You've already forked lazarus-ccr
1034 lines
32 KiB
ObjectPascal
1034 lines
32 KiB
ObjectPascal
![]() |
// Use file "abrdata.laz" for testing
|
||
|
|
||
|
unit AxSANOVAUnit;
|
||
|
|
||
|
{$mode objfpc}{$H+}
|
||
|
|
||
|
interface
|
||
|
|
||
|
uses
|
||
|
Classes, SysUtils, FileUtil, LResources, Forms, Controls, Graphics, Dialogs,
|
||
|
StdCtrls, Buttons, ExtCtrls,
|
||
|
MainUnit, FunctionsLib, GraphLib, Globals,
|
||
|
DataProcs, ContextHelpUnit;
|
||
|
|
||
|
type
|
||
|
|
||
|
{ TAxSAnovaFrm }
|
||
|
|
||
|
TAxSAnovaFrm = class(TForm)
|
||
|
Bevel1: TBevel;
|
||
|
Panel1: TPanel;
|
||
|
PosthocChk: TCheckBox;
|
||
|
DepInBtn: TBitBtn;
|
||
|
DepOutBtn: TBitBtn;
|
||
|
HelpBtn: TButton;
|
||
|
RepInBtn: TBitBtn;
|
||
|
RepOutBtn: TBitBtn;
|
||
|
ResetBtn: TButton;
|
||
|
ComputeBtn: TButton;
|
||
|
CloseBtn: TButton;
|
||
|
PlotChk: TCheckBox;
|
||
|
GrpVar: TEdit;
|
||
|
GroupBox1: TGroupBox;
|
||
|
Label1: TLabel;
|
||
|
Label2: TLabel;
|
||
|
Label3: TLabel;
|
||
|
RepList: TListBox;
|
||
|
VarList: TListBox;
|
||
|
procedure ComputeBtnClick(Sender: TObject);
|
||
|
procedure DepInBtnClick(Sender: TObject);
|
||
|
procedure DepOutBtnClick(Sender: TObject);
|
||
|
procedure FormActivate(Sender: TObject);
|
||
|
procedure FormCreate(Sender: TObject);
|
||
|
procedure FormShow(Sender: TObject);
|
||
|
procedure GrpVarChange(Sender: TObject);
|
||
|
procedure HelpBtnClick(Sender: TObject);
|
||
|
procedure RepInBtnClick(Sender: TObject);
|
||
|
procedure RepOutBtnClick(Sender: TObject);
|
||
|
procedure ResetBtnClick(Sender: TObject);
|
||
|
procedure VarListSelectionChange(Sender: TObject; User: boolean);
|
||
|
|
||
|
private
|
||
|
{ private declarations }
|
||
|
FAutoSized: Boolean;
|
||
|
procedure PostHocTests(NoSelected: integer; MSerr: double; dferr: integer;
|
||
|
Count: integer; ColMeans: DblDyneVec; AReport: TStrings);
|
||
|
procedure UpdateBtnStates;
|
||
|
|
||
|
// wp: replace the following methods by those in ANOVATestUnit?
