kolmck/Addons/KOLPng.pas

5038 lines
148 KiB
ObjectPascal

{Portable Network Graphics for Key Objects Library adaptation
by Kladov Vladimir 29-Sep-2002 ( bonanzas@xcl.cjb.net, http://xcl.cjb.net )
from source of TPngImage
by Gustavo Huffenbacher Daud ( gubadaud@terra.com.br, pngdelphi.sourceforge.net ) }
unit KOLPng;
{* PNG - Portable Network Graphics format support for KOL.
version from 31-May-2003 }
{$I KOLDEF.INC}
{$IFDEF EXTERNAL_DEFINES}
{$INCLUDE EXTERNAL_DEFINES.INC}
{$ENDIF EXTERNAL_DEFINES}
interface
{Triggers avaliable}
{.$DEFINE CheckCRC} //Enables CRC checking
{.$DEFINE PartialTransparentDraw} //Draws partial transparent images
{$RANGECHECKS OFF} {$J+}
{$IFNDEF PAS_VERSION}
{$IFNDEF PAS_PNG}
{$DEFINE ASM_VERSION}
{$ENDIF}
{$ENDIF}
{$IFDEF ASM_VERSION}
{$IFNDEF PNG_NOMMX}
{$DEFINE PNG_MMX}
{$ENDIF}
{$ENDIF}
uses
Windows, KOL, KolZLibBzip {$IFDEF PNG_MMX}, Mmx {$ENDIF};
const
{Avaliable PNG filters for mode 0}
FILTER_NONE = 0;
FILTER_SUB = 1;
FILTER_UP = 2;
FILTER_AVERAGE = 3;
FILTER_PAETH = 4;
{Avaliable color modes for PNG}
COLOR_GRAYSCALE = 0;
COLOR_RGB = 2;
COLOR_PALETTE = 3;
COLOR_GRAYSCALEALPHA = 4;
COLOR_RGBALPHA = 6;
{Error types}
type
TPngError = ( ErrOK, ErrInvalidCRC, ErrInvalidIHDR, ErrSizeExceeds, ErrUnknownCompression,
ErrUnknownInterlace, ErrInvalidPalette, ErrMissingMultipleIDAT,
ErrZLibError, ErrInvalidHeader, ErrUnexpectedEnd, ErrIHDRNotFirst,
ErrUnknownCriticalChunk, ErrNoImageData );
TOnPngProgress = function( Sender: PObj; Pass, MaxPass: Integer; Progress: Integer ): Boolean of object;
TOnGetRow = procedure( Sender: PObj; Row: Integer; var W, H: Integer; var Dta, Trans: PByte;
var Stop: Boolean ) of object;
TPngScale = ( psFullImage, psHalfSize, psQuarterSize, psEightsSize );
type
{Same as TBitmapInfo but with allocated space for}
{palette entries}
TMAXBITMAPINFO = packed record
bmiHeader: TBitmapInfoHeader;
bmiColors: packed array[0..255] of TRGBQuad;
end;
{Transparency mode for pngs}
TPNGTransparencyMode = (ptmNone, ptmBit, ptmPartial);
{Access to a rgb pixel}
pRGBPixel = ^TRGBPixel;
TRGBPixel = packed record
B, G, R: Byte;
end;
{Pointer to an array of bytes type}
TByteArray = Array[Word] of Byte;
pByteArray = ^TByteArray;
{Forward}
PPngObject = ^TPngObject;
//TPNGObject = object;
pPointerArray = ^TPointerArray;
TPointerArray = Array[Word] of Pointer;
{Chunk name object}
TChunkName = Array[0..3] of Char;
{Forward declaration}
PChunk = ^TChunk;
PChunkIEND = PChunk;
{Forward}
PChunkIHDR = ^TChunkIHDR;
{Interlace method}
TInterlaceMethod = (imNone, imAdam7);
{Compression level type}
TCompressionLevel = 0..9;
{Filters type}
TFilter = (pfNone, pfSub, pfUp, pfAverage, pfPaeth);
TFilters = set of TFilter;
{Png implementation object}
TPngObject = object( TObj )
private
fOnProgress: TOnPngProgress;
fScale: TPngScale;
fOnGetRow: TOnGetRow;
function GetScaledHeight: Integer;
function GetScaledWidth: Integer;
protected
FError: TPngError;
FErrorOnInvalidCRC: Boolean;
{Gamma table values}
GammaTable, InverseGamma: Array[Byte] of Byte;
procedure InitializeGamma;
protected
{Filters to test to encode}
fFilters: TFilters;
{Compression level for ZLIB}
fCompressionLevel: TCompressionLevel;
{Maximum size for IDAT chunks}
fMaxIdatSize: DWORD;
{Returns if image is interlaced}
fInterlaceMethod: TInterlaceMethod;
{Chunks object}
fChunkList: PList;
{Clear all chunks in the list}
procedure ClearChunks;
{Returns if header is present}
function HeaderPresent: Boolean;
{Returns linesize and byte offset for pixels}
procedure GetPixelInfo(var LineSize, Offset: DWORD);
procedure SetMaxIdatSize(const Value: DWORD);
function GetAlphaScanline(const LineIndex: Integer): pByteArray;
function GetScanline(const LineIndex: Integer): Pointer;
function GetTransparencyMode: TPNGTransparencyMode;
function GetTransparentColor: TColor;
procedure SetTransparentColor(const Value: TColor);
protected
{Returns image as Bitmap}
fBitmap: PBitmap;
function GetBitmap: PBitmap;
{Returns image width and height}
function GetWidth: Integer;
function GetHeight: Integer;
{Assigns from another TPNGObject}
procedure AssignPNG(Source: PPNGObject);
{Returns if the image is empty}
function GetEmpty: Boolean;
{Used with property Header}
function GetHeader: PChunkIHDR;
{Mainly internal}
function ChunkByName( const AName: TChunkName ): Pointer;
function CreateChunkByName( const AName: TChunkName ): Pointer;
public
{Generates alpha information}
procedure CreateAlpha;
{Removes the image transparency}
procedure RemoveTransparency;
{Transparent color}
property TransparentColor: TColor read GetTransparentColor write
SetTransparentColor;
{Add text chunk, TChunkTEXT}
procedure AddtEXt(const Keyword, Text: String);
{Saves to clipboard}
function CopyToClipboard: Boolean;
function PasteFromClipboard: Boolean;
{Returns a scanline from png}
property Scanline[const Index: Integer]: Pointer read GetScanline;
property AlphaScanline[const Index: Integer]: pByteArray read GetAlphaScanline;
{Returns pointer to the header}
property Header: PChunkIHDR read GetHeader;
{Returns the transparency mode used by this png}
property TransparencyMode: TPNGTransparencyMode read GetTransparencyMode;
{Assigns from a windows bitmap handle}
procedure AssignHandle(Handle: HBitmap; Transparent: Boolean;
TranColor: ColorRef);
procedure AssignDib( DibHeader: pBitmapInfo; DibData: Pointer; Transparent: Boolean;
TranColor: ColorRef );
{Returns image as bitmap}
property Bitmap: PBitmap read GetBitmap;
{Draws the image into a canvas}
function Draw(DC: HDC; X, Y: Integer): Boolean;
procedure DrawTransparent( DC: HDC; X, Y, maxX, maxY: Integer; TranColor: TColor );
function StretchDraw( DC: HDC; const Rect: TRect ): Boolean;
{--not use, incorrectly defined--}
procedure StretchDrawTransparent( DC: HDC; const Rect: TRect; TranColor: TColor );
{Draws using partial transparency}
procedure DrawPartialTrans(DC: HDC; Rect: TRect);
{Width and height properties}
property Width: Integer read GetWidth;
property Height: Integer read GetHeight;
{Scaling down while loading}
property Scale: TPngScale read fScale write fScale;
property ScaledWidth: Integer read GetScaledWidth;
property ScaledHeight: Integer read GetScaledHeight;
{Returns if the image is interlaced}
property InterlaceMethod: TInterlaceMethod read fInterlaceMethod
write fInterlaceMethod;
{Filters to test to encode}
property Filters: TFilters read fFilters write fFilters;
{Maximum size for IDAT chunks, default and minimum is 65536}
property MaxIdatSize: DWORD read fMaxIdatSize write SetMaxIdatSize;
{Property to return if the image is empty or not}
property Empty: Boolean read GetEmpty;
{Compression level}
property CompressionLevel: TCompressionLevel read fCompressionLevel
write fCompressionLevel;
{Access to the chunk list}
property Chunks: PList read fChunkList;
{Object being created and destroyed}
destructor Destroy; virtual;
function LoadFromFile(const Filename: String): Boolean;
procedure SaveToFile(const Filename: String);
function LoadFromStream(Stream: PStream): Boolean;
procedure SaveToStream(Stream: PStream);
{Loading the image from resources}
procedure LoadFromResourceName(Instance: HInst; const AName: String);
procedure LoadFromResourceID(Instance: HInst; ResID: Integer);
{Error handling}
Property Error: TPngError read FError;
Property ErrorOnInvalidCRC: Boolean read FErrorOnInvalidCRC write FErrorOnInvalidCRC;
{Progress}
property OnProgress: TOnPngProgress read fOnProgress write fOnProgress;
property OnGetRow: TOnGetRow read fOnGetRow write fOnGetRow;
end;
{Base chunk object}
TChunk = object(TObj)
protected
{Contains data}
fData: Pointer;
fDataSize: DWORD;
{Stores owner}
fOwner: PPngObject;
{Returns pointer to the TChunkIHDR}
function GetHeader: PChunkIHDR;
{Used with property index}
function GetIndex: Integer;
protected
fChnkName: String;
{Should return chunk name}
public
{Returns index from list}
property Index: Integer read GetIndex;
{Returns pointer to the TChunkIHDR}
property Header: PChunkIHDR read GetHeader;
{Resize the data}
procedure ResizeData(const NewSize: DWORD);
{Returns data and size}
property Data: Pointer read fData;
property DataSize: DWORD read fDataSize;
{Returns owner}
property Owner: PPngObject read fOwner;
{Being destroyed/created}
constructor Create(AOwner: PPngObject);
destructor Destroy; virtual;
{Returns chunk class/name}
property ChnkName: String read fChnkName;
{Loads the chunk from a stream}
function LoadFromStream(Stream: PStream; const ChunkName: TChunkName;
Size: Integer): Boolean;
{Saves the chunk to a stream}
function SaveToStream(Stream: PStream): Boolean;
end;
{IHDR data}
pIHDRData = ^TIHDRData;
TIHDRData = packed record
Width, Height: Integer;
BitDepth,
ColorType,
CompressionMethod,
FilterMethod,
InterlaceMethod: Byte;
end;
{Information header chunk}
TChunkIHDR = object(TChunk)
protected
{Current image}
ImageHandle: HBitmap;
ImageDC: HDC;
{Output windows bitmap}
HasPalette: Boolean;
public
BitmapInfo: TMaxBitmapInfo;
protected
BytesPerRow: Integer;
{Stores the image bytes}
ImageData: pointer;
ImageAlpha: Pointer;
{Contains all the ihdr data}
IHDRData: TIHDRData;
{Resizes the image data to fill the color type, bit depth, }
{width and height parameters}
procedure PrepareImageData;
{Release allocated ImageData memory}
procedure FreeImageData;
public
{Properties}
property Width: Integer read IHDRData.Width write IHDRData.Width;
property Height: Integer read IHDRData.Height write IHDRData.Height;
property BitDepth: Byte read IHDRData.BitDepth write IHDRData.BitDepth;
property ColorType: Byte read IHDRData.ColorType write IHDRData.ColorType;
property CompressionMethod: Byte read IHDRData.CompressionMethod
write IHDRData.CompressionMethod;
property FilterMethod: Byte read IHDRData.FilterMethod
write IHDRData.FilterMethod;
property InterlaceMethod: Byte read IHDRData.InterlaceMethod
write IHDRData.InterlaceMethod;
{Destructor/constructor}
constructor Create(AOwner: PPngObject);
destructor Destroy; virtual;
end;
{Gamma chunk}
PChunkGAMA = ^TChunkGAMA;
TChunkgAMA = object(TChunk)
protected
{Returns/sets the value for the gamma chunk}
function GetValue: DWORD;
procedure SetValue(const Value: DWORD);
public
{Returns/sets gamma value}
property Gamma: DWORD read GetValue write SetValue;
{Being created}
constructor Create(AOwner: PPngObject);
end;
{ZLIB Decompression extra information}
TZStreamRec2 = packed record
{From ZLIB}
ZLIB: TZStreamRec;
{Additional info}
Data: Pointer;
fStream: PStream;
end;
{Palette chunk}
PChunkPLTE = ^TChunkPLTE;
TChunkPLTE = object(TChunk)
protected
{Number of items in the palette}
fCount: Integer;
{Contains the palette handle}
function GetPaletteItem(Idx: Byte): TRGBQuad;
public
{Returns the color for each item in the palette}
property Item[Index: Byte]: TRGBQuad read GetPaletteItem;
{Returns the number of items in the palette}
property Count: Integer read fCount;
end;
{Transparency information}
PChunktRNS = ^TChunktRNS;
TChunktRNS = object(TChunk)
protected
fBitTransparency: Boolean;
function GetTransparentColor: ColorRef;
{Returns the transparent color}
procedure SetTransparentColor(const Value: ColorRef);
public
{Palette values for transparency}
PaletteValues: Array[Byte] of Byte;
{Returns if it uses bit transparency}
property BitTransparency: Boolean read fBitTransparency;
{Returns the transparent color}
property TransparentColor: ColorRef read GetTransparentColor write
SetTransparentColor;
end;
{Actual image information}
PChunkIDAT = ^TChunkIDAT;
TChunkIDAT = object(TChunk)
protected
{Holds another pointer to the TChunkIHDR}
//Header: PChunkIHDR;
{Stores temporary image width and height}
ImageWidth, ImageHeight: Integer;
ShiftScale: Integer;
{Size in bytes of each line and offset}
Row_Bytes, Offset : DWORD;
{Contains data for the lines}
Encode_Buffer: Array[0..5] of pByteArray;
Row_Buffer: Array[Boolean] of pByteArray;
{Variable to invert the Row_Buffer used}
RowUsed: Boolean;
{Ending position for the current IDAT chunk}
EndPos: Integer;
{Filter the current line}
procedure FilterRow;
{Filter to encode and returns the best filter}
function FilterToEncode: Byte;
{Reads ZLIB compressed data}
function IDATZlibRead(var ZLIBStream: TZStreamRec2; Buffer: Pointer;
Count: Integer; var AEndPos: Integer; var crcfile: DWORD): Integer;
{Compress and writes IDAT data}
procedure IDATZlibWrite(var ZLIBStream: TZStreamRec2; Buffer: Pointer;
const Length: DWORD);
procedure FinishIDATZlib(var ZLIBStream: TZStreamRec2);
{Prepares the palette}
procedure PreparePalette;
protected
{Decode interlaced image}
procedure DecodeInterlacedAdam7(Stream: PStream;
var ZLIBStream: TZStreamRec2; const Size: Integer; var crcfile: DWORD);
{Decode non interlaced imaged}
procedure DecodeNonInterlaced(Stream: PStream;
var ZLIBStream: TZStreamRec2; const Size: Integer;
var crcfile: DWORD);
protected
{Encode non interlaced images}
procedure EncodeNonInterlaced(Stream: PStream;
var ZLIBStream: TZStreamRec2);
{Encode interlaced images}
procedure EncodeInterlacedAdam7(Stream: PStream;
var ZLIBStream: TZStreamRec2);
protected
{Memory copy methods to decode}
procedure CopyNonInterlacedRGB8(Src, Dest, Trans: pChar);
procedure CopyNonInterlacedRGB16(Src, Dest, Trans: pChar);
procedure CopyNonInterlacedPalette148(Src, Dest, Trans: pChar);
procedure CopyNonInterlacedPalette2(Src, Dest, Trans: pChar);
procedure CopyNonInterlacedGray2(Src, Dest, Trans: pChar);
procedure CopyNonInterlacedGrayscale16(Src, Dest, Trans: pChar);
procedure CopyNonInterlacedRGBAlpha8(Src, Dest, Trans: pChar);
procedure CopyNonInterlacedRGBAlpha16(Src, Dest, Trans: pChar);
procedure CopyNonInterlacedGrayscaleAlpha8(Src, Dest, Trans: PChar);
procedure CopyNonInterlacedGrayscaleAlpha16(Src, Dest, Trans: PChar);
procedure CopyInterlacedRGB8(const Pass: Byte; Src, Dest, Trans: pChar);
procedure CopyInterlacedRGB16(const Pass: Byte; Src, Dest, Trans: pChar);
procedure CopyInterlacedPalette148(const Pass: Byte; Src,Dest,Trans: pChar);
procedure CopyInterlacedPalette2(const Pass: Byte; Src, Dest, Trans: pChar);
procedure CopyInterlacedGray2(const Pass: Byte; Src, Dest, Trans: pChar);
procedure CopyInterlacedGrayscale16(const Pass: Byte;Src,Dest,Trans: pChar);
procedure CopyInterlacedRGBAlpha8(const Pass: Byte; Src,Dest,Trans: pChar);
procedure CopyInterlacedRGBAlpha16(const Pass: Byte; Src,Dest,Trans: pChar);
procedure CopyInterlacedGrayscaleAlpha8(const Pass: Byte;
Src, Dest, Trans: pChar);
procedure CopyInterlacedGrayscaleAlpha16(const Pass: Byte;
Src, Dest, Trans: pChar);
protected
{Memory copy methods to encode}
procedure EncodeNonInterlacedRGB8(Src, Dest, Trans: pChar);
procedure EncodeNonInterlacedRGB16(Src, Dest, Trans: pChar);
procedure EncodeNonInterlacedGrayscale16(Src, Dest, Trans: pChar);
procedure EncodeNonInterlacedPalette148(Src, Dest, Trans: pChar);
procedure EncodeNonInterlacedRGBAlpha8(Src, Dest, Trans: pChar);
procedure EncodeNonInterlacedRGBAlpha16(Src, Dest, Trans: pChar);
procedure EncodeNonInterlacedGrayscaleAlpha8(Src, Dest, Trans: pChar);
procedure EncodeNonInterlacedGrayscaleAlpha16(Src, Dest, Trans: pChar);
procedure EncodeInterlacedRGB8(const Pass: Byte; Src, Dest, Trans: pChar);
procedure EncodeInterlacedRGB16(const Pass: Byte; Src, Dest, Trans: pChar);
procedure EncodeInterlacedPalette148(const Pass:Byte; Src,Dest,Trans:pChar);
procedure EncodeInterlacedGrayscale16(const Pass:Byte;Src,Dest,Trans:pChar);
procedure EncodeInterlacedRGBAlpha8(const Pass: Byte;Src,Dest,Trans: pChar);
procedure EncodeInterlacedRGBAlpha16(const Pass:Byte; Src,Dest,Trans:pChar);
procedure EncodeInterlacedGrayscaleAlpha8(const Pass: Byte; Src, Dest,
Trans: pChar);
procedure EncodeInterlacedGrayscaleAlpha16(const Pass: Byte; Src, Dest,
Trans: pChar);
end;
{Image last modification chunk}
PChunkTIME = ^TChunktIME;
TChunktIME = object(TChunk)
protected
{Holds the variables}
fYear: Word;
fMonth, fDay, fHour, fMinute, fSecond: Byte;
public
{Returns/sets variables}
property Year: Word read fYear write fYear;
property Month: Byte read fMonth write fMonth;
property Day: Byte read fDay write fDay;
property Hour: Byte read fHour write fHour;
property Minute: Byte read fMinute write fMinute;
property Second: Byte read fSecond write fSecond;
end;
{Textual data}
PChunkTEXT = ^TChunkTEXT;
TChunktEXt = object(TChunk)
protected
fKeyword, fText: String;
public
destructor Destroy; virtual;
{Keyword and text}
property Keyword: String read fKeyword write fKeyword;
property Text: String read fText write fText;
end;
{Registers a new chunk class}
//procedure RegisterChunk(ChunkClass: TChunkClass);
{Calculates crc}
function update_crc(crc: DWORD; buf: pByteArray; len: Integer): DWORD;
{Invert bytes using assembly}
function ByteSwap(const a: integer): integer;
function NewPngObject: PPngObject;
function BytesForPixels(const Pixels: Integer; const ColorType,
BitDepth: Byte): Integer;
var CountFilters: array[ TFilter ] of Integer;
implementation
var
//ChunkClasses: TPngPointerList;
{Table of CRCs of all 8-bit messages}
crc_table: Array[0..255] of DWORD;
{Flag: has the table been computed? Initially false}
crc_table_computed: Boolean;
{$IFDEF PNG_MMX}
mmxSupported: Boolean;
{$ENDIF}
type
TChunkType = ( ctCommon, ctIHDR, ctIEND, ctIDAT, ctPLTE,
ctgAMA, ctTRNS, cttEXt, cttIME );
TLoadProc = function( Chunk: Pointer; Strm: PStream; const ChunkName: TChunkName;
Size: Integer): Boolean;
TSaveProc = function( Chunk: Pointer; Strm: PStream ): Boolean;
TLoadArray = array[ TChunkType ] of TLoadProc;
TSaveArray = array[ TChunkType ] of TSaveProc;
function IHDR_Load( Chunk: Pointer; Stream: PStream; const ChunkName: TChunkName;
Size: Integer ): Boolean; forward;
function IDAT_Load( Chunk: Pointer; Stream: PStream; const ChunkName: TChunkName;
Size: Integer ): Boolean; forward;
function PLTE_Load( Chunk: Pointer; Stream: PStream; const ChunkName: TChunkName;
Size: Integer ): Boolean; forward;
function gAMA_Load( Chunk: Pointer; Stream: PStream; const ChunkName: TChunkName;
Size: Integer ): Boolean; forward;
function TRNS_Load( Chunk: Pointer; Stream: PStream; const ChunkName: TChunkName;
Size: Integer ): Boolean; forward;
function tEXt_Load( Chunk: Pointer; Stream: PStream; const ChunkName: TChunkName;
Size: Integer ): Boolean; forward;
function tIME_Load( Chunk: Pointer; Stream: PStream; const ChunkName: TChunkName;
Size: Integer ): Boolean; forward;
function IHDR_Save( Chunk: Pointer; Stream: PStream ): Boolean; forward;
function IDAT_Save( Chunk: Pointer; Stream: PStream ): Boolean; forward;
function PLTE_Save( Chunk: Pointer; Stream: PStream ): Boolean; forward;
function TRNS_Save( Chunk: Pointer; Stream: PStream ): Boolean; forward;
function tEXt_Save( Chunk: Pointer; Stream: PStream ): Boolean; forward;
function tIME_Save( Chunk: Pointer; Stream: PStream ): Boolean; forward;
function ChunkTypeByName( const Name: String ): TChunkType;
const ChunkNames: array[ TChunkType ] of String = ( '', 'IHDR', 'IEND', 'IDAT',
'PLTE', 'gAMA', 'TRNS', 'tEXt', 'tIME' );
var I: TChunkType;
begin
for I := High( TChunkType ) downto Succ( Low( TChunkType ) ) do
if Name = ChunkNames[ I ] then
begin
Result := I; Exit;
end;
Result := ctCommon;
end;
{Draw transparent image using transparent color}
procedure DrawTransparentBitmap(dc: HDC; srcBits: Pointer;
var srcHeader: TBitmapInfoHeader;
srcBitmapInfo: pBitmapInfo; Rect: TRect; cTransparentColor: COLORREF);
var
cColor: COLORREF;
bmAndBack, bmAndObject, bmAndMem: HBITMAP;
bmBackOld, bmObjectOld, bmMemOld: HBITMAP;
hdcMem, hdcBack, hdcObject, hdcTemp: HDC;
ptSize, orgSize: TPOINT;
OldBitmap, DrawBitmap: HBITMAP;
begin
hdcTemp := CreateCompatibleDC(dc);
// Select the bitmap
DrawBitmap := CreateDIBitmap(dc, srcHeader, CBM_INIT, srcBits, srcBitmapInfo^,
DIB_RGB_COLORS);
OldBitmap := SelectObject(hdcTemp, DrawBitmap);
// Sizes
OrgSize.x := abs(srcHeader.biWidth);
OrgSize.y := abs(srcHeader.biHeight);
ptSize.x := Rect.Right - Rect.Left; // Get width of bitmap
ptSize.y := Rect.Bottom - Rect.Top; // Get height of bitmap
// Create some DCs to hold temporary data.
