;
 | |
|         ip += seqHSize;
 | |
|         srcSize -= seqHSize;
 | |
| 
 | |
|         RETURN_ERROR_IF((dst == NULL || dstCapacity == 0) && nbSeq > 0, dstSize_tooSmall, "NULL not handled");
 | |
|         RETURN_ERROR_IF(MEM_64bits() && sizeof(size_t) == sizeof(void*) && (size_t)(-1) - (size_t)dst < (size_t)(1 << 20), dstSize_tooSmall,
 | |
|                 "invalid dst");
 | |
| 
 | |
|         /* If we could potentially have long offsets, or we might want to use the prefetch decoder,
 | |
|          * compute information about the share of long offsets, and the maximum nbAdditionalBits.
 | |
|          * NOTE: could probably use a larger nbSeq limit
 | |
|          */
 | |
|         if (isLongOffset || (!usePrefetchDecoder && (totalHistorySize > (1u << 24)) && (nbSeq > 8))) {
 | |
|             ZSTD_OffsetInfo const info = ZSTD_getOffsetInfo(dctx->OFTptr, nbSeq);
 | |
|             if (isLongOffset && info.maxNbAdditionalBits <= STREAM_ACCUMULATOR_MIN) {
 | |
|                 /* If isLongOffset, but the maximum number of additional bits that we see in our table is small
 | |
|                  * enough, then we know it is impossible to have too long an offset in this block, so we can
 | |
|                  * use the regular offset decoder.
 | |
|                  */
 | |
|                 isLongOffset = ZSTD_lo_isRegularOffset;
 | |
|             }
 | |
|             if (!usePrefetchDecoder) {
 | |
|                 U32 const minShare = MEM_64bits() ? 7 : 20; /* heuristic values, correspond to 2.73% and 7.81% */
 | |
|                 usePrefetchDecoder = (info.longOffsetShare >= minShare);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         dctx->ddictIsCold = 0;
 | |
| 
 | |
| #if !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT) && \
 | |
|     !defined(ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG)
 | |
|         if (usePrefetchDecoder) {
 | |
| #else
 | |
|         (void)usePrefetchDecoder;
 | |
|         {
 | |
| #endif
 | |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_SHORT
 | |
|             return ZSTD_decompressSequencesLong(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
 | |
| #endif
 | |
|         }
 | |
| 
 | |
| #ifndef ZSTD_FORCE_DECOMPRESS_SEQUENCES_LONG
 | |
|         /* else */
 | |
|         if (dctx->litBufferLocation == ZSTD_split)
 | |
|             return ZSTD_decompressSequencesSplitLitBuffer(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
 | |
|         else
 | |
|             return ZSTD_decompressSequences(dctx, dst, dstCapacity, ip, srcSize, nbSeq, isLongOffset);
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| ZSTD_ALLOW_POINTER_OVERFLOW_ATTR
 | |
| void ZSTD_checkContinuity(ZSTD_DCtx* dctx, const void* dst, size_t dstSize)
 | |
| {
 | |
|     if (dst != dctx->previousDstEnd && dstSize > 0) {   /* not contiguous */
 | |
|         dctx->dictEnd = dctx->previousDstEnd;
 | |
|         dctx->virtualStart = (const char*)dst - ((const char*)(dctx->previousDstEnd) - (const char*)(dctx->prefixStart));
 | |
|         dctx->prefixStart = dst;
 | |
|         dctx->previousDstEnd = dst;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| size_t ZSTD_decompressBlock_deprecated(ZSTD_DCtx* dctx,
 | |
|                                        void* dst, size_t dstCapacity,
 | |
|                                  const void* src, size_t srcSize)
 | |
| {
 | |
|     size_t dSize;
 | |
|     dctx->isFrameDecompression = 0;
 | |
|     ZSTD_checkContinuity(dctx, dst, dstCapacity);
 | |
|     dSize = ZSTD_decompressBlock_internal(dctx, dst, dstCapacity, src, srcSize, not_streaming);
 | |
|     FORWARD_IF_ERROR(dSize, "");
 | |
|     dctx->previousDstEnd = (char*)dst + dSize;
 | |
|     return dSize;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* NOTE: Must just wrap ZSTD_decompressBlock_deprecated() */
 | |
| size_t ZSTD_decompressBlock(ZSTD_DCtx* dctx,
 | |
|                             void* dst, size_t dstCapacity,
 | |
|                       const void* src, size_t srcSize)
 | |
| {
 | |
|     return ZSTD_decompressBlock_deprecated(dctx, dst, dstCapacity, src, srcSize);
 | |
| }
 |