|
||
|
procedure Tukey(
|
||
|
error_ms : double; { mean squared for residual }
|
||
|
error_df : double; { deg. freedom for residual }
|
||
|
value : double; { size of smallest group }
|
||
|
group_total : DblDyneVec; { sum of scores in a group }
|
||
|
group_count : DblDyneVec; { no. of cases in a group }
|
||
|
min_grp : integer; { minimum group code }
|
||
|
max_grp : integer; { maximum group code }
|
||
|
AReport : TStrings);
|
||
|
|
||
|
procedure ScheffeTest(
|
||
|
error_ms : double; { mean squared residual }
|
||
|
group_total : DblDyneVec; { sum of scores in a group }
|
||
|
group_count : DblDyneVec; { count of cases in a group }
|
||
|
min_grp : integer; { code of first group }
|
||
|
max_grp : integer; { code of last group }
|
||
|
total_n : double; { total number of cases }
|
||
|
AReport : TStrings);
|
||
|
|
||
|
procedure Newman_Keuls(
|
||
|
error_ms : double; { residual mean squared }
|
||
|
error_df : double; { deg. freedom for error }
|
||
|
value : double; { number in smallest group }
|
||
|
group_total : DblDyneVec; { sum of scores in a group }
|
||
|
group_count : DblDyneVec; { count of cases in a group }
|
||
|
min_grp : integer; { lowest group code }
|
||
|
max_grp : integer; { largest group code }
|
||
|
AReport : TStrings);
|
||
|
|
||
|
procedure Tukey_Kramer(
|
||
|
error_ms : double; { residual mean squared }
|
||
|
error_df : double; { deg. freedom for error }
|
||
|
value : double; { number in smallest group }
|
||
|
group_total : DblDyneVec; { sum of scores in group }
|
||
|
group_count : DblDyneVec; { number of caes in group }
|
||
|
min_grp : integer; { code of lowest group }
|
||
|
max_grp : integer; { code of highst group }
|
||
|
AReport : TStrings);
|
||
|
|
||
|
procedure TukeyBTest(
|
||
|
ErrorMS : double; { within groups error }
|
||
|
ErrorDF : double; { degrees of freedom within }
|
||
|
group_total : DblDyneVec; { vector of group sums }
|
||
|
group_count : DblDyneVec; { vector of group n's }
|
||
|
min_grp : integer; { smallest group code }
|
||
|
max_grp : integer; { largest group code }
|
||
|
groupsize : double; { size of groups (all equal) }
|
||
|
AReport : TStrings);
|
||
|
|
||
|
public
|
||
|
{ public declarations }
|
||
|
end;
|
||
|
|
||
|
var
|
||
|
AxSAnovaFrm: TAxSAnovaFrm;
|
||
|
|
||
|
implementation
|
||
|
|
||
|
uses
|
||
|
Math,
|
||
|
OutputUnit;
|
||
|
|
||
|
{ TAxSAnovaFrm }
|
||
|
|
||
|
procedure TAxSAnovaFrm.ResetBtnClick(Sender: TObject);
|
||
|
var
|
||
|
i: integer;
|
||
|
begin
|
||
|
VarList.Items.Clear;
|
||
|
RepList.Items.Clear;
|
||
|
GrpVar.Text := '';
|
||
|
for i := 1 to NoVariables do
|
||
|
VarList.Items.Add(OS3MainFrm.DataGrid.Cells[i,0]);
|
||
|
PlotChk.Checked := false;
|
||
|
UpdateBtnStates;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.FormActivate(Sender: TObject);
|
||
|
var
|
||
|
w: Integer;
|
||
|
begin
|
||
|
if FAutoSized then
|
||
|
exit;
|
||
|
|
||
|
w := MaxValue([HelpBtn.Width, ResetBtn.Width, ComputeBtn.Width, CloseBtn.Width]);
|
||
|
HelpBtn.Constraints.MinWidth := w;
|
||
|
ResetBtn.Constraints.MinWidth := w;
|
||
|
ComputeBtn.Constraints.MinWidth := w;
|
||
|
CloseBtn.Constraints.MinWidth := w;
|
||
|
|
||
|
Constraints.MinHeight := Height;