hdcBack := CreateCompatibleDC(dc);
hdcObject := CreateCompatibleDC(dc);
hdcMem := CreateCompatibleDC(dc);
// Create a bitmap for each DC. DCs are required for a number of
// GDI functions.
// Monochrome DCs
bmAndBack := CreateBitmap(ptSize.x, ptSize.y, 1, 1, nil);
bmAndObject := CreateBitmap(ptSize.x, ptSize.y, 1, 1, nil);
bmAndMem := CreateCompatibleBitmap(dc, ptSize.x, ptSize.y);
// Each DC must select a bitmap object to store pixel data.
bmBackOld := SelectObject(hdcBack, bmAndBack);
bmObjectOld := SelectObject(hdcObject, bmAndObject);
bmMemOld := SelectObject(hdcMem, bmAndMem);
// Set the background color of the source DC to the color.
// contained in the parts of the bitmap that should be transparent
cColor := SetBkColor(hdcTemp, cTransparentColor);
// Create the object mask for the bitmap by performing a BitBlt
// from the source bitmap to a monochrome bitmap.
StretchBlt(hdcObject, 0, 0, ptSize.x, ptSize.y, hdcTemp, 0, 0,
orgSize.x, orgSize.y, SRCCOPY);
// Set the background color of the source DC back to the original
// color.
SetBkColor(hdcTemp, cColor);
// Create the inverse of the object mask.
BitBlt(hdcBack, 0, 0, ptSize.x, ptSize.y, hdcObject, 0, 0,
NOTSRCCOPY);
// Copy the background of the main DC to the destination.
BitBlt(hdcMem, 0, 0, ptSize.x, ptSize.y, dc, Rect.Left, Rect.Top,
SRCCOPY);
// Mask out the places where the bitmap will be placed.
BitBlt(hdcMem, 0, 0, ptSize.x, ptSize.y, hdcObject, 0, 0, SRCAND);
// Mask out the transparent colored pixels on the bitmap.
// BitBlt(hdcTemp, 0, 0, ptSize.x, ptSize.y, hdcBack, 0, 0, SRCAND);
StretchBlt(hdcTemp, 0, 0, OrgSize.x, OrgSize.y, hdcBack, 0, 0,
PtSize.x, PtSize.y, SRCAND);
// XOR the bitmap with the background on the destination DC.
StretchBlt(hdcMem, 0, 0, ptSize.x, ptSize.y, hdcTemp, 0, 0,
OrgSize.x, OrgSize.y, SRCPAINT);
// Copy the destination to the screen.
BitBlt(dc, Rect.Left, Rect.Top, ptSize.x, ptSize.y, hdcMem, 0, 0,
SRCCOPY);
// Delete the memory bitmaps.
DeleteObject(SelectObject(hdcBack, bmBackOld));
DeleteObject(SelectObject(hdcObject, bmObjectOld));
DeleteObject(SelectObject(hdcMem, bmMemOld));
DeleteObject(SelectObject(hdcTemp, OldBitmap));
// Delete the memory DCs.
DeleteDC(hdcMem);
DeleteDC(hdcBack);
DeleteDC(hdcObject);
DeleteDC(hdcTemp);
end;
{Make the table for a fast CRC.}
procedure make_crc_table;
var
c: DWORD;
n, k: Integer;
begin
{fill the crc table}
for n := 0 to 255 do
begin
c := DWORD(n);
for k := 0 to 7 do
begin
if Boolean(c and 1) then
c := $edb88320 xor (c shr 1)
else
c := c shr 1;
end;
crc_table[n] := c;
end;
{The table has already being computated}
crc_table_computed := true;
end;
{Update a running CRC with the bytes buf[0..len-1]--the CRC
should be initialized to all 1's, and the transmitted value
is the 1's complement of the final running CRC (see the
crc() routine below)).}
function update_crc(crc: DWORD; buf: pByteArray; len: Integer): DWORD;
var
c: DWORD;
n: Integer;
begin
c := crc;
{Create the crc table in case it has not being computed yet}
if not crc_table_computed then make_crc_table;
{Update}
for n := 0 to len - 1 do
c := crc_table[(c XOR buf^[n]) and $FF] XOR (c shr 8);
{Returns}
Result := c;
end;
{Calculates the paeth predictor}
function PaethPredictor(a, b, c: Byte): Byte;
var
pa, pb, pc: Integer;
begin
{ a = left, b = above, c = upper left }
pa := abs(Integer( b ) - Integer( c )); { distances to a, b, c }
pb := abs(Integer( a ) - Integer( c )); { distances to a, b, c }
pc := abs(Integer( a + b ) - Integer( c ) * 2);
{ return nearest of a, b, c, breaking ties in order a, b, c }
if (pa <= pb) and (pa <= pc) then
Result := a
else
if pb <= pc then
Result := b
else
Result := c;
end;
{Invert bytes using assembly}
function ByteSwap(const a: integer): integer;
asm
bswap eax
end;
{Calculates number of bytes for the number of pixels using the}
{color mode in the paramenter}
function BytesForPixels(const Pixels: Integer; const ColorType,
BitDepth: Byte): Integer;
begin
case ColorType of
{Palette and grayscale contains a single value, for palette}
{an value of size 2^bitdepth pointing to the palette index}
{and grayscale the value from 0 to 2^bitdepth with color intesity}
COLOR_GRAYSCALE, COLOR_PALETTE:
Result := (Pixels * BitDepth + 7) div 8;
{RGB contains 3 values R, G, B with size 2^bitdepth each}
COLOR_RGB:
Result := (Pixels * BitDepth * 3) div 8;
{Contains one value followed by alpha value booth size 2^bitdepth}
COLOR_GRAYSCALEALPHA:
Result := (Pixels * BitDepth * 2) div 8;
{Contains four values size 2^bitdepth, Red, Green, Blue and alpha}
COLOR_RGBALPHA:
Result := (Pixels * BitDepth * 4) div 8;
else
Result := 0;
end {case ColorType}
end;
{TChunk implementation}
{Resizes the data}
procedure TChunk.ResizeData(const NewSize: DWORD);
begin
fDataSize := NewSize;
ReallocMem(fData, NewSize + 1);
end;
{Returns index from list}
function TChunk.GetIndex: Integer;
begin
Result := Owner.Chunks.IndexOf( @Self );
end;
{Returns pointer to the TChunkIHDR}
function TChunk.GetHeader: PChunkIHDR;
begin
Result := Owner.Chunks.Items[0];
end;
{Chunk being created}
constructor TChunk.Create(AOwner: PPngObject);
begin
{Ancestor create}
inherited Create;
{Initialize data holder}
GetMem(fData, 1);
fDataSize := 0;
{Record owner}
fOwner := AOwner;
end;
{Chunk being destroyed}
destructor TChunk.Destroy;
begin
fChnkName := '';
{Free data holder}
FreeMem(fData); //, fDataSize + 1);
{Let ancestor destroy}
inherited Destroy;
end;
{Returns the chunk name}
{Saves the chunk to the stream}
function TChunk.SaveToStream(Stream: PStream): Boolean;
var
ChunkSize, ChunkCRC: DWORD;
NameBuf: TChunkName;
begin
{First, write the size for the following data in the chunk}
ChunkSize := ByteSwap(DataSize);
Stream.Write(ChunkSize, 4);
{The chunk name}
Move( ChnkName[ 1 ], NameBuf[ 0 ], 4 );
Stream.Write( NameBuf[ 0 ], 4 );
{If there is data for the chunk, write it}
if DataSize > 0 then Stream.Write(Data^, DataSize);
{Calculates and write CRC}
ChunkCRC := update_crc($ffffffff, @NameBuf[0], 4);
ChunkCRC := Byteswap(update_crc(ChunkCRC, Data, DataSize) xor $ffffffff);
Stream.Write(ChunkCRC, 4);
{Returns that everything went ok}
Result := TRUE;
end;
{Loads the chunk from a stream}
function TChunk.LoadFromStream(Stream: PStream; const ChunkName: TChunkName;
Size: Integer): Boolean;
var
CheckCRC: DWORD;
RightCRC: DWORD;
begin
{Copies data from source}
ResizeData(Size);
if Size > 0 then Stream.Read(fData^, Size);
{Reads CRC}
Stream.Read(CheckCRC, 4);
CheckCrc := ByteSwap(CheckCRC);
{Check if crc readed is valid}
RightCRC := update_crc($ffffffff, @ChunkName[0], 4);
RightCRC := update_crc(RightCRC, fData, Size) xor $ffffffff;
Result := RightCRC = CheckCrc;
{Handle CRC error}
if not Result and Owner.FErrorOnInvalidCRC then
begin
{In case it coult not load chunk}
Owner.FError := ErrInvalidCRC;
exit;
end
else
Result := TRUE;
end;
{TChunktIME implementation}
{Chunk being loaded from a stream}
function tIME_Load(Chunk: Pointer; Stream: PStream;
const ChunkName: TChunkName; Size: Integer): Boolean;
begin
{Let ancestor load the data}
Result := PChunk( Chunk ).LoadFromStream(Stream, ChunkName, Size);
if not Result or (Size <> 7) then exit; {Size must be 7}
{Reads data}
with PChunkTIME( Chunk )^ do
begin
fYear := pWord(Data)^;
fMonth := pByte(Longint(Data) + 2)^;
fDay := pByte(Longint(Data) + 3)^;
fHour := pByte(Longint(Data) + 4)^;
fMinute := pByte(Longint(Data) + 5)^;
fSecond := pByte(Longint(Data) + 6)^;
end;
end;
{Saving the chunk to a stream}
function tIME_Save(Chunk: Pointer; Stream: PStream): Boolean;
begin
with PChunkTIME( Chunk )^ do
begin
{Update data}
ResizeData(7); {Make sure the size is 7}
pWord(Data)^ := Year;
pByte(Longint(Data) + 2)^ := Month;
pByte(Longint(Data) + 3)^ := Day;
pByte(Longint(Data) + 4)^ := Hour;
pByte(Longint(Data) + 5)^ := Minute;
pByte(Longint(Data) + 6)^ := Second;
{Let inherited save data}
Result := SaveToStream(Stream);
end;
end;
{TChunktEXt implementation}
{Loading the chunk from a stream}
function tEXt_Load(Chunk: Pointer; Stream: PStream;
const ChunkName: TChunkName; Size: Integer): Boolean;
begin
{Load data from stream and validate}
Result := PChunk( Chunk ).LoadFromStream(Stream, ChunkName, Size);
if not Result or (Size < 3) then exit;
{Get text}
with PChunkTEXT( Chunk )^ do
begin
fKeyword := PChar(Data);
SetLength(fText, Size - Length(fKeyword) - 1);
CopyMemory(@fText[1], Ptr(Longint(Data) + Length(fKeyword) + 1),
Length(fText));
end;
end;
{Saving the chunk to a stream}
function tEXt_Save(Chunk: Pointer; Stream: PStream): Boolean;
begin
with PChunkTEXT( Chunk )^ do
begin
{Size is length from keyword, plus a null character to divide}
{plus the length of the text}
ResizeData(Length(fKeyword) + 1 + Length(fText));
Fillchar(Data^, DataSize, #0);
{Copy data}
if Keyword <> '' then
CopyMemory(Data, @fKeyword[1], Length(Keyword));
if Text <> '' then
CopyMemory(Ptr(Longint(Data) + Length(Keyword) + 1), @fText[1],
Length(Text));
{Let ancestor calculate crc and save}
Result := SaveToStream(Stream);
end;
end;
{TChunkIHDR implementation}
{Chunk being created}
constructor TChunkIHDR.Create(AOwner: PPngObject);
begin
{Call inherited}
inherited Create(AOwner);
{Prepare pointers}
ImageHandle := 0;
ImageDC := 0;
end;
{Chunk being destroyed}
destructor TChunkIHDR.Destroy;
begin
{Free memory}
FreeImageData();
{Calls TChunk destroy}
inherited Destroy;
end;
{Release allocated image data}
procedure TChunkIHDR.FreeImageData;
begin
{Free old image data}
if ImageHandle <> 0 then DeleteObject(ImageHandle);
if ImageDC <> 0 then DeleteDC(ImageDC);
if ImageAlpha <> nil then FreeMem(ImageAlpha);
ImageHandle := 0; ImageDC := 0; ImageAlpha := nil; ImageData := nil;
end;
{Chunk being loaded from a stream}
function IHDR_Load(Chunk: Pointer; Stream: PStream; const ChunkName: TChunkName;
Size: Integer): Boolean;
begin
{Let TChunk load it}
Result := PChunk( Chunk ).LoadFromStream(Stream, ChunkName, Size);
if not Result then Exit;
with PChunkIHDR( Chunk )^ do
begin
{Now check values}
{Note: It's recommended by png specification to make sure that the size}
{must be 13 bytes to be valid, but some images with 14 bytes were found}
{which could be loaded by internet explorer and other tools}
if (fDataSize < SIZEOF(TIHdrData)) then
begin
{Ihdr must always have at least 13 bytes}
Result := False;
Owner.FError := ErrInvalidIHDR;
exit;
end;
{Everything ok, reads IHDR}
IHDRData := pIHDRData(fData)^;
IHDRData.Width := ByteSwap(IHDRData.Width);
IHDRData.Height := ByteSwap(IHDRData.Height);
{The width and height must not be larger than 65535 pixels}
if (IHDRData.Width > High(Word)) or (IHDRData.Height > High(Word)) then
begin
Result := False;
Owner.FError := ErrSizeExceeds;
exit;
end {if IHDRData.Width > High(Word)};
{Compression method must be 0 (inflate/deflate)}
if (IHDRData.CompressionMethod <> 0) then
begin
Result := False;
Owner.FError := ErrUnknownCompression;
exit;
end;
{Interlace must be either 0 (none) or 7 (adam7)}
if (IHDRData.InterlaceMethod <> 0) and (IHDRData.InterlaceMethod <> 1) then
begin
Result := False;
Owner.FError := ErrUnknownInterlace;
exit;
end;
{Updates owner properties}
Owner.InterlaceMethod := TInterlaceMethod(IHDRData.InterlaceMethod);
{Prepares data to hold image}
PrepareImageData();
end;
end;
{Saving the IHDR chunk to a stream}
function IHDR_Save(Chunk: Pointer; Stream: PStream): Boolean;
begin
with PChunkIHDR( Chunk )^ do
begin
{Ignore 2 bits images}
if BitDepth = 2 then BitDepth := 4;
{It needs to do is update the data with the IHDR data}
{structure containing the write values}
ResizeData(SizeOf(TIHDRData));
pIHDRData(fData)^ := IHDRData;
{..byteswap 4 byte types}
pIHDRData(fData)^.Width := ByteSwap(pIHDRData(fData)^.Width);
pIHDRData(fData)^.Height := ByteSwap(pIHDRData(fData)^.Height);
{..update interlace method}
pIHDRData(fData)^.InterlaceMethod := Byte(Owner.InterlaceMethod);
{..and then let the ancestor SaveToStream do the hard work}
Result := SaveToStream(Stream);
end;
end;
{Resizes the image data to fill the color type, bit depth, }
{width and height parameters}
procedure TChunkIHDR.PrepareImageData();
{Set the bitmap info}
procedure SetInfo(const Bitdepth: Integer; const Palette: Boolean);
begin
{Copy if the bitmap contain palette entries}
HasPalette := Palette;
{Initialize the structure with zeros}
fillchar(BitmapInfo, sizeof(BitmapInfo), #0);
{Fill the strucutre}
with BitmapInfo.bmiHeader do
begin
biSize := sizeof(TBitmapInfoHeader);
biHeight := Height;
biWidth := Width;
if Owner.Scale <> psFullImage then
begin
biHeight := Owner.ScaledHeight;
biWidth := Owner.ScaledWidth;
end;
biPlanes := 1;
biBitCount := BitDepth;
biCompression := BI_RGB;
end {with BitmapInfo.bmiHeader}
end;
begin
{Prepare bitmap info header}
Fillchar(BitmapInfo, sizeof(TMaxBitmapInfo), #0);
{Release old image data}
FreeImageData();
{Obtain number of bits for each pixel}
case ColorType of
COLOR_GRAYSCALE, COLOR_PALETTE, COLOR_GRAYSCALEALPHA:
case BitDepth of
{These are supported by windows}
1, 4, 8: SetInfo(BitDepth, TRUE);
{2 bits for each pixel is not supported by windows bitmap}
2 : SetInfo(4, TRUE);
{Also 16 bits (2 bytes) for each pixel is not supported}
{and should be transormed into a 8 bit grayscale}
16 : SetInfo(8, TRUE);
end;
{Only 1 byte (8 bits) is supported}
COLOR_RGB, COLOR_RGBALPHA: SetInfo(24, FALSE);
end {case ColorType};
{Number of bytes for each scanline}
BytesPerRow := (((BitmapInfo.bmiHeader.biBitCount * Owner.ScaledWidth) + 31)
and not 31) div 8;
if not Assigned( Owner.OnGetRow ) then
begin
{Build array for alpha information, if necessary}
if (ColorType = COLOR_RGBALPHA) or (ColorType = COLOR_GRAYSCALEALPHA) then
begin
ImageAlpha := AllocMem( Integer(Owner.ScaledWidth) * Integer(Owner.ScaledHeight) );
// (with zero memory)
end;
{Creates the image to hold the data, CreateDIBSection does a better}
{work in allocating necessary memory}
ImageDC := CreateCompatibleDC(0);
ImageHandle := CreateDIBSection(ImageDC, pBitmapInfo(@BitmapInfo)^,
DIB_RGB_COLORS, ImageData, 0, 0);
{Build array and allocate bytes for each row}
zeromemory(ImageData, BytesPerRow * Integer(Owner.ScaledHeight));
end;
end;
{TChunktRNS implementation}
{Sets the transpararent color}
procedure TChunktRNS.SetTransparentColor(const Value: ColorRef);
var
i: Byte;
LookColor: TRGBQuad;
begin
{Clears the palette values}
Fillchar(PaletteValues, SizeOf(PaletteValues), #0);
{Sets that it uses bit transparency}
fBitTransparency := True;
{Depends on the color type}
with Header^ do
case ColorType of
COLOR_GRAYSCALE:
begin
Self.ResizeData(BitDepth div 8);
PaletteValues[0] := GetRValue(Value);
end;
COLOR_RGB:
begin
Self.ResizeData((BitDepth div 8) * 3);
PaletteValues[0] := GetRValue(Value);
PaletteValues[1*(BitDepth div 8)] := GetGValue(Value);
PaletteValues[2*(BitDepth div 8)] := GetBValue(Value);
end;
COLOR_PALETTE:
begin
{Creates a RGBQuad to search for the color}
LookColor.rgbRed := GetRValue(Value);
LookColor.rgbGreen := GetGValue(Value);
LookColor.rgbBlue := GetBValue(Value);
{Look in the table for the entry}
for i := 0 to 255 do
if CompareMem(@BitmapInfo.bmiColors[i], @LookColor, 3) then
Break;
{Fill the transparency table}
Fillchar(PaletteValues, i, #255);
Self.ResizeData(i + 1)
end
end {case / with};
end;
{Returns the transparent color for the image}
function TChunktRNS.GetTransparentColor: ColorRef;
var
PaletteChunk: PChunkPLTE;
i: Integer;
begin
Result := 0; {Default: Unknown transparent color}
{Depends on the color type}
with Header^ do
case ColorType of
COLOR_GRAYSCALE: Result := RGB(PaletteValues[0], PaletteValues[0],
PaletteValues[0]);
COLOR_RGB:
if BitDepth = 8 then
