kolmck/Addons/CplxMath.pas

279 lines
6.2 KiB
ObjectPascal

unit CplxMath;
{* This unit contains functins for working with complex numbers. To use with
KOL library and its kolmath.pas unit instead of standard math.pas, define
synmbol KOL in project options, or uncomment its definition below. }
interface
//{$DEFINE KOL}
{$IFNDEF KOL}
{$IFDEF KOL_MCK}
{$DEFINE KOL}
{$ENDIF}
{$ENDIF}
uses {$IFDEF KOL} kolmath, kol {$ELSE} math, sysutils {$ENDIF};
type
{$IFDEF CPLX_EXTENDED}
Double = Extended;
{$ENDIF}
Complex = record Re, Im: double end;
{* }
function CfromReIm( Re, Im: Double ): Complex;
{* Re + i * Im }
function Cadd( const X, Y: Complex ): Complex;
{* X + Y }
function Cneg( const X: Complex ): Complex;
{* -X }
function Csub( const X, Y: Complex ): Complex;
{* X - Y }
function Cmul( const X, Y: Complex ): Complex;
{* X * Y }
function CmulD( const X: Complex; D: Double ): Complex;
{* X * D }
function CmulI( const X: Complex ): Complex;
{* i * X }
function Cdiv( const X, Y: Complex ): Complex;
{* X / Y }
function Cmod( const X: Complex ): Double;
{* Q( X.Re^2 + X.Im^2 ) }
function Carg( const X: Complex ): Double;
{* arctg( X.Im / X.Re ) }
function CfromModArg( R, Arg: Double ): Complex;
{* R * ( cos Arg + i * sin Arg ) }
function Cpow( const X: Complex; Pow: Double ): Complex;
{* X ^ Pow }
function Cpower( const X, Pow: Complex ): Complex;
{* X ^ Pow }
function CIntPower( const X: Complex; Pow: Integer ): Complex;
{* X ^ Pow}
function Csqrt( const X: Complex ): Complex;
{* Q( X ) }
function Cexp( const X: Complex ): Complex;
{* exp( X ) }
function Cln( const X: Complex ): Complex;
{* ln( X ) }
function Ccos( const X: Complex ): Complex;
{* cos( X ) }
function Csin( const X: Complex ): Complex;
{* sin( X ) }
function C2Str( const X: Complex ): String;
{* }
function C2StrEx( const X: Complex ): String;
{* experimental }
implementation
function CfromReIm( Re, Im: Double ): Complex;
begin
Result.Re := Re;
Result.Im := Im;
end;
function Cadd( const X, Y: Complex ): Complex;
begin
Result.Re := X.Re + Y.Re;
Result.Im := X.Im + Y.Im;
end;
function Cneg( const X: Complex ): Complex;
begin
Result.Re := -X.Re;
Result.Im := -X.Im;
end;
function Csub( const X, Y: Complex ): Complex;
begin
Result := Cadd( X, Cneg( Y ) );
end;
function Cmul( const X, Y: Complex ): Complex;
begin
Result.Re := X.Re * Y.Re - X.Im * Y.Im;
Result.Im := X.Re * Y.Im + X.Im * Y.Re;
end;
function CmulD( const X: Complex; D: Double ): Complex;
begin
Result.Re := X.Re * D;
Result.Im := X.Im * D;
end;
function CmulI( const X: Complex ): Complex;
begin
Result.Re := -X.Im;
Result.Im := X.Re;
end;
function Cdiv( const X, Y: Complex ): Complex;
var Z: Double;
begin
Z := 1.0 / ( Y.Re * Y.Re + Y.Im * Y.Im );
Result.Re := (X.Re * Y.Re + X.Im * Y.Im ) * Z;
Result.Im := (X.Im * Y.Re - X.Re * Y.Im ) * Z;
end;
function Cmod( const X: Complex ): Double;
begin
Result := sqrt( X.Re * X.Re + X.Im * X.Im );
end;
function Carg( const X: Complex ): Double;
begin
Result := ArcTan2( X.Im, X.Re );
end;
function CfromModArg( R, Arg: Double ): Complex;
begin
Result.Re := R * cos( Arg );
Result.Im := R * sin( Arg );
end;
function Cpow( const X: Complex; Pow: Double ): Complex;
var R, A: Double;
begin
R := power( Cmod( X ), Pow );
A := Pow * Carg( X );
Result := CfromModArg( R, A );
end;
function Cpower( const X, Pow: Complex ): Complex;
begin
Result := Cexp( Cmul( X, Cln( Pow ) ) );
end;
function CIntPower( const X: Complex; Pow: Integer ): Complex;
begin
if (Pow < 0) or (Pow > 100) then Result := Cpow( X, Pow )
else if Pow = 0 then
begin
Result.Re := 1;
Result.Im := 0;
end
else
begin
Result := X;
while Pow > 1 do
begin
Result := Cmul( Result, X );
dec( Pow );
end;
end;
end;
function Csqrt( const X: Complex ): Complex;
begin
Result := Cpow( X, 0.5 );
end;
function Cexp( const X: Complex ): Complex;
var Z: Double;
begin
Z := exp( X.Re );
Result.Re := Z * cos( X.Im );
Result.Im := Z * sin( X.Im );
end;
function Cln( const X: Complex ): Complex;
begin
Result := CfromModArg( ln( Cmod( X ) ), Carg( X ) );
end;
function Ccos( const X: Complex ): Complex;
begin
Result := CmulI( X );
Result := CmulD( Cadd( Cexp( Result ), Cexp( Cneg( Result ) ) ),
0.5 );
end;
function Csin( const X: Complex ): Complex;
begin
Result := CmulI( X );
Result := CmulD( Csub( Cexp(Result), Cexp( Cneg(Result) ) ),
0.5 );
end;
{$IFDEF KOL}
function Abs( X: Double ): Double;
begin
Result := EAbs( X );
end;
{$ENDIF}
{$IFNDEF KOL}
function Double2Str( D: Double ): String;
begin
Result := DoubleToStr( D );
end;
{$ENDIF}
function C2Str( const X: Complex ): String;
begin
if Abs( X.Im ) < 1e-307 then
begin
Result := Double2Str( X.Re );
end
else
begin
Result := '';
if Abs( X.Re ) > 1e-307 then
begin
Result := Double2Str( X.Re );
if X.Im > 0.0 then
Result := Result + ' + ';
end;
if X.Im < 0.0 then
Result := Result + '- i * ' + Double2Str( -X.Im )
else
Result := Result + 'i * ' + Double2Str( X.Im );
end;
end;
function C2StrEx( const X: Complex ): String;
begin
if Abs( X.Im ) < 1e-307 then
begin
Result := Double2StrEx( X.Re );
end
else
begin
Result := '';
if Abs( X.Re ) > 1e-307 then
begin
Result := Double2StrEx( X.Re );
if X.Im > 0.0 then
Result := Result + ' + ';
end;
if X.Im < 0.0 then
Result := Result + '- i * ' + Double2StrEx( -X.Im )
else
Result := Result + 'i * ' + Double2StrEx( X.Im );
end;
end;
end.