|
||
|
Constraints.MinWidth := Width;
|
||
|
|
||
|
FAutoSized := true;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.FormCreate(Sender: TObject);
|
||
|
begin
|
||
|
Assert(OS3MainFrm <> nil);
|
||
|
if GraphFrm = nil then
|
||
|
Application.CreateForm(TGraphFrm, GraphFrm);
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.FormShow(Sender: TObject);
|
||
|
begin
|
||
|
ResetBtnClick(self);
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.GrpVarChange(Sender: TObject);
|
||
|
begin
|
||
|
UpdateBtnStates;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.HelpBtnClick(Sender: TObject);
|
||
|
begin
|
||
|
if ContextHelpForm = nil then
|
||
|
Application.CreateForm(TContextHelpForm, ContextHelpForm);
|
||
|
ContextHelpForm.HelpMessage((Sender as TButton).tag);
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.RepInBtnClick(Sender: TObject);
|
||
|
var
|
||
|
i: integer;
|
||
|
begin
|
||
|
i := 0;
|
||
|
while i < VarList.Items.Count do
|
||
|
begin
|
||
|
if (VarList.Selected[i]) then
|
||
|
begin
|
||
|
RepList.Items.Add(VarList.Items[i]);
|
||
|
VarList.Items.Delete(i);
|
||
|
i := 0;
|
||
|
end else
|
||
|
inc(i);
|
||
|
end;
|
||
|
VarList.ItemIndex := -1;
|
||
|
UpdateBtnStates;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.RepOutBtnClick(Sender: TObject);
|
||
|
var
|
||
|
i: integer;
|
||
|
begin
|
||
|
i := 0;
|
||
|
while i < RepList.Items.Count do
|
||
|
begin
|
||
|
if RepList.Selected[i] then
|
||
|
begin
|
||
|
VarList.Items.Add(RepList.Items[i]);
|
||
|
RepList.Items.Delete(i);
|
||
|
i := 0;
|
||
|
end else
|
||
|
inc(i);
|
||
|
end;
|
||
|
VarList.ItemIndex := -1;
|
||
|
RepList.ItemIndex := -1;
|
||
|
UpdateBtnStates;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.DepInBtnClick(Sender: TObject);
|
||
|
var
|
||
|
index: integer;
|
||
|
begin
|
||
|
index := VarList.ItemIndex;
|
||
|
if (index > -1) and (GrpVar.Text = '') then
|
||
|
begin
|
||
|
GrpVar.Text := VarList.Items[index];
|
||
|
VarList.Items.Delete(index);
|
||
|
end;
|
||
|
VarList.ItemIndex := -1;
|
||
|
UpdateBtnStates;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.ComputeBtnClick(Sender: TObject);
|
||
|
var
|
||
|
a1, a2, agrp, i, j, k, v1, totaln, NoSelected, range: integer;
|
||
|
group, col: integer;
|
||
|
p, X, f1, f2, f3, probf1, probf2, probf3, fd1, fd2, TotMean: double;
|
||
|
TotStdDev, den, maxmean: double;
|
||
|
C, StdDev: DblDyneMat;
|
||
|
squaredsumx, sumxsquared, coltot, sumsum: DblDyneVec;
|
||
|
degfree: array[1..8] of integer;
|
||
|
ColNoSelected: IntDyneVec;
|
||
|
ss: array[1..8] of double;
|
||
|
ms: array[1..8] of double;
|
||
|
coeff: array[1..6] of double;
|
||
|
N: IntDyneVec;
|
||
|
value, outline: string;
|
||
|
lReport: TStrings;
|
||
|
begin
|
||
|
if GrpVar.Text = '' then
|
||
|
begin
|
||
|
MessageDlg('Select a variable for between-groups treatment groups', mtError, [mbOK], 0);
|
||
|
exit;
|
||
|
end;
|
||
|
|
||
|
if RepList.Items.Count < 2 then
|
||
|
begin
|
||
|
MessageDlg('This test requires at least two variables for repeated measurements.', mtError, [mbOK], 0);
|
||
|
exit;
|
||
|
end;
|
||
|
|
||
|
SetLength(ColNoSelected,NoVariables+1);
|
||
|
NoSelected := 1;
|
||
|
|