Result := RGB(PaletteValues[0], PaletteValues[1], PaletteValues[2])
else
Result := RGB(PaletteValues[0], PaletteValues[2], PaletteValues[4]);
COLOR_PALETTE:
begin
{Obtains the palette chunk}
PaletteChunk := Pointer( Owner.ChunkByName('PLTE') );
{Looks for an entry with 0 transparency meaning that it is the}
{full transparent entry}
for i := 0 to Self.DataSize - 1 do
if PaletteValues[i] = 0 then
with PaletteChunk.GetPaletteItem(i) do
begin
Result := RGB(rgbRed, rgbGreen, rgbBlue);
break
end
end {COLOR_PALETTE}
end {case Header.ColorType};
end;
{Saving the chunk to a stream}
function tRNS_Save(Chunk: Pointer; Stream: PStream): Boolean;
begin
with PChunktRNS( Chunk )^ do
begin
{Copy palette into data buffer}
if DataSize <= 256 then
CopyMemory(fData, @PaletteValues[0], DataSize);
Result := SaveToStream(Stream);
end;
end;
{Loads the chunk from a stream}
function tRNS_Load(Chunk: Pointer; Stream: PStream; const ChunkName: TChunkName;
Size: Integer): Boolean;
var
i, Differ255: Integer;
begin
{Let inherited load}
Result := PChunk( Chunk ).LoadFromStream(Stream, ChunkName, Size);
if not Result then Exit;
with PChunktRNS( Chunk )^ do
begin
{Make sure size is correct}
if Size > 256 then
begin
Result := FALSE;
Owner.FError := ErrInvalidPalette;
exit;
end;
{The unset items should have value 255}
Fillchar(PaletteValues[0], 256, #255);
{Copy the other values}
CopyMemory(@PaletteValues[0], fData, Size);
{Create the mask if needed}
case Header.ColorType of
{Mask for grayscale and RGB}
COLOR_RGB, COLOR_GRAYSCALE: fBitTransparency := True;
COLOR_PALETTE:
begin
Differ255 := 0; {Count the entries with a value different from 255}
{Tests if it uses bit transparency}
for i := 0 to Size - 1 do
if PaletteValues[i] <> 255 then inc(Differ255);
{If it has one value different from 255 it is a bit transparency}
fBitTransparency := (Differ255 = 1);
end {COLOR_PALETTE}
end {case Header.ColorType};
end;
end;
{ZLIB support}
const
ZLIBAllocate = High(Word);
{Initializes ZLIB for decompression}
function ZLIBInitInflate(Stream: PStream): TZStreamRec2;
begin
{Fill record}
Fillchar(Result, SIZEOF(TZStreamRec2), #0);
{Set internal record information}
with Result do
begin
GetMem(Data, ZLIBAllocate);
fStream := Stream;
end;
{Init decompression}
InflateInit_(Result.zlib, zlib_version, SIZEOF(TZStreamRec));
end;
{Initializes ZLIB for compression}
function ZLIBInitDeflate(Stream: PStream;
Level: TCompressionlevel; Size: DWORD): TZStreamRec2;
begin
{Fill record}
Fillchar(Result, SIZEOF(TZStreamRec2), #0);
{Set internal record information}
with Result, ZLIB do
begin
GetMem(Data, Size);
fStream := Stream;
next_out := Data;
avail_out := Size;
end;
{Inits compression}
deflateInit_(Result.zlib, Level, zlib_version, sizeof(TZStreamRec));
end;
{Terminates ZLIB for compression}
procedure ZLIBTerminateDeflate(var ZLIBStream: TZStreamRec2);
begin
{Terminates decompression}
DeflateEnd(ZLIBStream.zlib);
{Free internal record}
FreeMem(ZLIBStream.Data); //, ZLIBAllocate);
end;
{Terminates ZLIB for decompression}
procedure ZLIBTerminateInflate(var ZLIBStream: TZStreamRec2);
begin
{Terminates decompression}
InflateEnd(ZLIBStream.zlib);
{Free internal record}
FreeMem(ZLIBStream.Data); //, ZLIBAllocate);
end;
{Prepares the image palette}
procedure TChunkIDAT.PreparePalette;
var
Entries: Word;
j : Integer;
begin
{In case the image uses grayscale, build a grayscale palette}
with Header^ do
if (ColorType = COLOR_GRAYSCALE) or (ColorType = COLOR_GRAYSCALEALPHA) then
begin
{Calculate total number of palette entries}
Entries := (1 shl Byte(BitmapInfo.bmiHeader.biBitCount));
FOR j := 0 TO Entries - 1 DO
with BitmapInfo.bmiColors[j] do
begin
{Calculate each palette entry}
rgbRed := fOwner.GammaTable[MulDiv(j, 255, Entries - 1)];
rgbGreen := rgbRed;
rgbBlue := rgbRed;
end {with BitmapInfo.bmiColors[j]}
end {if ColorType = COLOR_GRAYSCALE..., with Header}
end;
{Reads from ZLIB}
function TChunkIDAT.IDATZlibRead(var ZLIBStream: TZStreamRec2;
Buffer: Pointer; Count: Integer; var AEndPos: Integer;
var crcfile: DWORD): Integer;
var
ProcResult : Integer;
IDATHeader : Array[0..3] of char;
IDATCRC : DWORD;
begin
{Uses internal record pointed by ZLIBStream to gather information}
with ZLIBStream, ZLIBStream.zlib do
begin
{Set the buffer the zlib will read into}
next_out := Buffer;
avail_out := Count;
{Decode until it reach the Count variable}
while avail_out > 0 do
begin
{In case it needs more data and it's in the end of a IDAT chunk,}
{it means that there are more IDAT chunks}
if (fStream.Position = DWORD( AEndPos )) and (avail_out > 0) and
(avail_in = 0) then
begin
{End this chunk by reading and testing the crc value}
fStream.Read(IDATCRC, 4);
if Owner.FErrorOnInvalidCRC then
if crcfile xor $ffffffff <> DWORD(ByteSwap(IDATCRC)) then
begin
Result := -1;
Owner.FError := ErrInvalidCRC;
exit;
end;
{Start reading the next chunk}
fStream.Read(AEndPos, 4); {Reads next chunk size}
fStream.Read(IDATHeader[0], 4); {Next chunk header}
{It must be a IDAT chunk since image data is required and PNG}
{specification says that multiple IDAT chunks must be consecutive}
if IDATHeader <> 'IDAT' then
begin
Owner.FError := ErrMissingMultipleIDAT;
result := -1;
exit;
end;
{Calculate chunk name part of the crc}
crcfile := update_crc($ffffffff, @IDATHeader[0], 4);
AEndPos := fStream.Position + DWORD( ByteSwap(EndPos) );
end;
{In case it needs compressed data to read from}
if avail_in = 0 then
begin
{In case it's trying to read more than it is avaliable}
if fStream.Position + DWORD( ZLIBAllocate ) > DWORD( AEndPos ) then
avail_in := fStream.Read(Data^, DWORD( AEndPos ) - fStream.Position)
else
avail_in := fStream.Read(Data^, ZLIBAllocate);
{Update crc}
crcfile := update_crc(crcfile, Data, avail_in);
{In case there is no more compressed data to read from}
if avail_in = 0 then
begin
Result := Count - avail_out;
Exit;
end;
{Set next buffer to read and record current position}
next_in := Data;
end {if avail_in = 0};
ProcResult := inflate(zlib, 0);
{In case the result was not sucessfull}
if (ProcResult < 0) then
begin
Result := -1;
Owner.FError := ErrZLibError;
exit;
end;
end {while avail_out > 0};
end {with};
{If everything gone ok, it returns the count bytes}
Result := Count;
end;
{TChunkIDAT implementation}
const
{Adam 7 interlacing values}
RowStart: array[0..6] of Integer = (0, 0, 4, 0, 2, 0, 1);
ColumnStart: array[0..6] of Integer = (0, 4, 0, 2, 0, 1, 0);
RowIncrement: array[0..6] of Integer = (8, 8, 8, 4, 4, 2, 2);
ColumnIncrement: array[0..6] of Integer = (8, 8, 4, 4, 2, 2, 1);
MaxPass: array[TPngScale] of Integer = (6,4,2,0);
{Copy interlaced images with 1 byte for R, G, B}
procedure TChunkIDAT.CopyInterlacedRGB8(const Pass: Byte; Src,Dest,Trans: pChar);
var Col, incDest, incCol: Integer;
{$IFDEF ASM_VERSION}
iW: Integer;
GTable: Pointer;
{$ENDIF}
begin
Col := ColumnStart[Pass] shr ShiftScale;
Dest := pChar(Longint(Dest) + Col * 3);
incDest := (ColumnIncrement[Pass] shr ShiftScale) * 3 - 3;
incCol := ColumnIncrement[Pass] shr ShiftScale;
{$IFDEF ASM_VERSION}
iW := ImageWidth - Col;
GTable := @ fOwner.GammaTable[ 0 ];
asm
PUSH ESI
PUSH EDI
PUSH EBX
MOV ESI, [Src]
MOV EDI, [Dest]
MOV EBX, [GTable]
MOV ECX, [iW]
@@loop:
XOR EAX, EAX
LODSB
MOV DH, [EBX+EAX]
BSWAP EDX
LODSB
MOV DH, [EBX+EAX]
LODSB
MOV DL, [EBX+EAX]
XCHG EAX, EDX
STOSW
SHR EAX, 16
STOSB
ADD EDI, [incDest]
SUB ECX, [incCol]
JG @@loop
POP EBX
POP EDI
POP ESI
end;
{$ELSE}
{Get first column and enter in loop}
repeat
{Copy this row}
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 1)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) )^]; inc(Dest);
{Move to next column}
inc(Src, 3);
inc(Dest, incDest);
inc(Col, incCol);
until Col >= ImageWidth;
{$ENDIF}
end;
{Copy interlaced images with 2 bytes for R, G, B}
procedure TChunkIDAT.CopyInterlacedRGB16(const Pass: Byte; Src,Dest,Trans: pChar);
var Col, incDest, incCol: Integer;
{$IFDEF ASM_VERSION}
iW: Integer;
GTable: Pointer;
{$ENDIF}
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass] shr ShiftScale;
Dest := pChar(Longint(Dest) + Col * 3);
incDest := (ColumnIncrement[Pass] shr ShiftScale) * 3 - 3;
incCol := ColumnIncrement[Pass] shr ShiftScale;
{$IFDEF ASM_VERSION}
iW := ImageWidth - Col;
GTable := @ fOwner.GammaTable[ 0 ];
asm
PUSH ESI
PUSH EDI
PUSH EBX
MOV ESI, [Src]
MOV EDI, [Dest]
MOV EBX, [GTable]
MOV ECX, [iW]
@@loop:
XOR EAX, EAX
LODSB
MOV DH, [EBX+EAX]
INC ESI
BSWAP EDX
LODSB
MOV DH, [EBX+EAX]
INC ESI
LODSB
MOV DL, [EBX+EAX]
INC ESI
XCHG EAX, EDX
STOSW
SHR EAX, 16
STOSB
ADD EDI, [incDest]
SUB ECX, [incCol]
JG @@loop
POP EBX
POP EDI
POP ESI
end;
{$ELSE}
repeat
{Copy this row}
Byte(Dest^) := Owner.GammaTable[pByte(Longint(Src) + 4)^]; inc(Dest);
Byte(Dest^) := Owner.GammaTable[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := Owner.GammaTable[pByte(Longint(Src) )^]; inc(Dest);
{Move to next column}
inc(Src, 6);
inc(Dest, incDest);
inc(Col, incCol);
until Col >= ImageWidth;
{$ENDIF}
end;
{Copy �mages with palette using bit depths 1, 4 or 8}
procedure TChunkIDAT.CopyInterlacedPalette148(const Pass: Byte; Src,
Dest, Trans: pChar);
const
BitTable: Array[1..8] of Integer = ($1, $3, 0, $F, 0, 0, 0, $FF);
StartBit: Array[1..8] of Integer = (7 , 0 , 0, 4, 0, 0, 0, 0);
ShiftBitDepthTable: array[1..8] of Integer = (0, 1, 0, 2, 0, 0, 0, 3);
var
CurBit, Col: Integer;
Dest2: PChar;
BitMask, BitStart, BitDepth, incCol, ShiftBitDepth: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass] shr ShiftScale;
//Dest := pChar(Longint(Dest) + Col);
incCol := ColumnIncrement[Pass] shr ShiftScale;
BitDepth := Header.BitDepth;
BitMask := BitTable[BitDepth];
BitStart := StartBit[BitDepth];
ShiftBitDepth := ShiftBitDepthTable[ BitDepth ];
repeat
{Copy data}
CurBit := BitStart;
repeat
{Adjust pointer to pixel byte bounds}
Dest2 := pChar(Longint(Dest) + (Col shl ShiftBitDepth) shr 3);
{Copy data}
Byte(Dest2^) := Byte(Dest2^) or
( ((Byte(Src^) shr CurBit) and BitMask)
shl (BitStart - ((Col shl ShiftBitDepth) and 7)));
{Move to next column}
inc(Col, incCol);
{Will read next bits}
dec(CurBit, BitDepth);
until CurBit < 0;
{Move to next byte in source}
inc(Src);
until Col >= ImageWidth;
end;
{Copy �mages with palette using bit depth 2}
procedure TChunkIDAT.CopyInterlacedPalette2(const Pass: Byte; Src,
Dest, Trans: pChar);
var
CurBit, Col: Integer;
Dest2: PChar;
incCol: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass] shr ShiftScale;
incCol := ColumnIncrement[Pass] shr ShiftScale;
repeat
{Copy data}
CurBit := 6;
repeat
{Adjust pointer to pixel byte bounds}
Dest2 := pChar(Longint(Dest) + (Col shr 1));
{Copy data}
Byte(Dest2^) := Byte(Dest2^) or (((Byte(Src^) shr CurBit) and $3)
shl (4 - (Col shl 2) mod 8));
{Move to next column}
inc(Col, incCol);
{Will read next bits}
dec(CurBit, 2);
until CurBit < 0;
{Move to next byte in source}
inc(Src);
until Col >= ImageWidth;
end;
{Copy �mages with grayscale using bit depth 2}
procedure TChunkIDAT.CopyInterlacedGray2(const Pass: Byte; Src,
Dest, Trans: pChar);
var
CurBit, Col, incCol: Integer;
Dest2: PChar;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass] shr ShiftScale;
incCol := ColumnIncrement[Pass] shr ShiftScale;
repeat
{Copy data}
CurBit := 6;
repeat
{Adjust pointer to pixel byte bounds}
Dest2 := pChar(Longint(Dest) + Col div 2);
{Copy data}
Byte(Dest2^) := Byte(Dest2^) or ((((Byte(Src^) shr CurBit) shl 2) and $F)
shl (4 - (Col shl 2) mod 8));
{Move to next column}
inc(Col, incCol);
{Will read next bits}
dec(CurBit, 2);
until CurBit < 0;
{Move to next byte in source}
inc(Src);
until Col >= ImageWidth;
end;
{Copy �mages with palette using 2 bytes for each pixel}
procedure TChunkIDAT.CopyInterlacedGrayscale16(const Pass: Byte; Src,
Dest, Trans: pChar);
var
Col, incColDest: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass] shr ShiftScale;
Dest := pChar(Longint(Dest) + Col);
incColDest := ColumnIncrement[Pass] shr ShiftScale;
repeat
{Copy this row}
Dest^ := Src^; //inc(Dest);
{Move to next column}
inc(Src, 2);
inc(Dest, incColDest);
inc(Col, incColDest);
until Col >= ImageWidth;
end;
{Decodes interlaced RGB alpha with 1 byte for each sample}
procedure TChunkIDAT.CopyInterlacedRGBAlpha8(const Pass: Byte;
Src, Dest, Trans: pChar);
var
Col, incDest, incTrans, incCol: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass] shr ShiftScale;
Dest := pChar(Longint(Dest) + Col * 3);
Trans := pChar(Longint(Trans) + Col);
incDest := (ColumnIncrement[Pass] shr ShiftScale) * 3 - 2;
incTrans := ColumnIncrement[Pass] shr ShiftScale;
incCol := ColumnIncrement[Pass] shr ShiftScale;
repeat
{Copy this row and alpha value}
Trans^ := pChar(Longint(Src) + 3)^;
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 1)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) )^]; //inc(Dest);
{Move to next column}
inc(Src, 4);
inc(Dest, incDest);
inc(Trans, incTrans);
inc(Col, incCol);
until Col >= ImageWidth;
end;
{Decodes interlaced RGB alpha with 2 bytes for each sample}
procedure TChunkIDAT.CopyInterlacedRGBAlpha16(const Pass: Byte;
Src, Dest, Trans: pChar);
var
Col, incDest, incTrans, incCol: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass] shr ShiftScale;
Dest := pChar(Longint(Dest) + Col * 3);
Trans := pChar(Longint(Trans) + Col);
incDest := (ColumnIncrement[Pass] shr ShiftScale) * 3 - 2;
incTrans := ColumnIncrement[Pass] shr ShiftScale;
incCol := ColumnIncrement[Pass] shr ShiftScale;
repeat
{Copy this row and alpha value}
Trans^ := pChar(Longint(Src) + 6)^;
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 4)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) )^]; //inc(Dest);
{Move to next column}
inc(Src, 8);
inc(Dest, incDest);
inc(Trans, incTrans);
inc(Col, incCol);
until Col >= ImageWidth;
end;
{Decodes 8 bit grayscale image followed by an alpha sample}
procedure TChunkIDAT.CopyInterlacedGrayscaleAlpha8(const Pass: Byte;
Src, Dest, Trans: pChar);
var
Col, incDest, incTrans, incCol: Integer;
begin
{Get first column, pointers to the data and enter in loop}
Col := ColumnStart[Pass] shr ShiftScale;
Dest := pChar(Longint(Dest) + Col);
Trans := pChar(Longint(Trans) + Col);
incDest := ColumnIncrement[Pass] shr ShiftScale;
incTrans := ColumnIncrement[Pass] shr ShiftScale;
incCol := ColumnIncrement[Pass] shr ShiftScale;
repeat
{Copy this grayscale value and alpha}
Dest^ := Src^; inc(Src);
Trans^ := Src^; inc(Src);
{Move to next column}
inc(Dest, incDest);
inc(Trans, incTrans);
inc(Col, incCol);
until Col >= ImageWidth;
end;
{Decodes 16 bit grayscale image followed by an alpha sample}
procedure TChunkIDAT.CopyInterlacedGrayscaleAlpha16(const Pass: Byte;
Src, Dest, Trans: pChar);
var
Col, incDest, incTrans, incCol: Integer;
begin
{Get first column, pointers to the data and enter in loop}
Col := ColumnStart[Pass] shr ShiftScale;
Dest := pChar(Longint(Dest) + Col);
Trans := pChar(Longint(Trans) + Col);
incDest := ColumnIncrement[Pass] shr ShiftScale;
incTrans := ColumnIncrement[Pass] shr ShiftScale;
incCol := ColumnIncrement[Pass] shr ShiftScale;
repeat
{Copy this grayscale value and alpha, transforming 16 bits into 8}
Dest^ := Src^; inc(Src, 2);
Trans^ := Src^; inc(Src, 2);
{Move to next column}
inc(Dest, incDest);
inc(Trans, incTrans);
inc(Col, incCol);
until Col >= ImageWidth;
end;
{Decodes an interlaced image}
procedure TChunkIDAT.DecodeInterlacedAdam7(Stream: PStream;
var ZLIBStream: TZStreamRec2; const Size: Integer; var crcfile: DWORD);
var
CurrentPass: Byte;
PixelsThisRow: Integer;
CurrentRow, CurOutRow: Integer;
Trans, Dta: pChar;
CopyProc: procedure(const Pass: Byte; Src, Dest, Trans: pChar) of object;
progress: Integer;
W, H: Integer;
Stop: Boolean;
begin
CopyProc := nil; {Initialize}
{Determine method to copy the image data}
case Header.ColorType of
{R, G, B values for each pixel}
COLOR_RGB:
case Header.BitDepth of
8: CopyProc := CopyInterlacedRGB8;
16: CopyProc := CopyInterlacedRGB16;
end {case Header.BitDepth};
{Palette}
COLOR_PALETTE, COLOR_GRAYSCALE:
case Header.BitDepth of
1, 4, 8: CopyProc := CopyInterlacedPalette148;
2 : if Header.ColorType = COLOR_PALETTE then
CopyProc := CopyInterlacedPalette2
else
CopyProc := CopyInterlacedGray2;
16 : CopyProc := CopyInterlacedGrayscale16;
end;
{RGB followed by alpha}
COLOR_RGBALPHA:
case Header.BitDepth of
8: CopyProc := CopyInterlacedRGBAlpha8;
16: CopyProc := CopyInterlacedRGBAlpha16;
end;
{Grayscale followed by alpha}
COLOR_GRAYSCALEALPHA:
case Header.BitDepth of
8: CopyProc := CopyInterlacedGrayscaleAlpha8;
16: CopyProc := CopyInterlacedGrayscaleAlpha16;
end;
end {case Header.ColorType};
{Prepare ShiftScale}
CASE Owner.Scale OF
psHalfSize : ShiftScale := 1;
psQuarterSize: ShiftScale := 2;
psEightsSize : ShiftScale := 3;
else ShiftScale := 0;
END;
{Adam7 method has 7 passes to make the final image}
FOR CurrentPass := 0 TO MaxPass[fOwner.fScale] DO
begin
if Assigned( Owner.fOnProgress ) then
begin
progress := CurrentPass * 100 div (MaxPass[fOwner.fScale]+1);
if not Owner.fOnProgress( Owner, CurrentPass, MaxPass[fOwner.fScale], progress ) then
break;
end;
{Calculates the number of pixels and bytes for this pass row}
PixelsThisRow := (Owner.Width - (ColumnStart[CurrentPass]) +
(ColumnIncrement[CurrentPass]) - 1)
div (ColumnIncrement[CurrentPass]);
Row_Bytes := BytesForPixels(PixelsThisRow, Header.ColorType,
Header.BitDepth);
{Clear buffer for this pass}
ZeroMemory(Row_Buffer[not RowUsed], Row_Bytes);
{Get current row index}
CurrentRow := RowStart[CurrentPass];
CurOutRow := CurrentRow shr ShiftScale;
{Get a pointer to the current row image data}
if not Assigned( Owner.OnGetRow ) then
begin
Dta := Ptr(Longint(Header.ImageData) + Header.BytesPerRow *
(ImageHeight - 1 - CurOutRow));
Trans := Ptr(Longint(Header.ImageAlpha) + ImageWidth * CurOutRow);
end;
if Row_Bytes > 0 then {There must have bytes for this interlaced pass}
while CurrentRow < Owner.Height do
begin
if Assigned( Owner.fOnProgress ) then
begin
if MaxPass[fOwner.fScale] > 0 then
progress := Round( CurrentPass * 100 / (MaxPass[fOwner.fScale]+1) +
CurrentRow * 100 / ImageHeight / (MaxPass[fOwner.fScale]+1) )
else progress := CurrentRow * 100 div (ImageHeight-1);
if not Owner.fOnProgress( Owner, CurrentPass, MaxPass[fOwner.fScale], progress ) then
break;
end;
{Reads this line and filter}
if IDATZlibRead(ZLIBStream, @Row_Buffer[RowUsed][0], Row_Bytes + 1,
EndPos, CRCFile) = 0 then break;
FilterRow;
{Copy image data}
if CurOutRow < ImageHeight then
begin
if Assigned( Owner.OnGetRow ) then
begin
W := Owner.Width;
H := Owner.Height;
Stop := FALSE;
Owner.OnGetRow( Owner, CurrentRow, W, H, PByte( Dta ), PByte( Trans ), Stop );
if Stop then Exit;
end;
CopyProc(CurrentPass, @Row_Buffer[RowUsed][1], Dta, Trans);
if Assigned( Owner.OnGetRow ) then
begin
W := -Owner.Width;
H := Owner.Height;
Stop := FALSE;
Owner.OnGetRow( Owner, CurrentRow, W, H, PByte( Dta ), PByte( Trans ), Stop );
if Stop then Exit;
end;
end;
{Use the other RowBuffer item}
RowUsed := not RowUsed;
{Move to the next row}
inc(CurrentRow, RowIncrement[CurrentPass]);
inc(CurOutRow, RowIncrement[CurrentPass] shr ShiftScale);
{Move pointer to the next line}
dec(Dta, (RowIncrement[CurrentPass] shr ShiftScale) * Header.BytesPerRow);
inc(Trans, (RowIncrement[CurrentPass] shr ShiftScale) * ImageWidth);
end {while CurrentRow < ImageHeight};
end {FOR CurrentPass};
end;
{Copy 8 bits RGB image}
procedure TChunkIDAT.CopyNonInterlacedRGB8(Src, Dest, Trans: pChar);
var I {$IFDEF ASM_VERSION} , incSrc {$ENDIF}: Integer;
begin
{$IFDEF ASM_VERSION}
I := ImageWidth;
incSrc := 3 shl ShiftScale - 4;
asm
PUSH ESI
PUSH EDI
PUSH EBP
MOV ESI, [Src]
MOV EDI, [Dest]
MOV ECX, [I]
MOV EBP, [incSrc]
@@loop:
LODSD
BSWAP EAX
ADD ESI, EBP
SHR EAX, 8
STOSW
SHR EAX, 16
STOSB
LOOP @@loop
POP EBP
POP EDI
POP ESI
end;
{$ELSE}
FOR I := 1 TO ImageWidth DO
begin
{Copy pixel values}
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 1)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) )^]; inc(Dest);
{Move to next pixel}
inc(Src, 3 shl ShiftScale);
end {for I}
{$ENDIF}
end;
{Copy 16 bits RGB image}
procedure TChunkIDAT.CopyNonInterlacedRGB16(Src, Dest, Trans: pChar);
var I, incSrc: Integer;
{$IFDEF ASM_VERSION}
GTable: Pointer;
{$ENDIF}
begin
{$IFDEF ASM_VERSION}
I := ImageWidth;
GTable := @ fOwner.GammaTable[0];
incSrc := 6 shl ShiftScale - 5;
asm
PUSH ESI
PUSH EDI
PUSH EBX
PUSH EBP
MOV ESI, [Src]
MOV EDI, [Dest]
MOV EBX, [GTable]
MOV ECX, [I]
MOV EBP, [incSrc]
XOR EAX, EAX
@@loop:
LODSB
MOV DH, [EBX+EAX]
INC ESI
BSWAP EDX
LODSB
MOV DH, [EBX+EAX]
INC ESI
LODSB
MOV DL, [EBX+EAX ]
ADD ESI, EBP
XCHG EAX, EDX
STOSW
SHR EAX, 16
STOSB
XCHG EAX, EDX
LOOP @@loop
POP EBP
POP EBX
POP EDI
POP ESI
end;
{$ELSE}
incSrc := 6 shl ShiftScale;
FOR I := 1 TO ImageWidth DO
begin
//Since windows does not supports (perhaps it does ?) 2 bytes for
//each R, G, B value, the method will read only 1 byte from it
{Copy pixel values}
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 4)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) )^]; inc(Dest);
{Move to next pixel}
inc(Src, incSrc);
end {for I}
{$ENDIF}
end;
{Copy types using palettes (1, 4 or 8 bits per pixel)}
procedure TChunkIDAT.CopyNonInterlacedPalette148(Src, Dest, Trans: pChar);
var I, incSrc: Integer;
begin
{It's simple as copying the data}
if ShiftScale = 0 then
//CopyMemory(Dest, Src, Row_Bytes)
Move( Src^, Dest^, Row_Bytes )
else
{$IFDEF ASM_VERSION}
begin
I := ImageWidth * (Header.BitDepth div 8);
incSrc := 1 shl ShiftScale - 1;
asm
PUSH ESI
PUSH EDI
PUSH EBP
MOV ESI, [Src]
MOV EDI, [Dest]
MOV ECX, [I]
MOV EBP, [incSrc]
@@loop:
MOVSB
ADD ESI, EBP
LOOP @@loop
POP EBP
POP EDI
POP ESI
end;
end
{$ELSE}
begin
incSrc := 1 shl ShiftScale;
FOR I := 1 TO ImageWidth * (Header.BitDepth div 8) DO
begin
Byte(Dest^) := pByte(Longint(Src))^; inc(Dest);
{Move to next pixel}
inc(Src, incSrc);
end {for I}
end;
{$ENDIF}
end;
{Copy grayscale types using 2 bits for each pixel}
procedure TChunkIDAT.CopyNonInterlacedGray2(Src, Dest, Trans: pChar);
var
i: Integer;
begin
{2 bits is not supported, this routine will converted into 4 bits}
FOR i := 1 TO Row_Bytes do
begin
Byte(Dest^) := ((Byte(Src^) shr 2) and $F) or ((Byte(Src^)) and $F0); inc(Dest);
Byte(Dest^) := ((Byte(Src^) shl 2) and $F) or ((Byte(Src^) shl 4) and $F0); inc(Dest);
inc(Src, 1 shl ShiftScale);
end {FOR i}
end;
{Copy types using palette with 2 bits for each pixel}
var Palette2_To_Palette4_Initialized: Boolean;
Palette2_To_Palette4: array[ 0..255 ] of Word;
procedure Init_Palette2_To_Palette4;
var i: Integer;
begin
Palette2_To_Palette4_Initialized := TRUE;
for i := 0 to 255 do
begin
Palette2_To_Palette4[ i ] := (i shr 4) and 3 or (i shr 2) and $30 or
( ( (i and 3) or (i shl 2) and $30 ) shl 8);
end;
end;
procedure TChunkIDAT.CopyNonInterlacedPalette2(Src, Dest, Trans: pChar);
var I {$IFDEF ASM_VERSION}, incSrc {$ENDIF}: Integer;
begin
{$IFDEF ASM_VERSION}
if not Palette2_To_Palette4_Initialized then
Init_Palette2_To_Palette4;
I := Row_Bytes;
incSrc := 1 shl ShiftScale - 1;
asm
PUSH ESI
PUSH EDI
PUSH EBX
PUSH EBP
MOV ESI, [Src]
MOV EDI, [Dest]
MOV ECX, [I]
LEA EBX, [Palette2_To_Palette4]
MOV EBP, [incSrc]
@@loop:
XOR EAX, EAX
LODSB
MOV AX, word ptr [EBX+EAX*2]
STOSW
ADD ESI, EBP
LOOP @@loop
POP EBP
POP EDI
POP EBX
POP ESI
end;
{$ELSE}
{2 bits is not supported, this routine will converted into 4 bits}
FOR i := 1 TO Row_Bytes do
begin
Byte(Dest^) := ((Byte(Src^) shr 4) and $3) or ((Byte(Src^) shr 2) and $30); inc(Dest);
Byte(Dest^) := (Byte(Src^) and $3) or ((Byte(Src^) shl 2) and $30); inc(Dest);
inc(Src, 1 shl ShiftScale);
end {FOR i}
{$ENDIF}
end;
{Copy grayscale images with 16 bits}
procedure TChunkIDAT.CopyNonInterlacedGrayscale16(Src, Dest, Trans: pChar);
var I {$IFDEF ASM_VERSION}, incSrc{$ENDIF}: Integer;
begin
{$IFDEF ASM_VERSION}
I := ImageWidth;
incSrc := 2 shl ShiftScale - 1;
asm
PUSH ESI
PUSH EDI
PUSH EBP
MOV ESI, [Src]
MOV EDI, [Dest]
MOV ECX, [I]
MOV EBP, [incSrc]
@@loop:
MOVSB
ADD ESI, EBP
LOOP @@loop
POP EBP
POP EDI
POP ESI
end;
{$ELSE}
FOR I := 1 TO ImageWidth DO
begin
{Windows does not supports 16 bits for each pixel in grayscale}
{mode, so reduce to 8}
Dest^ := Src^; inc(Dest);
{Move to next pixel}
inc(Src, 2 shl ShiftScale);
end {for I}
{$ENDIF}
end;
{Copy 8 bits per sample RGB images followed by an alpha byte}
procedure TChunkIDAT.CopyNonInterlacedRGBAlpha8(Src, Dest, Trans: pChar);
var I: Integer;
{$IFDEF ASM_VERSION}
incSrc: Integer;
GTable: Pointer;
{$ENDIF}
begin
{$IFDEF ASM_VERSION}
if not Palette2_To_Palette4_Initialized then
Init_Palette2_To_Palette4;
I := ImageWidth;
GTable := @ fOwner.GammaTable[0];
incSrc := (4 shl ShiftScale) - 4;
asm
PUSH ESI
PUSH EDI
PUSH EBX
PUSH EBP
MOV ESI, [Src]
MOV EDI, [Dest]
MOV ECX, [I]
SHL ECX, 8
MOV EBX, [GTable]
MOV CL, byte ptr [incSrc]
MOV EBP, [Trans]
@@loop:
XOR EAX, EAX
LODSB
MOV DH, [EBX+EAX]
BSWAP EDX
LODSB
MOV DH, [EBX+EAX]
LODSB
MOV DL, [EBX+EAX]
MOV EAX, EDX
STOSW
SHR EAX, 16
STOSB
LODSB
MOV [EBP], AL
INC EBP
MOVZX EAX, CL
ADD ESI, EAX
SUB ECX, 256
MOV EAX, ECX
SHR EAX, 8
JNZ @@loop
POP EBP
POP EBX
POP EDI
POP ESI
end;
{$ELSE}
FOR I := 1 TO ImageWidth DO
begin
{Copy pixel values and transparency}
Trans^ := pChar(Longint(Src) + 3)^; inc(Trans);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 1)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) )^]; inc(Dest);
{Move to next pixel}
inc(Src, 4 shl ShiftScale);
end {for I}
{$ENDIF}
end;
{Copy 16 bits RGB image with alpha using 2 bytes for each sample}
procedure TChunkIDAT.CopyNonInterlacedRGBAlpha16(Src, Dest, Trans: pChar);
var I: Integer;
{$IFDEF ASM_VERSION}
incSrc: Integer;
GTable: Pointer;
{$ENDIF}
begin
{$IFDEF ASM_VERSION}
if not Palette2_To_Palette4_Initialized then
Init_Palette2_To_Palette4;
I := ImageWidth;
GTable := @ fOwner.GammaTable[0];
incSrc := 8 shl ShiftScale + 1;
asm
PUSH ESI
PUSH EDI
PUSH EBX
PUSH EBP
MOV ESI, [Src]
MOV EDI, [Dest]
MOV ECX, [I]
SHL ECX, 8
LEA EBX, [GTable]
MOV CL, byte ptr [incSrc]
MOV EBP, [Trans]
@@loop:
XOR EAX, EAX
LODSB
MOV DH, [EBX+EAX]
INC ESI
BSWAP EDX
LODSB
MOV DH, [EBX+EAX]
INC ESI
LODSB
MOV DL, [EBX+EAX]
INC ESI
MOV EAX, EDX
STOSW
SHR EAX, 16
STOSB
LODSB
MOV [EBP], AL
INC EBP
MOVZX EAX, CL
ADD ESI, EAX
SUB ECX, 256
MOV EAX, ECX
SHR EAX, 8
JNZ @@loop
POP EBP
POP EDI
POP EBX
POP ESI
end;
{$ELSE}
FOR I := 1 TO ImageWidth DO
begin
//Copy rgb and alpha values (transforming from 16 bits to 8 bits)
{Copy pixel values}
Trans^ := pChar(Longint(Src) + 6)^; inc(Trans);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 4)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := fOwner.GammaTable[pByte(Longint(Src) )^]; inc(Dest);
{Move to next pixel}
inc(Src, 8 shl ShiftScale);
end {for I}
{$ENDIF}
end;
{Copy 8 bits per sample grayscale followed by alpha}
procedure TChunkIDAT.CopyNonInterlacedGrayscaleAlpha8(Src, Dest, Trans: PChar);
var I{$IFDEF ASM_VERSION}, incSrc{$ENDIF}: Integer;
begin
{$IFDEF ASM_VERSION}
I := ImageWidth;
incSrc := 2 shl ShiftScale - 1;
asm
PUSH ESI
PUSH EDI
PUSH EBX
PUSH EBP
MOV ESI, [Src]
MOV EDI, [Dest]
MOV EBX, [Trans]
MOV ECX, [I]
MOV EBP, [incSrc]
@@loop:
LODSW
STOSB
MOV [EBX], AH
ADD ESI, EBP
INC EBX
LOOP @@loop
POP EBP
POP EBX
POP EDI
POP ESI
end;
{$ELSE}
FOR I := 1 TO ImageWidth DO
begin
{Copy alpha value and then gray value}
Dest^ := Src^; inc(Src);
Trans^ := Src^; inc(Src, (2 shl ShiftScale) - 1);
inc(Dest); inc(Trans);
end;
{$ENDIF}
end;
{Copy 16 bits per sample grayscale followed by alpha}
procedure TChunkIDAT.CopyNonInterlacedGrayscaleAlpha16(Src, Dest, Trans: PChar);
var I {$IFDEF ASM_VERSION}, incSrc{$ENDIF}: Integer;
begin
{$IFDEF ASM_VERSION}
I := ImageWidth;
incSrc := 4 shl ShiftScale - 4;
asm
PUSH ESI
PUSH EDI
PUSH EBX
PUSH EBP
MOV ESI, [Src]
MOV EDI, [Dest]
MOV EBX, [Trans]
MOV ECX, [I]
MOV EBP, [incSrc]
@@loop:
LODSD
STOSB
SHR EAX, 16
MOV [EBX], AL
ADD ESI, EBP
INC EBX
LOOP @@loop
POP EBP
POP EBX
POP EDI
POP ESI
end;
{$ELSE}
FOR I := 1 TO ImageWidth DO
begin
{Copy alpha value and then gray value}
Dest^ := Src^; inc(Src, 2);
Trans^ := Src^; inc(Src, (4 shl ShiftScale) - 2);
inc(Dest); inc(Trans);
end;
{$ENDIF}
end;
{Decode non interlaced image}
procedure TChunkIDAT.DecodeNonInterlaced(Stream: PStream;
var ZLIBStream: TZStreamRec2; const Size: Integer; var crcfile: DWORD);
var
j, y: Integer;
Trans, Dta: pChar;
CopyProc: procedure(Src, Dest, Trans: pChar) of object;
W, H: Integer;
Stop: Boolean;
begin
CopyProc := nil; {Initialize}
{Determines the method to copy the image data}
case Header.ColorType of
{R, G, B values}
COLOR_RGB:
case Header.BitDepth of
8: CopyProc := CopyNonInterlacedRGB8;
16: CopyProc := CopyNonInterlacedRGB16;
end;
{Types using palettes}
COLOR_PALETTE, COLOR_GRAYSCALE:
case Header.BitDepth of
1, 4, 8: CopyProc := CopyNonInterlacedPalette148;
2 : if Header.ColorType = COLOR_PALETTE then
CopyProc := CopyNonInterlacedPalette2
else
CopyProc := CopyNonInterlacedGray2;
16 : CopyProc := CopyNonInterlacedGrayscale16;
end;
{R, G, B followed by alpha}
COLOR_RGBALPHA:
case Header.BitDepth of
8 : CopyProc := CopyNonInterlacedRGBAlpha8;
16 : CopyProc := CopyNonInterlacedRGBAlpha16;
end;
{Grayscale followed by alpha}
COLOR_GRAYSCALEALPHA:
case Header.BitDepth of
8 : CopyProc := CopyNonInterlacedGrayscaleAlpha8;
16 : CopyProc := CopyNonInterlacedGrayscaleAlpha16;
end;
end;
{Prepare ShiftScale}
CASE Owner.Scale OF
psHalfSize : ShiftScale := 1;
psQuarterSize: ShiftScale := 2;
psEightsSize : ShiftScale := 3;
else ShiftScale := 0;
END;
{Get the image data pointer}
if not Assigned( Owner.OnGetRow ) then
begin
Longint(Dta) := Longint(Header.ImageData) +
Header.BytesPerRow * (ImageHeight - 1);
Trans := Header.ImageAlpha;
end;
{Reads each line}
j := 0;
FOR y := 0 to Owner.Height - 1 do
begin
if Assigned( Owner.fOnProgress ) then
begin
if not Owner.fOnProgress( Owner, 0, 0, j * 100 div Integer( Max( 1, Owner.Height-1 ) ) ) then
break;
end;
{Read this line Row_Buffer[RowUsed][0] if the filter type for this line}
if IDATZlibRead(ZLIBStream, @Row_Buffer[RowUsed][0], Row_Bytes + 1, EndPos,
CRCFile) = 0 then break;
{Filter the current row}
FilterRow;
if y and ((1 shl ShiftScale)-1) = 0 then
begin
{Copies non interlaced row to image}
if j < ImageHeight then
begin
if Assigned( Owner.OnGetRow ) then
begin
W := Owner.Width;
H := Owner.Height;
Stop := FALSE;
Owner.OnGetRow( Owner, y, W, H, PByte( Dta ), PByte( Trans ), Stop );
if Stop then Exit;
end;
CopyProc(@Row_Buffer[RowUsed][1], Dta, Trans);
if Assigned( Owner.OnGetRow ) then
begin
W := -Owner.Width;
H := Owner.Height;
Stop := FALSE;
Owner.OnGetRow( Owner, y, W, H, PByte( Dta ), PByte( Trans ), Stop );
if Stop then Exit;
end;
end;
inc( j );
{Invert line used}
dec(Dta, Header.BytesPerRow);
inc(Trans, ImageWidth);
end;
RowUsed := not RowUsed;
end {for I};
end;
procedure LogPaeth1( pp, a, b, c: Integer ); stdcall;
begin
LogFileOutput( GetStartDir + 'log_paet_asm.txt', Int2Str( pp ) + '<-' +
Int2Str( a ) + ',' + Int2Str( b ) + ',' + Int2Str( c ) );
end;
procedure LogPaethAsm;
asm
PUSH EAX
PUSH EDX
MOVZX EAX, AL
MOV EDX, EBX
MOVZX EDX, BL
PUSH EDX
MOV EDX, EBX
SHR EDX, 16
MOVZX EDX, DL
PUSH EDX
MOVZX EDX, BH
PUSH EDX
PUSH EAX
CALL LogPaeth1
POP EDX
POP EAX
end;
{$IFDEF PAETH_TABLE} // Don't use it! Just to test performance
// and it is proved WORSTER then direct calculation!