||
|
// Get between subjects group variable
|
||
|
for j := 1 to NoVariables do
|
||
|
if GrpVar.Text = OS3MainFrm.DataGrid.Cells[j,0] then ColNoSelected[0] := j;
|
||
|
v1 := ColNoSelected[0]; //A treatment (group) variable
|
||
|
|
||
|
//get minimum and maximum group codes for Treatment A
|
||
|
a1 := 1000; //atoi(MainForm.Grid.Cells[v1][1].c_str());
|
||
|
a2 := 0; //a1;
|
||
|
for i := 1 to NoCases do
|
||
|
Begin
|
||
|
if not GoodRecord(i,NoSelected,ColNoSelected) then continue;
|
||
|
group := round(StrToFloat(Trim(OS3MainFrm.DataGrid.Cells[v1,i])));
|
||
|
if group < a1 then a1 := group;
|
||
|
if group > a2 then a2 := group;
|
||
|
end;
|
||
|
range := a2 - a1 + 1;
|
||
|
NoSelected := RepList.Items.Count + 1;
|
||
|
k := NoSelected - 1; //Number of B (within subject) treatment levels
|
||
|
|
||
|
// allocate heap
|
||
|
SetLength(C, range+1, NoSelected+1);
|
||
|
SetLength(N, range+1);
|
||
|
SetLength(squaredsumx, range+1);
|
||
|
SetLength(coltot, NoSelected+1);
|
||
|
SetLength(sumxsquared, range+1);
|
||
|
SetLength(sumsum, range+1);
|
||
|
SetLength(StdDev, range+1, NoSelected+1);
|
||
|
|
||
|
// initialize arrays
|
||
|
for i := 0 to range-1 do
|
||
|
begin
|
||
|
N[i] := 0;
|
||
|
squaredsumx[i] := 0.0;
|
||
|
sumxsquared[i] := 0.0;
|
||
|
sumsum[i] := 0.0;
|
||
|
for j := 0 to k-1 do
|
||
|
C[i,j] := 0.0;
|
||
|
end;
|
||
|
|
||
|
for j := 0 to k-1 do
|
||
|
coltot[j] := 0.0;
|
||
|
for i := 0 to range do
|
||
|
for j := 0 to k do
|
||
|
StdDev[i,j] := 0.0;
|
||
|
for i := 1 to 6 do
|
||
|
coeff[i] := 0.0;
|
||
|
for i := 1 to 8 do
|
||
|
degfree[i] := 0;
|
||
|
TotStdDev := 0.0;
|
||
|
TotMean := 0.0;
|
||
|
totaln := 0;
|
||
|
|
||
|
// Get items selected for repeated measures (B treatments)
|
||
|
for i := 0 to RepList.Items.Count - 1 do
|
||
|
begin
|
||
|
for j := 1 to NoVariables do
|
||
|
if RepList.Items.Strings[i] = OS3MainFrm.DataGrid.Cells[j,0] then
|
||
|
ColNoSelected[i+1] := j;
|
||
|
end;
|
||
|
|
||
|
//Read data values and get sums and sums of squared values
|
||
|
for i := 1 to NoCases do
|
||
|
begin
|
||
|
if not GoodRecord(i,NoSelected,ColNoSelected) then continue;
|
||
|
agrp := round(StrToFloat(Trim(OS3MainFrm.DataGrid.Cells[v1,i])));
|
||
|
agrp := agrp - a1 + 1; // offset to one
|
||
|
p := 0.0;
|
||
|
|
||
|
//Now read the B treatment scores
|
||
|
for j := 1 to k do
|
||
|
begin
|
||
|
col := ColNoSelected[j];
|
||
|
if not GoodRecord(i,NoSelected,ColNoSelected) then continue;
|
||
|
X := StrToFloat(Trim(OS3MainFrm.DataGrid.Cells[col,i]));
|
||
|
C[agrp-1,j-1] := C[agrp-1,j-1] + X;
|
||
|
StdDev[agrp-1,j-1] := StdDev[agrp-1,j-1] + (X * X);
|
||
|
coeff[1]:= coeff[1] + X;
|
||
|
p := p + X;
|
||
|
sumxsquared[agrp-1] := sumxsquared[agrp-1] + (X * X);
|
||
|
TotMean := TotMean + X;
|
||
|
TotStdDev := TotStdDev + (X * X);
|
||
|
end;
|
||
|
N[agrp-1] := N[agrp-1] + 1;
|
||
|
squaredsumx[agrp-1] := squaredsumx[agrp-1] + (p * p);
|
||
|
sumsum[agrp-1] := sumsum[agrp-1] + p;
|
||
|
end; // next case
|
||
|
|
||
|
// Obtain sums of squares for std. dev.s of B treatments
|
||
|
for i := 1 to k do // column (B treatments)
|
||
|
for j := 1 to range do // group of A treatments
|
||
|