var PaethTableInitialized: Boolean;
PaethTable: PByte;
procedure InitPaethTable;
var P: PByte;
a, b: Byte;
V: Byte;
i, c: Integer;
pa, pb, pc: Integer;
begin
PaethTableInitialized := TRUE;
GetMem( PaethTable, 256 * 256 * 256 div 4 );
P := PaethTable;
for a := 0 to 255 do
for b := 0 to 255 do
begin
c := 0;
while c <= 255-3 do
begin
V := 0;
for i := 0 to 3 do
begin
pa := abs( b - c );
pb := abs( a - c );
pc := abs( a + b - 2*c );
V := V shr 2;
if (pa <= pb) and (pa <= pc) then
V := V or $C0
else
if (pb <= pc) then V := V or $80
else V := V or $40;
inc( c );
end;
P^ := V; inc( P );
end;
end;
end;
{$ENDIF}
{Filter the current line}
procedure TChunkIDAT.FilterRow;
var
Col: DWORD;
Offs : Integer;
p1, p2 : PByteArray;
{$IFDEF ASM_VERSION}
Src, Dst: PByte;
CntBytes: Integer;
{$IFDEF SMALLEST_CODE}
Src2: PByte;
{$ENDIF}
{$ELSE}
{$IFDEF PAS_PNG}
{$ELSE}
vv, aboveleft: Integer;
above, left: Integer;
{$ENDIF}
pp: Byte;
{$ENDIF}
begin
{Test the filter}
case Row_Buffer[RowUsed]^[0] of
{No filtering for this line}
FILTER_NONE: begin
{$IFDEF COUNT_FILTER}
inc( CountFilters[ pfNone ] );
{$ENDIF}
end;
{AND 255 serves only to never let the result be larger than one byte}
{Sub filter}
FILTER_SUB:
begin
{$IFDEF COUNT_FILTER}
inc( CountFilters[ pfSub ] );
{$ENDIF}
p1 := @Row_Buffer[RowUsed][Offset + 1];
Offs := -Offset;
FOR Col := Offset + 1 to Row_Bytes DO
begin
p1[0] := (p1[0] + p1[Offs]); // and 255;
Inc(PByte(p1));
end;
end;
{Up filter}
FILTER_UP:
begin
{$IFDEF COUNT_FILTER}
inc( CountFilters[ pfUp ] );
{$ENDIF}
{$IFDEF PNG_MMX}
if mmxSupported then
begin
Src := @Row_Buffer[not RowUsed][0];
Dst := @Row_Buffer[RowUsed][0];
CntBytes := (Row_Bytes + 8) shr 3;
asm
MOV EDX, [Dst]
MOV EAX, [Src]
SUB EAX, EDX
MOV ECX, [CntBytes]
movq mm0, qword ptr [EDX+EAX]
psrlq mm0, 8
psllq mm0, 8
jmp @@1
@@loop:
movq mm0, qword ptr [EDX+EAX]
@@1:
movq mm1, qword ptr [EDX]
paddb mm0, mm1
movq qword ptr [EDX], mm0
ADD EDX, 8
LOOP @@loop
emms
end;
end
else
{$ENDIF}
begin
p1 := @Row_Buffer[RowUsed][1];
p2 := @Row_Buffer[not RowUsed][1];
FOR Col := 1 to Row_Bytes DO
begin
p1[0] := (p1[0] + p2[0]) and 255;
Inc(PByte(p1)); Inc(PByte(p2));
end;
end;
end;
{Average filter}
FILTER_AVERAGE:
begin
{$IFDEF COUNT_FILTER}
inc( CountFilters[ pfAverage ] );
{$ENDIF}
begin
p1 := @Row_Buffer[RowUsed][1];
p2 := @Row_Buffer[not RowUsed][1];
For Col := 0 to Offset-1 do begin
p1[0] := (p1[0] + p2[0] div 2); // and 255;
Inc(PByte(p1)); Inc(PByte(p2));
end;
Offs := -Offset;
For Col := Offset to Row_Bytes-1 do
begin
p1[0] := (p1[0] + ( p1[Offs] + p2[0] ) div 2); // and 255;
//cur = (cur + ( left + above) div 2) and 255;
Inc(PByte(p1)); Inc(PByte(p2));
end;
end;
end;
{Paeth filter}
FILTER_PAETH:
begin
{$IFDEF COUNT_FILTER}
inc( CountFilters[ pfPaeth ] );
{$ENDIF}
{$IFDEF ASM_VERSION}
{$IFDEF PAETH_TABLE}
if not PaethTableInitialized then
InitPaethTable;
{$ENDIF}
Offs := Offset;
CntBytes := Offs;
Dst := @Row_Buffer[RowUsed][1];
Src := @Row_Buffer[not RowUsed][1]; // above
//Src1 := @row_buffer[RowUsed][1]; // left
//Src2 := @row_buffer[not RowUsed][0]; //aboveleft
Col := Row_Bytes - DWORD( Offs );
asm
PUSH ESI
PUSH EDI
PUSH EBX
MOV ESI, [Src]
MOV EDI, [Dst]
MOV ECX, [CntBytes]
JECXZ @@Do_loop2
@@loop1:
LODSB
ADD AL, [EDI]
STOSB
LOOP @@loop1
@@Do_loop2:
PUSH EBP
//XOR EBX, EBX
MOV EBX, [Offs]
NEG EBX
MOV EBP, [Col]
{$IFDEF PAETH_TABLE}
MOV EDX, [PaethTable]
nop
{$ELSE}
nop
nop
nop
{$ENDIF}
@@loop2:
{$IFDEF PAETH_TABLE}
XOR EAX, EAX
MOV AH, [EDI+EBX]
LODSB
SHL EAX, 8
MOV AL, [ESI+EBX-1]
{MOV DL, AH
MOV CL, AL
SHR EAX, 16
CALL PaethPredictor
MOV CL, AL}
MOV ECX, EAX
SHL ECX, 8
MOV CL, CH
SHR EAX, 2
MOV AL, byte ptr [EDX+EAX]
AND CL, 3
ADD CL, CL
SHR AL, CL
AND AL, 3
SHL AL, 3
MOV CL, AL
SHR ECX, CL
{$ELSE}
MOV DH, [EDI+EBX]
XOR EAX, EAX
MOV DL, [ESI+EBX]
LODSB
// paeth filter( DH, AL, DL ):
{PUSH ECX
MOV ECX, EDX
MOV DL, AL
MOV AL, DH
CALL PaethPredictor
POP ECX}
PUSH ESI
PUSH EDI
MOV ECX, EDX
SHL ECX, 16
MOV CH, AL // ECX = [a][c][b][?]
MOV ESI, EAX // ESI = b
MOVZX EDI, DL // EDI = c
NEG EDI // EDI = -c
MOVZX EAX, DH // EAX = a
ADD ESI, EAX
LEA ESI, [ESI+EDI*2] // ESI = a+b-2c
ADD EAX, EDI // EAX = a-c
CDQ
XOR EAX, EDX
SUB EAX, EDX // EAX = |a-c| = pb
XCHG EAX, ESI // ESI = pb, EAX = a+b-2c
CDQ
XOR EAX, EDX
SUB EAX, EDX // EAX = |a+b-2c| = pc
XCHG EDI, EAX // EDI = pc, EAX = -c
MOVZX EDX, CH // EDX = b
ADD EAX, EDX // EAX = b-c
CDQ
XOR EAX, EDX
SUB EAX, EDX // EAX = |b-c| = pa
// EAX = pa , ESI = pb , EDI = pc
CMP EAX, ESI // pa <= pb ?
JA @@1
CMP EAX, EDI // pa <= pc ?
MOV CL, 24
JBE @@2
@@1:
MOV CL, 8
CMP ESI, EDI
JBE @@2
MOV CL, 16
@@2:
SHR ECX, CL
POP EDI
POP ESI
{$ENDIF}
ADD [EDI], CL
//ADD [EDI], AL
INC EDI
DEC EBP
JNZ @@loop2
POP EBP
POP EBX
POP EDI
POP ESI
end;
{$ELSE}
{$IFDEF PAS_PNG}////////////////////////////////////////
{Initialize}
p1 := @Row_Buffer[RowUsed][1];
p2 := @Row_Buffer[not RowUsed][1];
For Col := 0 to Offset-1 do begin
pp := p2[0]; // PaethPredictor(0, p2[0], 0);
p1[0] := (pp + p1[0]) and 255;
Inc(PByte(p1)); Inc(PByte(p2));
end;
Offs := -Offset;
For Col := Offset to Row_Bytes-1 do begin
pp := PaethPredictor(p1[Offs], // left
p2[0], // above
p2[Offs]); // above-left
p1[0] := (pp + p1[0]) and 255;
Inc(PByte(p1)); Inc(PByte(p2));
end;
{$ELSE}/////////////////////////////////////////////////
{Initialize}
left := 0;
aboveleft := 0;
{Test each byte}
FOR Col := 1 to Row_Bytes DO
begin
{Obtains above pixel}
above := Row_Buffer[not RowUsed][Col];
{Obtains left and top-left pixels}
if (col - 1 >= offset) Then
begin
left := row_buffer[RowUsed][col - offset];
aboveleft := row_buffer[not RowUsed][col - offset];
end;
{Obtains current pixel and paeth predictor}
vv := row_buffer[RowUsed][Col];
pp := PaethPredictor(left, above, aboveleft);
{$IFDEF DEBUG_PAETH}
LogFileOutput( GetStartDir + 'paeth_log.txt',
Int2Str( pp ) + ' <- ' + Int2Str( left ) + ',' +
Int2Str( above ) + ',' + Int2Str( aboveleft ) );
{$ENDIF}
{Calculates}
Row_Buffer[RowUsed][Col] := (pp + vv) and $FF;
end {for};
{$ENDIF}
{$ENDIF}
end;
end {case};
end;
{Reads the image data from the stream}
function IDAT_Load(Chunk: Pointer; Stream: PStream; const ChunkName: TChunkName;
Size: Integer): Boolean;
var
ZLIBStream: TZStreamRec2;
CRCCheck,
CRCFile: DWORD;
Hdr: PChunkIHDR;
begin
with PChunkIDAT( Chunk )^ do
begin
{Get pointer to the header chunk}
Hdr := Owner.Header;
{Build palette if necessary}
if Hdr.HasPalette then PreparePalette();
{Copy image width and height}
ImageWidth := Hdr.Width;
ImageHeight := Hdr.Height;
if Owner.Scale <> psFullImage then
begin
ImageWidth := Owner.ScaledWidth;
ImageHeight := Owner.ScaledHeight;
end;
{Initialize to calculate CRC}
CRCFile := update_crc($ffffffff, @ChunkName[0], 4);
Owner.GetPixelInfo(Row_Bytes, Offset); {Obtain line information}
ZLIBStream := ZLIBInitInflate(Stream); {Initializes decompression}
{Calculate ending position for the current IDAT chunk}
EndPos := Stream.Position + DWORD( Size );
{Allocate memory}
GetMem(Row_Buffer[false], Row_Bytes + 12);
GetMem(Row_Buffer[true], Row_Bytes + 12);
ZeroMemory(Row_Buffer[false], Row_bytes + 1);
{Set the variable to alternate the Row_Buffer item to use}
RowUsed := TRUE;
{Call special methods for the different interlace methods}
case Owner.InterlaceMethod of
imNone: DecodeNonInterlaced(stream, ZLIBStream, Size, crcfile);
imAdam7: DecodeInterlacedAdam7(stream, ZLIBStream, size, crcfile);
end;
{Free memory}
ZLIBTerminateInflate(ZLIBStream); {Terminates decompression}
FreeMem(Row_Buffer[False]); //, Row_Bytes + 1);
FreeMem(Row_Buffer[True]); //, Row_Bytes + 1);
{Now checks CRC}
Stream.Read(CRCCheck, 4);
if Owner.FErrorOnInvalidCRC then
begin
CRCFile := CRCFile xor $ffffffff;
CRCCheck := ByteSwap(CRCCheck);
Result := CRCCheck = CRCFile;
{Handle CRC error}
if not Result then
begin
{In case it coult not load chunk}
Owner.FError := ErrInvalidCRC;
exit;
end;
end
else
Result := TRUE;
end;
end;
const
IDATHeader: TChunkName = ('I', 'D', 'A', 'T');
BUFFER = 5;
{Saves the IDAT chunk to a stream}
function IDAT_Save(Chunk: Pointer; Stream: PStream): Boolean;
var
ZLIBStream : TZStreamRec2;
Hdr: PChunkIHDR;
begin
with PChunkIDAT( Chunk )^ do
begin
{Get pointer to the header chunk}
Hdr := Owner.Header;
{Copy image width and height}
ImageWidth := Hdr.Width;
ImageHeight := Hdr.Height;
Owner.GetPixelInfo(Row_Bytes, Offset); {Obtain line information}
{Allocate memory}
GetMem(Encode_Buffer[BUFFER], Row_Bytes);
ZeroMemory(Encode_Buffer[BUFFER], Row_Bytes);
{Allocate buffers for the filters selected}
{Filter none will always be calculated to the other filters to work}
GetMem(Encode_Buffer[FILTER_NONE], Row_Bytes);
ZeroMemory(Encode_Buffer[FILTER_NONE], Row_Bytes);
if pfSub in Owner.Filters then
GetMem(Encode_Buffer[FILTER_SUB], Row_Bytes);
if pfUp in Owner.Filters then
GetMem(Encode_Buffer[FILTER_UP], Row_Bytes);
if pfAverage in Owner.Filters then
GetMem(Encode_Buffer[FILTER_AVERAGE], Row_Bytes);
if pfPaeth in Owner.Filters then
GetMem(Encode_Buffer[FILTER_PAETH], Row_Bytes);
{Initialize ZLIB}
ZLIBStream := ZLIBInitDeflate(Stream, Owner.fCompressionLevel,
Owner.MaxIdatSize);
{Write data depending on the interlace method}
case Owner.InterlaceMethod of
imNone: EncodeNonInterlaced(stream, ZLIBStream);
imAdam7: EncodeInterlacedAdam7(stream, ZLIBStream);
end;
{Terminates ZLIB}
ZLIBTerminateDeflate(ZLIBStream);
{Release allocated memory}
FreeMem(Encode_Buffer[BUFFER]); //, Row_Bytes);
FreeMem(Encode_Buffer[FILTER_NONE]); //, Row_Bytes);
if pfSub in Owner.Filters then
FreeMem(Encode_Buffer[FILTER_SUB]); //, Row_Bytes);
if pfUp in Owner.Filters then
FreeMem(Encode_Buffer[FILTER_UP]); //, Row_Bytes);
if pfAverage in Owner.Filters then
FreeMem(Encode_Buffer[FILTER_AVERAGE]); //, Row_Bytes);
if pfPaeth in Owner.Filters then
FreeMem(Encode_Buffer[FILTER_PAETH]); //, Row_Bytes);
{Everything went ok}
Result := True;
end;
end;
{Writes the IDAT using the settings}
procedure WriteIDAT(Stream: PStream; Data: Pointer; const Length: DWORD);
var
ChunkLen, CRC: DWORD;
begin
{Writes IDAT header}
ChunkLen := ByteSwap(Length);
Stream.Write(ChunkLen, 4); {Chunk length}
Stream.Write(IDATHeader[0], 4); {Idat header}
CRC := update_crc($ffffffff, @IDATHeader[0], 4); {Crc part for header}
{Writes IDAT data and calculates CRC for data}
Stream.Write(Data^, Length);
CRC := Byteswap(update_crc(CRC, Data, Length) xor $ffffffff);
{Writes final CRC}
Stream.Write(CRC, 4);
end;
{Compress and writes IDAT chunk data}
procedure TChunkIDAT.IDATZlibWrite(var ZLIBStream: TZStreamRec2;
Buffer: Pointer; const Length: DWORD);
begin
with ZLIBStream, ZLIBStream.ZLIB do
begin
{Set data to be compressed}
next_in := Buffer;
avail_in := Length;
{Compress all the data avaliable to compress}
while avail_in > 0 do
begin
deflate(ZLIB, Z_NO_FLUSH);
{The whole buffer was used, save data to stream and restore buffer}
if avail_out = 0 then
begin
{Writes this IDAT chunk}
WriteIDAT(fStream, Data, ZLIBAllocate);
{Restore buffer}
next_out := Data;
avail_out := ZLIBAllocate;
end {if avail_out = 0};
end {while avail_in};
end {with ZLIBStream, ZLIBStream.ZLIB}
end;
{Finishes compressing data to write IDAT chunk}
procedure TChunkIDAT.FinishIDATZlib(var ZLIBStream: TZStreamRec2);
begin
with ZLIBStream, ZLIBStream.ZLIB do
begin
{Set data to be compressed}
next_in := nil;
avail_in := 0;
while deflate(ZLIB,Z_FINISH) <> Z_STREAM_END do
begin
{Writes this IDAT chunk}
WriteIDAT(fStream, Data, ZLIBAllocate - avail_out);
{Re-update buffer}
next_out := Data;
avail_out := ZLIBAllocate;
end;
if avail_out < ZLIBAllocate then
{Writes final IDAT}
WriteIDAT(fStream, Data, ZLIBAllocate - avail_out);
end {with ZLIBStream, ZLIBStream.ZLIB};
end;
{Copy memory to encode RGB image with 1 byte for each color sample}
procedure TChunkIDAT.EncodeNonInterlacedRGB8(Src, Dest, Trans: pChar);
var
I: Integer;
begin
FOR I := 1 TO ImageWidth DO
begin
{Copy pixel values}
Byte(Dest^) := fOwner.InverseGamma[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := fOwner.InverseGamma[pByte(Longint(Src) + 1)^]; inc(Dest);
Byte(Dest^) := fOwner.InverseGamma[pByte(Longint(Src) )^]; inc(Dest);
{Move to next pixel}
inc(Src, 3);
end {for I}
end;
{Copy memory to encode RGB images with 16 bits for each color sample}
procedure TChunkIDAT.EncodeNonInterlacedRGB16(Src, Dest, Trans: pChar);
var
I: Integer;
begin
FOR I := 1 TO ImageWidth DO
begin
//Now we copy from 1 byte for each sample stored to a 2 bytes (or 1 word)
//for sample
{Copy pixel values}
pWORD(Dest)^ := fOwner.InverseGamma[pByte(Longint(Src) + 2)^]; inc(Dest, 2);
pWORD(Dest)^ := fOwner.InverseGamma[pByte(Longint(Src) + 1)^]; inc(Dest, 2);
pWORD(Dest)^ := fOwner.InverseGamma[pByte(Longint(Src) )^]; inc(Dest, 2);
{Move to next pixel}
inc(Src, 3);
end {for I}
end;
{Copy memory to encode types using palettes (1, 4 or 8 bits per pixel)}
procedure TChunkIDAT.EncodeNonInterlacedPalette148(Src, Dest, Trans: pChar);
begin
{It's simple as copying the data}
CopyMemory(Dest, Src, Row_Bytes);
end;
{Copy memory to encode grayscale images with 2 bytes for each sample}
procedure TChunkIDAT.EncodeNonInterlacedGrayscale16(Src, Dest, Trans: pChar);
var
I: Integer;
begin
FOR I := 1 TO ImageWidth DO
begin
//Now we copy from 1 byte for each sample stored to a 2 bytes (or 1 word)
//for sample
pWORD(Dest)^ := pByte(Longint(Src))^; inc(Dest, 2);
{Move to next pixel}
inc(Src);
end {for I}
end;
{Encode images using RGB followed by an alpha value using 1 byte for each}
procedure TChunkIDAT.EncodeNonInterlacedRGBAlpha8(Src, Dest, Trans: pChar);
var
i: Integer;
begin
{Copy the data to the destination, including data from Trans pointer}
FOR i := 1 TO ImageWidth do
begin
Byte(Dest^) := Owner.InverseGamma[PByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := Owner.InverseGamma[PByte(Longint(Src) + 1)^]; inc(Dest);
Byte(Dest^) := Owner.InverseGamma[PByte(Longint(Src) )^]; inc(Dest);
Dest^ := Trans^; inc(Dest);
inc(Src, 3); inc(Trans);
end {for i};
end;
{Encode images using RGB followed by an alpha value using 2 byte for each}
procedure TChunkIDAT.EncodeNonInterlacedRGBAlpha16(Src, Dest, Trans: pChar);
var
i: Integer;
begin
{Copy the data to the destination, including data from Trans pointer}
FOR i := 1 TO ImageWidth do
begin
pWord(Dest)^ := Owner.InverseGamma[PByte(Longint(Src) + 2)^]; inc(Dest, 2);
pWord(Dest)^ := Owner.InverseGamma[PByte(Longint(Src) + 1)^]; inc(Dest, 2);
pWord(Dest)^ := Owner.InverseGamma[PByte(Longint(Src) )^]; inc(Dest, 2);
pWord(Dest)^ := PByte(Longint(Trans) )^; inc(Dest, 2);
inc(Src, 3); inc(Trans);
end {for i};
end;
{Encode grayscale images followed by an alpha value using 1 byte for each}
procedure TChunkIDAT.EncodeNonInterlacedGrayscaleAlpha8(Src, Dest,Trans: pChar);
var
i: Integer;
begin
{Copy the data to the destination, including data from Trans pointer}
FOR i := 1 TO ImageWidth do
begin
Dest^ := Src^; inc(Dest);
Dest^ := Trans^; inc(Dest);
inc(Src); inc(Trans);
end {for i};
end;
{Encode grayscale images followed by an alpha value using 2 byte for each}
procedure TChunkIDAT.EncodeNonInterlacedGrayscaleAlpha16(Src, Dest,Trans:pChar);
var
i: Integer;
begin
{Copy the data to the destination, including data from Trans pointer}
FOR i := 1 TO ImageWidth do
begin
pWord(Dest)^ := pByte(Src)^; inc(Dest, 2);
pWord(Dest)^ := pByte(Trans)^; inc(Dest, 2);
inc(Src); inc(Trans);
end {for i};
end;
{Encode non interlaced images}