StdDev[range,i-1] := StdDev[range,i-1] + StdDev[j-1,i-1];
|
||
|
|
||
|
// Obtain sums of squares for std. dev.s of A treatments
|
||
|
for i := 1 to range do
|
||
|
for j := 1 to k do
|
||
|
StdDev[i-1,k] := StdDev[i-1,k] + StdDev[i-1,j-1];
|
||
|
|
||
|
// Obtain cell standard deviations
|
||
|
for i := 1 to range do // rows
|
||
|
begin
|
||
|
for j := 1 to k do // columns
|
||
|
begin
|
||
|
StdDev[i-1,j-1] := StdDev[i-1,j-1] - ((C[i-1,j-1] * C[i-1,j-1]) / (N[i-1]));
|
||
|
StdDev[i-1,j-1] := StdDev[i-1,j-1] / (N[i-1]-1);
|
||
|
StdDev[i-1,j-1] := sqrt(StdDev[i-1,j-1]);
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
// Obtain A treatment group standard deviations
|
||
|
for i := 1 to range do
|
||
|
begin
|
||
|
StdDev[i-1,k] := StdDev[i-1,k] - ((sumsum[i-1] * sumsum[i-1]) / (k * N[i-1]));
|
||
|
StdDev[i-1,k] := StdDev[i-1,k] / (k * N[i-1] - 1);
|
||
|
StdDev[i-1,k] := sqrt(StdDev[i-1,k]);
|
||
|
end;
|
||
|
|
||
|
// Obtain coefficients for the sums of squares
|
||
|
for i := 1 to range do
|
||
|
begin
|
||
|
coeff[2] := coeff[2] + sumxsquared[i-1];
|
||
|
coeff[3] := coeff[3] + ((sumsum[i-1] * (sumsum[i-1]) / ((N[i-1] * k))));
|
||
|
coeff[6] := coeff[6] + squaredsumx[i-1];
|
||
|
totaln := totaln + N[i-1];
|
||
|
end;
|
||
|
coeff[1] := (coeff[1] * coeff[1]) / (totaln * k);
|
||
|
den := k;
|
||
|
coeff[6] := coeff[6] / den;
|
||
|
for j := 1 to k do
|
||
|
begin
|
||
|
coltot[j-1] := 0.0;
|
||
|
for i := 1 to range do
|
||
|
begin
|
||
|
coltot[j-1] := coltot[j-1] + C[i-1,j-1];
|
||
|
coeff[5] := coeff[5] + ((C[i-1,j-1] * C[i-1,j-1]) / N[i-1]);
|
||
|
end;
|
||
|
coeff[4] := coeff[4] + (coltot[j-1] * coltot[j-1]);
|
||
|
end;
|
||
|
den := totaln;
|
||
|
coeff[4] := coeff[4] / den;
|
||
|
|
||
|
// Obtain B treatment group standard deviations
|
||
|
for j := 1 to k do
|
||
|
begin
|
||
|
StdDev[range,j-1] := StdDev[range,j-1] - ((coltot[j-1] * coltot[j-1]) / totaln);
|
||
|
StdDev[range,j-1] := StdDev[range,j-1] / (totaln-1);
|
||
|
StdDev[range,j-1] := sqrt(StdDev[range,j-1]);
|
||
|
end;
|
||
|
|
||
|
// Calculate degrees of freedom for the mean squares
|
||
|
degfree[1] := totaln - 1; // Between subjects degrees freedom
|
||
|
degfree[2] := a2 - a1; // between groups degrees of freedom
|
||
|
degfree[3] := totaln - (a2 - a1 + 1);// subjects within groups deg. frd.
|
||
|
degfree[4] := totaln * (k - 1); // within subjects degrees of freedom
|
||
|
degfree[5] := k - 1; // B treatments degrees of freedom
|
||
|
degfree[6] := degfree[2] * degfree[5]; // A x B interaction degrees of frd.
|
||
|
degfree[7] := degfree[3] * degfree[5]; // B x Subjects within groups d.f.
|
||
|
degfree[8] := k * totaln - 1; // total degrees of freedom
|
||
|
|
||
|
// Calculate the sums of squares
|
||
|
ss[1] := coeff[6] - coeff[1];
|
||
|
ss[2] := coeff[3] - coeff[1];
|
||
|
ss[3] := coeff[6] - coeff[3];
|
||
|
ss[4] := coeff[2] - coeff[6];
|
||
|
ss[5] := coeff[4] - coeff[1];
|
||
|
ss[6] := coeff[5] - coeff[3] - coeff[4] + coeff[1];
|
||
|
ss[7] := coeff[2] - coeff[5] - coeff[6] + coeff[3];
|
||
|
ss[8] := coeff[2] - coeff[1];
|
||
|
|
||
|
// Calculate the mean squares
|
||
|
for i := 1 to 8 do
|
||
|
ms[i] := ss[i] / degfree[i];
|
||
|
|
||
|