procedure TChunkIDAT.EncodeNonInterlaced(Stream: PStream;
var ZLIBStream: TZStreamRec2);
var
{Current line}
j: Integer;
{Pointers to image data}
Dta, Trans: PByte;
{Filter used for this line}
Filter: Byte;
{Method which will copy the data into the buffer}
CopyProc: procedure(Src, Dst, Trans: Pchar) of object;
W, H: Integer;
Stop: Boolean;
begin
CopyProc := nil; {Initialize to avoid warnings}
{Defines the method to copy the data to the buffer depending on}
{the image parameters}
case Header.ColorType of
{R, G, B values}
COLOR_RGB:
case Header.BitDepth of
8: CopyProc := EncodeNonInterlacedRGB8;
16: CopyProc := EncodeNonInterlacedRGB16;
end;
{Palette and grayscale values}
COLOR_GRAYSCALE, COLOR_PALETTE:
case Header.BitDepth of
1, 4, 8: CopyProc := EncodeNonInterlacedPalette148;
16: CopyProc := EncodeNonInterlacedGrayscale16;
end;
{RGB with a following alpha value}
COLOR_RGBALPHA:
case Header.BitDepth of
8: CopyProc := EncodeNonInterlacedRGBAlpha8;
16: CopyProc := EncodeNonInterlacedRGBAlpha16;
end;
{Grayscale images followed by an alpha}
COLOR_GRAYSCALEALPHA:
case Header.BitDepth of
8: CopyProc := EncodeNonInterlacedGrayscaleAlpha8;
16: CopyProc := EncodeNonInterlacedGrayscaleAlpha16;
end;
end {case Header.ColorType};
{Get the image data pointer}
Stop := FALSE;
if Assigned( Owner.OnGetRow ) then
begin
Owner.OnGetRow( Owner, 0, W, H, Dta, Trans, Stop );
end
else
begin
W := ImageWidth;
H := ImageHeight;
Longint(Dta) := Longint(Header.ImageData) +
Header.BytesPerRow * (ImageHeight - 1);
Trans := Header.ImageAlpha;
end;
{Writes each line}
if not Stop then
FOR j := 0 to H - 1 do
begin
{Copy data into buffer}
CopyProc(PChar( Dta ), @Encode_Buffer[BUFFER][0], PChar( Trans ));
{Filter data}
Filter := FilterToEncode;
{Compress data}
IDATZlibWrite(ZLIBStream, @Filter, 1);
IDATZlibWrite(ZLIBStream, @Encode_Buffer[Filter][0], Row_Bytes);
{Adjust pointers to the actual image data}
if j < H-1 then
begin
if Assigned( Owner.OnGetRow ) then
begin
Owner.OnGetRow( Owner, j+1, W, H, Dta, Trans, Stop );
if Stop then break;
end
else
begin
dec(Dta, Header.BytesPerRow);
inc(Trans, ImageWidth);
end;
end;
end;
{Compress and finishes copying the remaining data}
FinishIDATZlib(ZLIBStream);
end;
{Copy memory to encode interlaced images using RGB value with 1 byte for}
{each color sample}
procedure TChunkIDAT.EncodeInterlacedRGB8(const Pass: Byte; Src, Dest,
Trans: pChar);
var
Col: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass];
Src := pChar(Longint(Src) + Col * 3);
repeat
{Copy this row}
Byte(Dest^) := fOwner.InverseGamma[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := fOwner.InverseGamma[pByte(Longint(Src) + 1)^]; inc(Dest);
Byte(Dest^) := fOwner.InverseGamma[pByte(Longint(Src) )^]; inc(Dest);
{Move to next column}
inc(Src, ColumnIncrement[Pass] * 3);
inc(Col, ColumnIncrement[Pass]);
until Col >= ImageWidth;
end;
{Copy memory to encode interlaced RGB images with 2 bytes each color sample}
procedure TChunkIDAT.EncodeInterlacedRGB16(const Pass: Byte; Src, Dest,
Trans: pChar);
var
Col: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass];
Src := pChar(Longint(Src) + Col * 3);
repeat
{Copy this row}
pWord(Dest)^ := Owner.InverseGamma[pByte(Longint(Src) + 2)^]; inc(Dest, 2);
pWord(Dest)^ := Owner.InverseGamma[pByte(Longint(Src) + 1)^]; inc(Dest, 2);
pWord(Dest)^ := Owner.InverseGamma[pByte(Longint(Src) )^]; inc(Dest, 2);
{Move to next column}
inc(Src, ColumnIncrement[Pass] * 3);
inc(Col, ColumnIncrement[Pass]);
until Col >= ImageWidth;
end;
{Copy memory to encode interlaced images using palettes using bit depths}
{1, 4, 8 (each pixel in the image)}
procedure TChunkIDAT.EncodeInterlacedPalette148(const Pass: Byte; Src, Dest,
Trans: pChar);
const
BitTable: Array[1..8] of Integer = ($1, $3, 0, $F, 0, 0, 0, $FF);
StartBit: Array[1..8] of Integer = (7 , 0 , 0, 4, 0, 0, 0, 0);
var
CurBit, Col: Integer;
Src2: PChar;
begin
{Clean the line}
fillchar(Dest^, Row_Bytes, #0);
{Get first column and enter in loop}
Col := ColumnStart[Pass];
with Header.BitmapInfo.bmiHeader do
repeat
{Copy data}
CurBit := StartBit[biBitCount];
repeat
{Adjust pointer to pixel byte bounds}
Src2 := pChar(Longint(Src) + (biBitCount * Col) div 8);
{Copy data}
Byte(Dest^) := Byte(Dest^) or
(((Byte(Src2^) shr (StartBit[Header.BitDepth] - (biBitCount * Col)
mod 8))) and (BitTable[biBitCount])) shl CurBit;
{Move to next column}
inc(Col, ColumnIncrement[Pass]);
{Will read next bits}
dec(CurBit, biBitCount);
until CurBit < 0;
{Move to next byte in source}
inc(Dest);
until Col >= ImageWidth;
end;
{Copy to encode interlaced grayscale images using 16 bits for each sample}
procedure TChunkIDAT.EncodeInterlacedGrayscale16(const Pass: Byte; Src, Dest,
Trans: pChar);
var
Col: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass];
Src := pChar(Longint(Src) + Col);
repeat
{Copy this row}
pWord(Dest)^ := Byte(Src^); inc(Dest, 2);
{Move to next column}
inc(Src, ColumnIncrement[Pass]);
inc(Col, ColumnIncrement[Pass]);
until Col >= ImageWidth;
end;
{Copy to encode interlaced rgb images followed by an alpha value, all using}
{one byte for each sample}
procedure TChunkIDAT.EncodeInterlacedRGBAlpha8(const Pass: Byte; Src, Dest,
Trans: pChar);
var
Col: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass];
Src := pChar(Longint(Src) + Col * 3);
Trans := pChar(Longint(Trans) + Col);
repeat
{Copy this row}
Byte(Dest^) := Owner.InverseGamma[pByte(Longint(Src) + 2)^]; inc(Dest);
Byte(Dest^) := Owner.InverseGamma[pByte(Longint(Src) + 1)^]; inc(Dest);
Byte(Dest^) := Owner.InverseGamma[pByte(Longint(Src) )^]; inc(Dest);
Dest^ := Trans^; inc(Dest);
{Move to next column}
inc(Src, ColumnIncrement[Pass] * 3);
inc(Trans, ColumnIncrement[Pass]);
inc(Col, ColumnIncrement[Pass]);
until Col >= ImageWidth;
end;
{Copy to encode interlaced rgb images followed by an alpha value, all using}
{two byte for each sample}
procedure TChunkIDAT.EncodeInterlacedRGBAlpha16(const Pass: Byte; Src, Dest,
Trans: pChar);
var
Col: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass];
Src := pChar(Longint(Src) + Col * 3);
Trans := pChar(Longint(Trans) + Col);
repeat
{Copy this row}
pWord(Dest)^ := pByte(Longint(Src) + 2)^; inc(Dest, 2);
pWord(Dest)^ := pByte(Longint(Src) + 1)^; inc(Dest, 2);
pWord(Dest)^ := pByte(Longint(Src) )^; inc(Dest, 2);
pWord(Dest)^ := pByte(Trans)^; inc(Dest, 2);
{Move to next column}
inc(Src, ColumnIncrement[Pass] * 3);
inc(Trans, ColumnIncrement[Pass]);
inc(Col, ColumnIncrement[Pass]);
until Col >= ImageWidth;
end;
{Copy to encode grayscale interlaced images followed by an alpha value, all}
{using 1 byte for each sample}
procedure TChunkIDAT.EncodeInterlacedGrayscaleAlpha8(const Pass: Byte; Src,
Dest, Trans: pChar);
var
Col: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass];
Src := pChar(Longint(Src) + Col);
Trans := pChar(Longint(Trans) + Col);
repeat
{Copy this row}
Dest^ := Src^; inc(Dest);
Dest^ := Trans^; inc(Dest);
{Move to next column}
inc(Src, ColumnIncrement[Pass]);
inc(Trans, ColumnIncrement[Pass]);
inc(Col, ColumnIncrement[Pass]);
until Col >= ImageWidth;
end;
{Copy to encode grayscale interlaced images followed by an alpha value, all}
{using 2 bytes for each sample}
procedure TChunkIDAT.EncodeInterlacedGrayscaleAlpha16(const Pass: Byte; Src,
Dest, Trans: pChar);
var
Col: Integer;
begin
{Get first column and enter in loop}
Col := ColumnStart[Pass];
Src := pChar(Longint(Src) + Col);
Trans := pChar(Longint(Trans) + Col);
repeat
{Copy this row}
pWord(Dest)^ := pByte(Src)^; inc(Dest, 2);
pWord(Dest)^ := pByte(Trans)^; inc(Dest, 2);
{Move to next column}
inc(Src, ColumnIncrement[Pass]);
inc(Trans, ColumnIncrement[Pass]);
inc(Col, ColumnIncrement[Pass]);
until Col >= ImageWidth;
end;
{Encode interlaced images}
procedure TChunkIDAT.EncodeInterlacedAdam7(Stream: PStream;
var ZLIBStream: TZStreamRec2);
var
CurrentPass, Filter: Byte;
PixelsThisRow: Integer;
CurrentRow: Integer;
Trans, Dta: PByte;
CopyProc: procedure(const Pass: Byte; Src, Dest, Trans: pChar) of object;
Stop: Boolean;
W, H: Integer;
begin
CopyProc := nil; {Initialize to avoid warnings}
{Defines the method to copy the data to the buffer depending on}
{the image parameters}
case Header.ColorType of
{R, G, B values}
COLOR_RGB:
case Header.BitDepth of
8: CopyProc := EncodeInterlacedRGB8;
16: CopyProc := EncodeInterlacedRGB16;
end;
{Grayscale and palette}
COLOR_PALETTE, COLOR_GRAYSCALE:
case Header.BitDepth of
1, 4, 8: CopyProc := EncodeInterlacedPalette148;
16: CopyProc := EncodeInterlacedGrayscale16;
end;
{RGB followed by alpha}
COLOR_RGBALPHA:
case Header.BitDepth of
8: CopyProc := EncodeInterlacedRGBAlpha8;
16: CopyProc := EncodeInterlacedRGBAlpha16;
end;
COLOR_GRAYSCALEALPHA:
{Grayscale followed by alpha}
case Header.BitDepth of
8: CopyProc := EncodeInterlacedGrayscaleAlpha8;
16: CopyProc := EncodeInterlacedGrayscaleAlpha16;
end;
end {case Header.ColorType};
{Compress the image using the seven passes for ADAM 7}
Stop := FALSE;
FOR CurrentPass := 0 TO 6 DO
begin
{Calculates the number of pixels and bytes for this pass row}
PixelsThisRow := (ImageWidth - ColumnStart[CurrentPass] +
ColumnIncrement[CurrentPass] - 1) div ColumnIncrement[CurrentPass];
Row_Bytes := BytesForPixels(PixelsThisRow, Header.ColorType,
Header.BitDepth);
ZeroMemory(Encode_Buffer[FILTER_NONE], Row_Bytes);
{Get current row index}
CurrentRow := RowStart[CurrentPass];
{Get a pointer to the current row image data}
Stop := FALSE;
if Assigned( Owner.OnGetRow ) then
begin
Owner.OnGetRow( Owner, CurrentRow, W, H, Dta, Trans, Stop );
end
else
begin
W := ImageWidth;
H := ImageHeight;
Dta := Ptr(Longint(Header.ImageData) + Header.BytesPerRow *
(ImageHeight - 1 - CurrentRow));
Trans := Ptr(Longint(Header.ImageAlpha) + ImageWidth * CurrentRow);
end;
{Process all the image rows}
if (Row_Bytes > 0) and not Stop then
while CurrentRow < ImageHeight do
begin
{Copy data into buffer}
CopyProc(CurrentPass, PChar( Dta ), @Encode_Buffer[BUFFER][0], PChar( Trans ));
{Filter data}
Filter := FilterToEncode;
{Compress data}
IDATZlibWrite(ZLIBStream, @Filter, 1);
IDATZlibWrite(ZLIBStream, @Encode_Buffer[Filter][0], Row_Bytes);
{Move to the next row}
inc(CurrentRow, RowIncrement[CurrentPass]);
{Move pointer to the next line}
if CurrentRow < ImageHeight then
begin
Owner.OnGetRow( Owner, CurrentRow, W, H, Dta, Trans, Stop );
if Stop then break;
end
else
begin
dec(Dta, RowIncrement[CurrentPass] * Header.BytesPerRow);
inc(Trans, RowIncrement[CurrentPass] * ImageWidth);
end;
end {while CurrentRow < ImageHeight}
end {CurrentPass};
{Compress and finishes copying the remaining data}
FinishIDATZlib(ZLIBStream);
end;
{Filters the row to be encoded and returns the best filter}
function TChunkIDAT.FilterToEncode: Byte;
var
Run, LongestRun, ii, jj: DWORD;
Last, Above, LastAbove: Byte;
begin
{Selecting more filters using the Filters property from TPngObject}
{increases the chances to the file be much smaller, but decreases}
{the performace}
{This method will creates the same line data using the different}
{filter methods and select the best}
{Sub-filter}
if pfSub in Owner.Filters then
for ii := 0 to Row_Bytes - 1 do
begin
{There is no previous pixel when it's on the first pixel, so}
{set last as zero when in the first}
if (ii >= Offset) then
last := Encode_Buffer[BUFFER]^[ii - Offset]
else
last := 0;
Encode_Buffer[FILTER_SUB]^[ii] := Encode_Buffer[BUFFER]^[ii] - last;
end;
{Up filter}
if pfUp in Owner.Filters then
for ii := 0 to Row_Bytes - 1 do
Encode_Buffer[FILTER_UP]^[ii] := Encode_Buffer[BUFFER]^[ii] -
Encode_Buffer[FILTER_NONE]^[ii];
{Average filter}
if pfAverage in Owner.Filters then
for ii := 0 to Row_Bytes - 1 do
begin
{Get the previous pixel, if the current pixel is the first, the}
{previous is considered to be 0}
if (ii >= Offset) then
last := Encode_Buffer[BUFFER]^[ii - Offset]
else
last := 0;
{Get the pixel above}
above := Encode_Buffer[FILTER_NONE]^[ii];
{Calculates formula to the average pixel}
Encode_Buffer[FILTER_AVERAGE]^[ii] := Encode_Buffer[BUFFER]^[ii] -
(above + last) div 2 ;
end;
{Paeth filter (the slower)}
if pfPaeth in Owner.Filters then
begin
{Initialize}
last := 0;
lastabove := 0;
for ii := 0 to Row_Bytes - 1 do
begin
{In case this pixel is not the first in the line obtains the}
{previous one and the one above the previous}
if (ii >= Offset) then
begin
last := Encode_Buffer[BUFFER]^[ii - Offset];
lastabove := Encode_Buffer[FILTER_NONE]^[ii - Offset];
end;
{Obtains the pixel above}
above := Encode_Buffer[FILTER_NONE]^[ii];
{Calculate paeth filter for this byte}
Encode_Buffer[FILTER_PAETH]^[ii] := Encode_Buffer[BUFFER]^[ii] -
PaethPredictor(last, above, lastabove);
end;
end;
{Now calculates the same line using no filter, which is necessary}
{in order to have data to the filters when the next line comes}
CopyMemory(@Encode_Buffer[FILTER_NONE]^[0],
@Encode_Buffer[BUFFER]^[0], Row_Bytes);
{If only filter none is selected in the filter list, we don't need}
{to proceed and further}
if (Owner.Filters = [pfNone]) or (Owner.Filters = []) then
begin
Result := FILTER_NONE;
exit;
end {if (Owner.Filters = [pfNone...};
{Check which filter is the best by checking which has the larger}
{sequence of the same byte, since they are best compressed}
LongestRun := 0; Result := FILTER_NONE;
for ii := FILTER_NONE TO FILTER_PAETH do
{Check if this filter was selected}
if TFilter(ii) in Owner.Filters then
begin
Run := 0;
{Check if it's the only filter}
if Owner.Filters = [TFilter(ii)] then
begin
Result := ii;
exit;
end;
{Check using a sequence of four bytes}
for jj := 2 to Row_Bytes - 1 do
if (Encode_Buffer[ii]^[jj] = Encode_Buffer [ii]^[jj-1]) or
(Encode_Buffer[ii]^[jj] = Encode_Buffer [ii]^[jj-2]) then
inc(Run); {Count the number of sequences}
{Check if this one is the best so far}
if (Run > LongestRun) then
begin
Result := ii;
LongestRun := Run;
end {if (Run > LongestRun)};
end {if TFilter(ii) in Owner.Filters};
end;
{TChunkPLTE implementation}
{Returns an item in the palette}
function TChunkPLTE.GetPaletteItem(Idx: Byte): TRGBQuad;
begin
{Test if item is valid, if not return 0}
if Idx >= Count then
begin
Result.rgbBlue := 0;
Result.rgbGreen := 0;
Result.rgbRed := 0;
Result.rgbReserved := 0;
end
else
{Returns the item}
Result := Header.BitmapInfo.bmiColors[Idx];
end;
{Loads the palette chunk from a stream}
function PLTE_Load(Chunk: Pointer; Stream: PStream;
const ChunkName: TChunkName; Size: Integer): Boolean;
type
pPalEntry = ^PalEntry;
PalEntry = record r, g, b: Byte end;
var
j : Integer; {For the FOR}
PalColor : pPalEntry;
begin
{Let ancestor load data and check CRC}
Result := PChunk( Chunk ).LoadFromStream(Stream, ChunkName, Size);
if not Result then exit;
with PChunkPLTE( Chunk )^ do
begin
{This chunk must be divisible by 3 in order to be valid}
if (Size mod 3 <> 0) or (Size div 3 > 256) then
begin
{Raise error}
Result := FALSE;
Owner.FError := ErrInvalidPalette;
exit;
end {if Size mod 3 <> 0};
{Fill array with the palette entries}
fCount := Size div 3;
PalColor := Data;
FOR j := 0 TO fCount - 1 DO
with Header.BitmapInfo.bmiColors[j] do
begin
rgbRed := Owner.GammaTable[PalColor.r];
rgbGreen := Owner.GammaTable[PalColor.g];
rgbBlue := Owner.GammaTable[PalColor.b];
rgbReserved := 0;
inc(PalColor); {Move to next palette entry}
end;
end;
end;
{Saves the PLTE chunk to a stream}
function PLTE_Save(Chunk: Pointer; Stream: PStream): Boolean;
var
J: Integer;
DataPtr: pByte;
begin
with PChunkPLTE( Chunk )^ do
begin
{Adjust size to hold all the palette items}
ResizeData(fCount * 3);
{Copy pointer to data}
DataPtr := fData;
{Copy palette items}
with Header^ do
FOR j := 0 TO fCount - 1 DO
with BitmapInfo.bmiColors[j] do
begin
DataPtr^ := Owner.InverseGamma[rgbRed]; inc(DataPtr);
DataPtr^ := Owner.InverseGamma[rgbGreen]; inc(DataPtr);
DataPtr^ := Owner.InverseGamma[rgbBlue]; inc(DataPtr);
end {with BitmapInfo};
{Let ancestor do the rest of the work}
Result := SaveToStream(Stream);
end;
end;
{TChunkgAMA implementation}
{Gamma chunk being created}
constructor TChunkgAMa.Create(AOwner: PPngObject);
begin
{Call ancestor}
inherited Create(AOwner);
Gamma := 1; {Initial value}
end;
{Returns gamma value}
function TChunkgAMA.GetValue: DWORD;
begin
{Make sure that the size is four bytes}
if DataSize <> 4 then
begin
{Adjust size and returns 1}
ResizeData(4);
Result := 1;
end
{If it's right, read the value}
else Result := DWORD(ByteSwap(PDWORD(Data)^))
end;
function Power(Base, Exponent: Extended): Extended;
begin
if Exponent = 0.0 then
Result := 1.0 {Math rule}
else if (Base = 0) or (Exponent = 0) then Result := 0
else
Result := Exp(Exponent * Ln(Base));
end;
{Loading the chunk from a stream}
function gAMA_Load(Chunk: Pointer; Stream: PStream;
const ChunkName: TChunkName; Size: Integer): Boolean;
var
i: Integer;
Value: DWORD;
begin
{Call ancestor and test if it went ok}
Result := PChunk( Chunk ).LoadFromStream(Stream, ChunkName, Size);
if not Result then exit;
with PChunkGAMA( Chunk )^ do
begin
Value := Gamma;
{Build gamma table and inverse table for saving}
if Value <> 0 then
with Owner^ do
FOR i := 0 TO 255 DO
begin
GammaTable[I] := Round(Power((I / 255), 1 /
(Value / 100000 * 2.2)) * 255);
InverseGamma[Round(Power((I / 255), 1 /
(Value / 100000 * 2.2)) * 255)] := I;
end
end;
end;
function TPngObject.GetScaledHeight: Integer;
var i: Integer;
begin
Result := Height;
CASE Scale OF
psHalfSize : i := 2;
psQuarterSize: i := 4;
psEightsSize : i := 8;
else Exit;
END;
Result := Result div i;
end;
function TPngObject.GetScaledWidth: Integer;
var i: Integer;
begin
Result := Width;
CASE Scale OF
psHalfSize : i := 2;
psQuarterSize: i := 4;
psEightsSize : i := 8;
else Exit;
END;
Result := Result div i;
end;
{Sets the gamma value}
procedure TChunkgAMA.SetValue(const Value: DWORD);
begin
{Make sure that the size is four bytes}
if DataSize <> 4 then ResizeData(4);
{If it's right, set the value}
PDWORD(Data)^ := ByteSwap(Value);
end;
{TPngObject implementation}
{Clear all the chunks in the list}
procedure TPngObject.ClearChunks;
var
i: Integer;
begin
Free_And_Nil( fBitmap );
{Initialize gamma}
InitializeGamma();
{Free all the objects and memory (0 chunks Bug fixed by Noel Sharpe)}
for i := 0 TO Chunks.Count - 1 do
PObj( Chunks.Items[i] ).Free;
Chunks.Clear;
end;
{Portable Network Graphics object being created}
function NewPngObject: PPngObject;
begin
{Let it be created}
new( Result, Create );
with Result^ do
begin
{Initial properties}
fFilters := [pfSub];
fCompressionLevel := 7;
fInterlaceMethod := imNone;
fMaxIdatSize := High(Word);
{Create chunklist object}
fChunkList := NewList;
end;
end;
{Portable Network Graphics object being destroyed}
destructor TPngObject.Destroy;
begin
{Free object list}
ClearChunks;
fChunkList.Free;
{Call ancestor destroy}
inherited Destroy;
end;
{Returns linesize and byte offset for pixels}
procedure TPngObject.GetPixelInfo(var LineSize, Offset: DWORD);
begin
{There must be an Header chunk to calculate size}
if HeaderPresent then
begin
{Calculate number of bytes for each line}
LineSize := BytesForPixels(Header.Width, Header.ColorType, Header.BitDepth);
{Calculates byte offset}
Case Header.ColorType of
{Grayscale}
COLOR_GRAYSCALE:
If Header.BitDepth = 16 Then
Offset := 2
Else
Offset := 1 ;
{It always smaller or equal one byte, so it occupes one byte}
COLOR_PALETTE:
offset := 1;
{It might be 3 or 6 bytes}
COLOR_RGB:
offset := 3 * Header.BitDepth Div 8;
{It might be 2 or 4 bytes}
COLOR_GRAYSCALEALPHA:
offset := 2 * Header.BitDepth Div 8;
{4 or 8 bytes}
COLOR_RGBALPHA:
offset := 4 * Header.BitDepth Div 8;
else
Offset := 0;
End ;
end
else
begin
{In case if there isn't any Header chunk}
Offset := 0;
LineSize := 0;
end;
end;
{Returns image height}
function TPngObject.GetHeight: Integer;
begin
{There must be a Header chunk to get the size, otherwise returns 0}
if HeaderPresent then
Result := Header.Height
else Result := 0;
end;
{Returns image width}
function TPngObject.GetWidth: Integer;
begin
{There must be a Header chunk to get the size, otherwise returns 0}
if HeaderPresent then
Result := Header.Width
else Result := 0;
end;
{Returns if the image is empty}
function TPngObject.GetEmpty: Boolean;
begin
Result := (Chunks.Count = 0);
end;
{Set the maximum size for IDAT chunk}
procedure TPngObject.SetMaxIdatSize(const Value: DWORD);
begin
{Make sure the size is at least 65535}
if Value < High(Word) then
fMaxIdatSize := High(Word) else fMaxIdatSize := Value;
end;
{Creates a file stream reading from the filename in the parameter and load}
function TPngObject.LoadFromFile(const Filename: String): Boolean;
var FileStream: PStream;
begin
FileStream := NewReadFileStream(Filename);
Result := LoadFromStream(FileStream);
FileStream.Free;
end;
{Saves the current png image to a file}
procedure TPngObject.SaveToFile(const Filename: String);
var FileStream: PStream;
begin
FileStream := NewWriteFileStream(Filename);
SaveToStream(FileStream);
FileStream.Free;
end;
{Returns pointer to the chunk TChunkIHDR which should be the first}
function TPngObject.GetHeader: PChunkIHDR;
begin
{If there is a TChunkIHDR returns it, otherwise returns nil}
if (Chunks.Count > 0) {and (Chunks.Items[0] is TChunkIHDR)} then
Result := Pointer( Chunks.Items[0] )
else
begin
{No header, throw error message}
Result := nil
end
end;
{Draws using partial transparency}
procedure TPngObject.DrawPartialTrans(DC: HDC; Rect: TRect);
type
{Access to pixels}
TPixelLine = Array[Word] of TRGBQuad;
pPixelLine = ^TPixelLine;
const
{Structure used to create the bitmap}
BitmapInfoHeader: TBitmapInfoHeader =
(biSize: sizeof(TBitmapInfoHeader);
biWidth: 100;
biHeight: 100;
biPlanes: 1;
biBitCount: 32;
biCompression: BI_RGB;
biSizeImage: 0;
biXPelsPerMeter: 0;
biYPelsPerMeter: 0;
biClrUsed: 0;
biClrImportant: 0);
var
{Buffer bitmap creation}
BitmapInfo : TBitmapInfo;
BufferDC : HDC;
BufferBits : Pointer;
OldBitmap,
BufferBitmap: HBitmap;
{Transparency/palette chunks}
TransparencyChunk: PChunktRNS;
PaletteChunk: PChunkPLTE;
TransValue, PaletteIndex: Byte;
CurBit: Integer;
Data: PByte;
{Buffer bitmap modification}
BytesPerRowDest,
BytesPerRowSrc,
BytesPerRowAlpha: Integer;
ImageSource,
AlphaSource : pByteArray;
ImageData : pPixelLine;
i, j : Integer;
begin
{Prepare to create the bitmap}
Fillchar(BitmapInfo, sizeof(BitmapInfo), #0);
BitmapInfoHeader.biWidth := Header.Width;
BitmapInfoHeader.biHeight := -1 * Header.Height;
BitmapInfo.bmiHeader := BitmapInfoHeader;
{Create the bitmap which will receive the background, the applied}
{alpha blending and then will be painted on the background}
BufferDC := CreateCompatibleDC(0);
{In case BufferDC could not be created}
if (BufferDC = 0) then //RaiseError(EPNGOutMemory, EPNGOutMemoryText);
Exit;
BufferBitmap := CreateDIBSection(BufferDC, BitmapInfo, DIB_RGB_COLORS,
BufferBits, 0, 0);
{In case buffer bitmap could not be created}
if (BufferBitmap = 0) or (BufferBits = Nil) then
begin
if BufferBitmap <> 0 then DeleteObject(BufferBitmap);
DeleteDC(BufferDC);
//RaiseError(EPNGOutMemory, EPNGOutMemoryText);
Exit;
end;
{Selects new bitmap and release old bitmap}
OldBitmap := SelectObject(BufferDC, BufferBitmap);
{Draws the background on the buffer image}
StretchBlt(BufferDC, 0, 0, Header.Width, Header.height, DC, Rect.Left,
Rect.Top, Header.Width, Header.Height, SRCCOPY);
{Obtain number of bytes for each row}
BytesPerRowAlpha := Header.Width;
BytesPerRowDest := (((BitmapInfo.bmiHeader.biBitCount * Width) + 31)
and not 31) div 8; {Number of bytes for each image row in destination}
BytesPerRowSrc := (((Header.BitmapInfo.bmiHeader.biBitCount * Header.Width) +
31) and not 31) div 8; {Number of bytes for each image row in source}
{Obtains image pointers}
ImageData := BufferBits;
AlphaSource := Header.ImageAlpha;
Longint(ImageSource) := Longint(Header.ImageData) +
Header.BytesPerRow * Longint(Header.Height - 1);
case Header.BitmapInfo.bmiHeader.biBitCount of
{R, G, B images}
24:
FOR j := 1 TO Header.Height DO
begin
{Process all the pixels in this line}
FOR i := 0 TO Header.Width - 1 DO
with ImageData[i] do
begin
rgbRed := (255+ImageSource[2+i*3] * AlphaSource[i] + rgbRed * (255 -
AlphaSource[i])) shr 8;
rgbGreen := (255+ImageSource[1+i*3] * AlphaSource[i] + rgbGreen *
(255 - AlphaSource[i])) shr 8;
rgbBlue := (255+ImageSource[i*3] * AlphaSource[i] + rgbBlue *
(255 - AlphaSource[i])) shr 8;
end;
{Move pointers}
Longint(ImageData) := Longint(ImageData) + BytesPerRowDest;
Longint(ImageSource) := Longint(ImageSource) - BytesPerRowSrc;
Longint(AlphaSource) := Longint(AlphaSource) + BytesPerRowAlpha;
end;
{Palette images with 1 byte for each pixel}
1,4,8: if Header.ColorType = COLOR_GRAYSCALEALPHA then
FOR j := 1 TO Header.Height DO
begin
{Process all the pixels in this line}
FOR i := 0 TO Header.Width - 1 DO
with ImageData[i], Header.BitmapInfo do begin
rgbRed := (255 + ImageSource[i] * AlphaSource[i] +
rgbRed * (255 - AlphaSource[i])) shr 8;
rgbGreen := (255 + ImageSource[i] * AlphaSource[i] +
rgbGreen * (255 - AlphaSource[i])) shr 8;
rgbBlue := (255 + ImageSource[i] * AlphaSource[i] +
rgbBlue * (255 - AlphaSource[i])) shr 8;
end;
{Move pointers}
Longint(ImageData) := Longint(ImageData) + BytesPerRowDest;
Longint(ImageSource) := Longint(ImageSource) - BytesPerRowSrc;
Longint(AlphaSource) := Longint(AlphaSource) + BytesPerRowAlpha;
end
else {Palette images}
begin
{Obtain pointer to the transparency chunk}
TransparencyChunk := ChunkByName('tRNS');
PaletteChunk := ChunkByName('PLTE');
FOR j := 1 TO Header.Height DO
begin
{Process all the pixels in this line}
i := 0; Data := @ImageSource[0];
repeat
CurBit := 0;
repeat
{Obtains the palette index}
case Header.BitDepth of
1: PaletteIndex := (Data^ shr (7-(I Mod 8))) and 1;
2,4: PaletteIndex := (Data^ shr ((1-(I Mod 2))*4)) and $0F;
else PaletteIndex := Data^;
end;
{Updates the image with the new pixel}
with ImageData[i] do
begin
TransValue := TransparencyChunk.PaletteValues[PaletteIndex];
rgbRed := (255 + PaletteChunk.Item[PaletteIndex].rgbRed *
TransValue + rgbRed * (255 - TransValue)) shr 8;
rgbGreen := (255 + PaletteChunk.Item[PaletteIndex].rgbGreen *
TransValue + rgbGreen * (255 - TransValue)) shr 8;
rgbBlue := (255 + PaletteChunk.Item[PaletteIndex].rgbBlue *
TransValue + rgbBlue * (255 - TransValue)) shr 8;
end;
{Move to next data}
inc(i); inc(CurBit, Header.BitmapInfo.bmiHeader.biBitCount);
until CurBit >= 8;
{Move to next source data}
inc(Data);
until i >= Integer(Header.Width);
{Move pointers}
Longint(ImageData) := Longint(ImageData) + BytesPerRowDest;
Longint(ImageSource) := Longint(ImageSource) - BytesPerRowSrc;
end
end {Palette images}
end {case Header.BitmapInfo.bmiHeader.biBitCount};
{Draws the new bitmap on the foreground}
StretchBlt(DC, Rect.Left, Rect.Top, Header.Width, Header.Height, BufferDC,
0, 0, Header.Width, Header.Height, SRCCOPY);
{Free bitmap}
SelectObject(BufferDC, OldBitmap);
DeleteObject(BufferBitmap);
DeleteDC(BufferDC);
end;
{Draws the image into a canvas}
function TPngObject.Draw(DC: HDC; X, Y: Integer): Boolean;
var
Hdr: PChunkIHDR;
begin
Result := FALSE;
{Quit in case there is no header, otherwise obtain it}
Hdr := Header;
if Hdr = nil then Exit;
Result := TRUE;
if 0 = StretchDiBits(DC, X, Y, {Hdr.Width} ScaledWidth, {Hdr.Height} ScaledHeight, 0, 0,
ScaledWidth, ScaledHeight, Hdr.ImageData,
pBitmapInfo(@Hdr.BitmapInfo)^, DIB_RGB_COLORS, SRCCOPY) then
begin
if 0 = SetDibitsToDevice( DC, X, Y, {Hdr.Width} ScaledWidth, {Hdr.Height} ScaledHeight, 0, 0, 0,
{Hdr.Height} ScaledHeight, Pointer( Integer( Hdr.ImageData ) + (Hdr.Height-1) * Hdr.BytesPerRow ),
pBitmapInfo( @Hdr.BitmapInfo )^, DIB_RGB_COLORS ) then
begin
Result := FALSE;
asm
nop
end;
end;
end;
end;
procedure TPngObject.DrawTransparent(DC: HDC; X, Y, maxX, maxY: Integer;
TranColor: TColor);
var
Hdr: PChunkIHDR;
begin
{Quit in case there is no header, otherwise obtain it}
Hdr := Header;
if Hdr = nil then Exit;
{Copy the data to the canvas}
case Self.TransparencyMode of
ptmPartial:
DrawPartialTrans(DC, MakeRect( X, Y, min( X + Width, maxX ), min( Y + Height, maxY ) ));
else DrawTransparentBitmap(DC,
Hdr.ImageData, Hdr.BitmapInfo.bmiHeader,
pBitmapInfo(@Header.BitmapInfo), MakeRect( X, Y, min( X + Width, maxX ), min( Y + Height, maxY ) ),
Color2RGB(TranColor))
end {case}
end;
function TPngObject.StretchDraw(DC: HDC; const Rect: TRect): Boolean;
var
Hdr: PChunkIHDR;
begin
Result := FALSE;
{Quit in case there is no header, otherwise obtain it}
Hdr := Header;
if Hdr = nil then Exit;
if (Rect.Right - Rect.Left = Hdr.Width) and
(Rect.Bottom - Rect.Top = Hdr.Height) then
begin
Result := Draw( DC, Rect.Left, Rect.Top );
if Result then
Exit;
end;
Result := Hdr.Height = StretchDiBits(DC, Rect.Left,
Rect.Top, Rect.Right - Rect.Left, Rect.Bottom - Rect.Top, 0, 0,
ScaledWidth, ScaledHeight, Hdr.ImageData,
pBitmapInfo(@Hdr.BitmapInfo)^, DIB_RGB_COLORS, SRCCOPY)
end;
procedure TPngObject.StretchDrawTransparent(DC: HDC; const Rect: TRect;
TranColor: TColor);
var
Hdr: PChunkIHDR;
begin
{Quit in case there is no header, otherwise obtain it}
Hdr := Header;
if Hdr = nil then Exit;
case Self.TransparencyMode of
ptmPartial:
DrawPartialTrans(DC, Rect);
else // ptmBit:
DrawTransparentBitmap(DC,
Hdr.ImageData, Hdr.BitmapInfo.bmiHeader,
pBitmapInfo(@Header.BitmapInfo), Rect,
Color2RGB(TranColor));
end;
end;
{Characters for the header}
const
PngHeader: Array[0..7] of Char = (#137, #80, #78, #71, #13, #10, #26, #10);
{Loads the image from a stream of data}
function TPngObject.LoadFromStream(Stream: PStream): Boolean;
const
ChunkLoadArray: TLoadArray = ( nil, IHDR_Load, nil, IDAT_Load,
PLTE_Load, gAMA_Load, TRNS_Load, tEXt_Load, tIME_Load );
var
Hdr: Array[0..7] of Char;
HasIDAT: Boolean;
{Chunks reading}
ChunkLength: DWORD;
ChunkName : TChunkName;
Chunk: PChunk;
CType: TChunkType;
Start: DWORD;
begin
FError := ErrOK;
Result := FALSE;
Start := Stream.Position;
{Initialize before start loading chunks}
ClearChunks();
{Reads the header}
Stream.Read(Hdr[0], 8);
{Test if the header matches}
if Hdr <> PngHeader then
begin
FError := ErrInvalidHeader;
Exit;
end;
HasIDAT := FALSE;
{Load chunks}
repeat
if Assigned( fOnProgress ) then
begin
if not OnProgress( @ Self, 0, 0,
(Stream.Position - Start) * 100 div (Stream.Size - Start) ) then
break;
end;
{Reads chunk length and invert since it is in network order}
{also checks the Read method return, if it returns 0, it}
{means that no bytes was readed, probably because it reached}
{the end of the file}
if Stream.Read(ChunkLength, 4) < 4 then
begin
{In case it found the end of the file here}
FError := ErrUnexpectedEnd;
Result := HeaderPresent and (ChunkByName( 'IDAT' ) <> nil);
Exit;
end;
ChunkLength := ByteSwap(ChunkLength);
{Reads chunk name}
Stream.Read(Chunkname, 4);
{Here we check if the first chunk is the Header which is necessary}
{to the file in order to be a valid Portable Network Graphics image}
if (Chunks.Count = 0) and (ChunkName <> 'IHDR') then
begin
FError := ErrIHDRNotFirst;
exit;
end;
{Has a previous IDAT}
if (HasIDAT and (ChunkName = 'IDAT')) or (ChunkName = 'cHRM') then
begin
Stream.Position := Stream.Position + ChunkLength + 4;
Continue;
end;
{Tell it has an IDAT chunk}
if ChunkName = 'IDAT' then HasIDAT := TRUE;
{Creates object for this chunk}
Chunk := CreateChunkByName( ChunkName );
{Check if the chunk is unknown and this is critical}
if Chunk = nil then
begin
FError := ErrUnknownCriticalChunk;
Exit;
end;
{Loads it}
CType := ChunkTypeByName( ChunkName );
if Assigned( ChunkLoadArray[ CType ] ) then
begin
if not ChunkLoadArray[ CType ]( Chunk, Stream, ChunkName, ChunkLength ) then
break;
if HasIDAT and (Scale <> psFullImage) then
break;
end
else
begin
if not Chunk.LoadFromStream( Stream, ChunkName, ChunkLength ) then
break;
end;
{Terminates when it reaches the IEND chunk}
until (ChunkName = 'IEND');
{Check if there is data}
if not HasIDAT then
begin
FError := ErrNoImageData;
Exit;
end;
Result := TRUE;
end;
{Saves to clipboard format (thanks to Antoine Pottern)}
function TPNGObject.CopyToClipboard: Boolean;
begin
Result := FALSE;
if Bitmap <> nil then
Result := Bitmap.CopyToClipboard;
end;
{var Bitmap: PBitmap;
begin
Bitmap := NewBitmap( Width, Height );
TRY
Draw( Bitmap.Canvas.Handle, 0, 0 );
Result := Bitmap.CopyToClipboard;
FINALLY
Bitmap.Free;
END;
end;}
{Loads data from clipboard}
function TPngObject.PasteFromClipboard: Boolean;
var Bitmap1: PBitmap;
begin
Bitmap1 := NewBitmap( 0, 0 );
TRY
Result := Bitmap1.PasteFromClipboard;
if not Result then Exit;
AssignHandle( Bitmap1.Handle, FALSE, 0 );
FINALLY
Bitmap1.Free;
END;
end;
{Returns if the image is transparent}
{function TPngObject.GetTransparent: Boolean;
begin
Result := (TransparencyMode <> ptmNone);
end;}
{Saving the PNG image to a stream of data}
procedure TPngObject.SaveToStream(Stream: PStream);
const
ChunkSaveArray: TSaveArray = ( nil, IHDR_Save, nil, IDAT_Save,
PLTE_Save, nil, TRNS_Save, tEXt_Save, tIME_Save );
var
j: Integer;
CType: TChunkType;
begin
{Reads the header}
Stream.Write(PNGHeader[0], 8);
{Write each chunk}
FOR j := 0 TO Chunks.Count - 1 DO
begin
CType := ChunkTypeByName( PChunk( Chunks.Items[j] ).ChnkName );
if Assigned( ChunkSaveArray[ CType ] ) then
ChunkSaveArray[ CType ]( Chunks.Items[j], Stream )
else
PChunk( Chunks.Items[j] ).SaveToStream(Stream);
end;
end;
{Prepares the Header chunk}
procedure BuildHeader(Header: PChunkIHDR; Handle: HBitmap; Info: Windows.PBitmap;
HasPalette: Boolean);
var
DC: HDC;
begin
{Set width and height}
Header.Width := Info.bmWidth;
Header.Height := abs(Info.bmHeight);
{Set bit depth}
if Info.bmBitsPixel >= 16 then
Header.BitDepth := 8 else Header.BitDepth := Info.bmBitsPixel;
{Set color type}
if Info.bmBitsPixel >= 16 then
Header.ColorType := COLOR_RGB else Header.ColorType := COLOR_PALETTE;
{Set other info}
Header.CompressionMethod := 0; {deflate/inflate}
Header.InterlaceMethod := 0; {no interlace}
{Prepares bitmap headers to hold data}
Header.PrepareImageData();
if Handle <> 0 then
begin
{Copy image data}
DC := CreateCompatibleDC(0);
GetDIBits(DC, Handle, 0, Header.Height, Header.ImageData,
pBitmapInfo(@Header.BitmapInfo)^, DIB_RGB_COLORS);
DeleteDC(DC);
end;
end;
{Loads the image from a resource}
procedure TPngObject.LoadFromResourceName(Instance: HInst;
const AName: String);
var MemStream: PStream;
begin
{Creates an especial stream to load from the resource}
MemStream := NewMemoryStream;
Resource2Stream( MemStream, Instance, PChar( AName ), RT_RCDATA );
{Loads the png image from the resource}
try
MemStream.Position := 0;
LoadFromStream(MemStream);
finally
MemStream.Free;
end;
end;
{Loads the png from a resource ID}
procedure TPngObject.LoadFromResourceID(Instance: HInst; ResID: Integer);
begin
LoadFromResourceName(Instance, String(ResID));
end;
{Assigns from a bitmap object}
procedure TPngObject.AssignHandle(Handle: HBitmap; Transparent: Boolean;
TranColor: ColorRef);
var
BitmapInfo: Windows.TBitmap;
HasPalette: Boolean;
{Chunks}
Head: PChunkIHDR;
PLTE: PChunkPLTE;
//IDAT: PChunkIDAT;
//IEND: PChunkIEND;
TRNS: PChunkTRNS;
begin
{Obtain bitmap info}
GetObject(Handle, SizeOf(BitmapInfo), @BitmapInfo);
{Only bit depths 1, 4 and 8 needs a palette}
HasPalette := (BitmapInfo.bmBitsPixel < 16);
{Clear old chunks and prepare}
ClearChunks();
{Create the chunks}
Head := CreateChunkByName( 'IHDR' );
PLTE := nil;
if HasPalette then
PLTE := CreateChunkByName( 'PLTE' );
TRNS := nil;
if Transparent then
TRNS := CreateChunkByName( 'TRNS' );
CreateChunkByName( 'IDAT' );
CreateChunkByName( 'IEND' );
{This method will fill the Header chunk with bitmap information}
{and copy the image data}
BuildHeader(Head, Handle, @BitmapInfo, HasPalette);
{In case there is a image data, set the PLTE chunk fCount variable}
{to the actual number of palette colors which is 2^(Bits for each pixel)}
if HasPalette then PLTE.fCount := 1 shl BitmapInfo.bmBitsPixel;
{In case it is a transparent bitmap, prepares it}
if Transparent then TRNS.TransparentColor := TranColor;
end;
{Assigns from another PNG}
procedure TPngObject.AssignPNG(Source: PPNGObject);
var Strm: PStream;
begin
Strm := NewMemoryStream;
Source.SaveToStream( Strm );
Strm.Position := 0;
LoadFromStream( Strm );
Strm.Free;
end;
{Returns a alpha data scanline}
function TPngObject.GetAlphaScanline(const LineIndex: Integer): pByteArray;
begin
with Header^ do
if (ColorType = COLOR_RGBALPHA) or (ColorType = COLOR_GRAYSCALEALPHA) then
Integer(Result) := Integer(ImageAlpha) + (LineIndex * Longint(Width))
else Result := nil; {In case the image does not use alpha information}
end;
{Returns a png data scanline}
function TPngObject.GetScanline(const LineIndex: Integer): Pointer;
begin
with Header^ do
Integer(Result) := (Integer(ImageData) + ((Integer(Height) - 1) *
BytesPerRow)) - (LineIndex * BytesPerRow);
end;
{Initialize gamma table}
procedure TPngObject.InitializeGamma;
var
i: Integer;
begin
{Build gamma table as if there was no gamma}
FOR i := 0 to 255 do
begin
GammaTable[i] := i;
InverseGamma[i] := i;
end {for i}
end;
{Returns the transparency mode used by this png}
function TPngObject.GetTransparencyMode: TPNGTransparencyMode;
var
TRNS: PChunkTRNS;
begin
with Header^ do
begin
Result := ptmNone; {Default result}
{Gets the TRNS chunk pointer}
TRNS := ChunkByName('TRNS');
{Test depending on the color type}
case ColorType of
{This modes are always partial}
COLOR_RGBALPHA, COLOR_GRAYSCALEALPHA: Result := ptmPartial;
{This modes support bit transparency}
COLOR_RGB, COLOR_GRAYSCALE: if TRNS <> nil then Result := ptmBit;
{Supports booth translucid and bit}
COLOR_PALETTE:
{A TRNS chunk must be present, otherwise it won't support transparency}
if TRNS <> nil then
if TRNS.BitTransparency then
Result := ptmBit else Result := ptmPartial
end {case}
end {with Header}
end;
{Add a text chunk}
procedure TPngObject.AddText(const Keyword, Text: String);
var
TextChunk: PChunkTEXT;
begin
new( TextChunk, Create( @ Self ) );
fChunkList.Insert( fChunkList.Count-1, TextChunk );
TextChunk.Keyword := Keyword;
TextChunk.Text := Text;
end;
{Removes the image transparency}
procedure TPngObject.RemoveTransparency;
var TRNS: PChunkTRNS;
begin
TRNS := ChunkByName('TRNS');
if TRNS <> nil then
begin
Chunks.Remove(TRNS);
TRNS.Free;
end;
end;
{Generates alpha information}
procedure TPngObject.CreateAlpha;
var
TRNS: PChunkTRNS;
begin
{Generates depending on the color type}
with Header^ do
case ColorType of
{Png allocates different memory space to hold alpha information}
{for these types}
COLOR_GRAYSCALE, COLOR_RGB:
begin
{Transform into the appropriate color type}
if ColorType = COLOR_GRAYSCALE then
ColorType := COLOR_GRAYSCALEALPHA
else ColorType := COLOR_RGBALPHA;
{Allocates memory to hold alpha information}
GetMem(ImageAlpha, Integer(Width) * Integer(Height));
FillChar(ImageAlpha^, Integer(Width) * Integer(Height), #255);
end;
{Palette uses the TChunktRNS to store alpha}
COLOR_PALETTE:
begin
{Gets/creates TRNS chunk}
TRNS := ChunkByName( 'TRNS' );
if TRNS = nil then
TRNS := CreateChunkByName( 'TRNS' );
{Prepares the TRNS chunk}
with TRNS^ do
begin
Fillchar(PaletteValues[0], 256, #255);
fDataSize := 1 shl Header.BitDepth;
fBitTransparency := False
end {with Chunks.Add};
end;
end {case Header.ColorType}
end;
{Returns transparent color}
function TPngObject.GetTransparentColor: TColor;
var
TRNS: PChunkTRNS;
begin
TRNS := ChunkByName( 'TRNS' );
{Reads the transparency chunk to get this info}
if Assigned(TRNS) then Result := TRNS.TransparentColor
else Result := 0
end;
procedure TPngObject.SetTransparentColor(const Value: TColor);
var
TRNS: PChunkTRNS;
begin
if HeaderPresent then
{Tests the ColorType}
case Header.ColorType of
{Not allowed for this modes}
COLOR_RGBALPHA, COLOR_GRAYSCALEALPHA:
{Self.RaiseError(
EPNGCannotChangeTransparent, EPNGCannotChangeTransparentText)};
{Allowed}
COLOR_PALETTE, COLOR_RGB, COLOR_GRAYSCALE:
begin
TRNS := ChunkByName('TRNS');
if not Assigned(TRNS) then
TRNS := CreateChunkByName('TRNS');
{Sets the transparency value from TRNS chunk}
TRNS.TransparentColor := Value
end {COLOR_PALETTE, COLOR_RGB, COLOR_GRAYSCALE)}
end {case}
end;
{Returns if header is present}
function TPngObject.HeaderPresent: Boolean;
begin
Result := (Chunks.Count > 0) and (PChunk(Chunks.Items[0]).ChnkName = 'IHDR')
end;
function TPngObject.ChunkByName(const AName: TChunkName): Pointer;
var I: Integer;
Chunk: PChunk;
begin
for I := 0 to fChunkList.Count-1 do
begin
Chunk := fChunkList.Items[ I ];
if Chunk.ChnkName = AName then
begin
Result := Chunk;
Exit;
end;
end;
Result := nil;
end;
function TPngObject.CreateChunkByName(const AName: TChunkName): Pointer;
var
IHDR: PChunkIHDR;
IEND: PChunkIEND;
IDAT: PChunkIDAT;
PLTE: PChunkPLTE;
GAMA: PChunkGAMA;
TRNS: PChunkTRNS;
TEXT: PChunkTEXT;
TIME: PChunkTIME;
Chnk: PChunk;
begin
Result := nil;
case ChunkTypeByName( AName ) of
ctIHDR: begin
if HeaderPresent then Exit;
new( IHDR, Create( @ Self ) );
fChunkList.Insert( 0, IHDR );
Result := IHDR;
end;
ctIEND: begin
if (fChunkList.Count > 0) and
(PChunk( fChunkList.Items[ fChunkList.Count-1 ] ).ChnkName = 'IEND') then
Exit;
new( IEND, Create( @ Self ) );
fChunkList.Add( IEND );
Result := IEND;
end;
ctIDAT: begin
if ChunkByName( 'IDAT' ) <> nil then Exit;
new( IDAT, Create( @ Self ) );
IHDR := ChunkByName( 'IHDR' );
PLTE := ChunkByName( 'PLTE' );
if PLTE <> nil then
fChunkList.Insert( PLTE.Index+1, IDAT )
else
if IHDR <> nil then
fChunkList.Insert( 1, IDAT )
else
fChunkList.Insert( 0, IDAT );
Result := IDAT;
end;
ctPLTE: begin
if ChunkByName( 'PLTE' ) <> nil then Exit;
new( PLTE, Create( @ Self ) );
IDAT := ChunkByName( 'IDAT' );
IHDR := ChunkByName( 'IHDR' );
if IDAT <> nil then
fChunkList.Insert( IDAT.Index, PLTE )
else if IHDR <> nil then
fChunkList.Insert( 1, PLTE )
else
fChunkList.Insert( 0, PLTE );
Result := PLTE;
end;
ctgAMA: begin
if ChunkByName( 'gAMA' ) <> nil then Exit;
new( GAMA, Create( @ Self ) );
PLTE := ChunkByName( 'PLTE' );
IDAT := ChunkByName( 'IDAT' );
IHDR := ChunkByName( 'IHDR' );
if PLTE <> nil then
fChunkList.Insert( PLTE.Index + 1, GAMA )
else if IDAT <> nil then
fChunkList.Insert( IDAT.Index + 1, GAMA )
else if IHDR <> nil then
fChunkList.Insert( 1, GAMA )
else
fChunkList.Insert( 0, GAMA );
Result := GAMA;
end;
ctTRNS: begin
if ChunkByName( 'TRNS' ) <> nil then Exit;
new( TRNS, Create( @ Self ) );
GAMA := ChunkByName( 'gAMA' );
PLTE := ChunkByName( 'PLTE' );
IDAT := ChunkByName( 'IDAT' );
IHDR := ChunkByName( 'IHDR' );
if GAMA <> nil then
fChunkList.Insert( GAMA.Index + 1, TRNS )
else if PLTE <> nil then
fChunkList.Insert( PLTE.Index + 1, TRNS )
else if IDAT <> nil then
fChunkList.Insert( IDAT.Index + 1, TRNS )
else if IHDR <> nil then
fChunkList.Insert( 1, TRNS )
else
fChunkList.Insert( 0, TRNS );
Result := GAMA;
end;
cttEXt: begin
new( TEXT, Create( @ Self ) );
IEND := ChunkByName( 'IEND' );
if IEND <> nil then
fChunkList.Insert( IEND.Index, TEXT )
else
fChunkList.Add( TEXT );
Result := TEXT;
end;
cttIME: begin
new( TIME, Create( @ Self ) );
IEND := ChunkByName( 'IEND' );
if IEND <> nil then
fChunkList.Insert( IEND.Index, TIME )
else
fChunkList.Add( TIME );
Result := TIME;
end;
else
begin
new( Chnk, Create( @ Self ) );
IEND := ChunkByName( 'IEND' );
if IEND <> nil then
fChunkList.Insert( IEND.Index, Chnk )
else
fChunkList.Add( Chnk );
Result := Chnk;
end;
end;
PChunk( Result ).fChnkName := AName;
end;
{ TChunktEXt }
destructor TChunktEXt.Destroy;
begin
fKeyword := '';
fText := '';
inherited;
end;
procedure TPngObject.AssignDib(DibHeader: pBitmapInfo; DibData: Pointer;
Transparent: Boolean; TranColor: ColorRef);
var
BitmapInfo: Windows.TBitmap;
HasPalette: Boolean;
{Chunks}
Head: PChunkIHDR;
PLTE: PChunkPLTE;
//IDAT: PChunkIDAT;
//IEND: PChunkIEND;
TRNS: PChunkTRNS;
begin
{Obtain bitmap info}
FillChar( BitmapInfo, SizeOf( BitmapInfo ), 0 );
BitmapInfo.bmType := 0;
BitmapInfo.bmWidth := DibHeader.bmiHeader.biWidth;
BitmapInfo.bmHeight := DibHeader.bmiHeader.biHeight;
BitmapInfo.bmWidthBytes := ( (DibHeader.bmiHeader.biWidth *
(DibHeader.bmiHeader.biPlanes * DibHeader.bmiHeader.biBitCount) + 7) div 8
+ 3) div 4;
BitmapInfo.bmPlanes := DibHeader.bmiHeader.biPlanes;
BitmapInfo.bmBitsPixel := DibHeader.bmiHeader.biPlanes * DibHeader.bmiHeader.biBitCount;
BitmapInfo.bmBits := DibData;
{Only bit depths 1, 4 and 8 needs a palette}
HasPalette := (BitmapInfo.bmBitsPixel < 16);
{Clear old chunks and prepare}
ClearChunks();
{Create the chunks}
Head := CreateChunkByName( 'IHDR' );
PLTE := nil;
if HasPalette then
PLTE := CreateChunkByName( 'PLTE' );
TRNS := nil;
if Transparent then
TRNS := CreateChunkByName( 'TRNS' );
CreateChunkByName( 'IDAT' );
CreateChunkByName( 'IEND' );
{This method will fill the Header chunk with bitmap information}
{and copy the image data}
BuildHeader(Head, 0, @BitmapInfo, HasPalette);
{In case there is a image data, set the PLTE chunk fCount variable}
{to the actual number of palette colors which is 2^(Bits for each pixel)}
if HasPalette then PLTE.fCount := 1 shl BitmapInfo.bmBitsPixel;
{In case it is a transparent bitmap, prepares it}
if Transparent then TRNS.TransparentColor := TranColor;
end;
type
PCrackBitmap = ^TCrackBitmap;
TCrackBitmap = object( TBitmap )
end;
function TPngObject.GetBitmap: PBitmap;
begin
Result := fBitmap;
if Result <> nil then Exit;
if (Header = nil) or (Header.ImageData = nil) then Exit;
fBitmap := NewDIBBitmap( 1, 1, pf1bit );
GlobalFree( DWORD( PCrackBitmap( fBitmap ).fDIBBits ) );
move( Header.BitmapInfo, PCrackBitmap( fBitmap ).fDIBHeader^,
Sizeof( TMAXBITMAPINFO ) );
PCrackBitmap( fBitmap ).fDIBBits := Header.ImageData;
PCrackBitmap( fBitmap ).fWidth := Width;
PCrackBitmap( fBitmap ).fHeight := Height;
PCrackBitmap( fBitmap ).fDIBAutoFree := TRUE;
PCrackBitmap( fBitmap ).fScanLineSize :=
CalcScanLineSize( @PCrackBitmap( fBitmap ).fDIBHeader.bmiHeader );
PCrackBitmap( fBitmap ).fDibSize := PCrackBitmap( fBitmap ).fScanLineSize
* Height;
Result := fBitmap;
end;
{$IFDEF PNG_MMX}
initialization
mmxSupported := GetCpuType >= [ cpuMMX ];
{$ENDIF}
end.