// Calculate the f-tests for effects A, B and interaction
|
||
|
if (ms[3] > 0.0) then f1 := ms[2] / ms[3] else f1 := 1000.0;
|
||
|
if (ms[7] > 0.0) then
|
||
|
begin
|
||
|
f2 := ms[5] / ms[7];
|
||
|
f3 := ms[6] / ms[7];
|
||
|
end else
|
||
|
begin
|
||
|
f2 := 1000.0;
|
||
|
f3 := 1000.0;
|
||
|
end;
|
||
|
|
||
|
//Now, report results
|
||
|
lReport := TStringList.Create;
|
||
|
try
|
||
|
lReport.Add('ANOVA With One Between Subjects and One Within Subjects Treatments');
|
||
|
lReport.Add('');
|
||
|
lReport.Add('------------------------------------------------------------------');
|
||
|
lReport.Add('Source df SS MS F Prob.');
|
||
|
lReport.Add('------------------------------------------------------------------');
|
||
|
|
||
|
fd1 := degfree[2];
|
||
|
fd2 := degfree[3];
|
||
|
probf1 := probf(f1, fd1, fd2);
|
||
|
fd1 := degfree[5];
|
||
|
fd2 := degfree[7];
|
||
|
probf2 := probf(f2, fd1, fd2);
|
||
|
fd1 := degfree[6];
|
||
|
fd2 := degfree[7];
|
||
|
probf3 := probf(f3, fd1, fd2);
|
||
|
lReport.Add('Between %5d %10.3f', [degfree[1], ss[1]]);
|
||
|
lReport.Add(' Groups (A) %5d %10.3f %10.3f %10.3f %6.4f', [degfree[2], ss[2], ms[2], f1, probf1]);
|
||
|
lReport.Add(' Subjects w.g.%5d %10.3f %10.3f', [degfree[3], ss[3], ms[3]]);
|
||
|
lReport.Add('');
|
||
|
lReport.Add('Within Subjects %5d %10.3f', [degfree[4], ss[4]]);
|
||
|
lReport.Add(' B Treatments %5d %10.3f %10.3f %10.3f %6.4f', [degfree[5], ss[5], ms[5], f2, probf2]);
|
||
|
lReport.Add(' A X B inter. %5d %10.3f %10.3f %10.3f %6.4f', [degfree[6], ss[6], ms[6], f3, probf3]);
|
||
|
lReport.Add(' B X S w.g. %5d %10.3f %10.3f', [degfree[7], ss[7], ms[7]]);
|
||
|
lReport.Add('');
|
||
|
lReport.Add('TOTAL %5d %10.3f', [degfree[8], ss[8]]);
|
||
|
lReport.Add('------------------------------------------------------------------');
|
||
|
|
||
|
//Calculate and print means
|
||
|
lReport.Add('Means');
|
||
|
outline := 'TRT. ';
|
||
|
for i := 1 to k do
|
||
|
begin
|
||
|
value := Format('B%3d ', [i]);
|
||
|
outline := outline + value;
|
||
|
end;
|
||
|
outline := outline + 'TOTAL';
|
||
|
lReport.Add(outline);
|
||
|
lReport.Add(' A ');
|
||
|
for i := 1 to range do
|
||
|
begin
|
||
|
for j := 1 to k do
|
||
|
C[i-1,j-1] := C[i-1,j-1] / N[i-1]; //mean of each B treatment within A treatment
|
||
|
sumsum[i-1] := sumsum[i-1] / (N[i-1] * k); //means in A treatment accross B treatments
|
||
|
end;
|
||
|
for j := 1 to k do
|
||
|
coltot[j-1] := coltot[j-1] / totaln;
|
||
|
TotStdDev := TotStdDev - ((TotMean * TotMean) / (k * totaln));
|
||
|
TotStdDev := TotStdDev / (k * totaln - 1);
|
||
|
TotStdDev := sqrt(TotStdDev);
|
||
|
TotMean := TotMean / (k * totaln);
|
||
|
for i := 1 to range do
|
||
|
begin
|
||
|
outline := Format('%3d ', [i+a1-1]);
|
||
|
for j := 1 to k do
|
||
|
begin
|
||
|
value := format('%7.3f', [C[i-1,j-1]]);
|
||
|
outline := outline + value;
|
||
|
end;
|
||
|
value := Format('%7.3f', [sumsum[i-1]]);
|
||
|
outline := outline + value;
|
||
|
lReport.Add(outline);
|
||
|
end;
|
||
|
outline := 'TOTAL';
|
||
|
for j := 1 to k do
|
||
|
begin
|
||
|
value := Format('%7.3f', [coltot[j-1]]);
|
||
|
outline := outline + value;
|
||
|
end;
|
||
|
value := Format('%7.3f', [TotMean]);
|
||
|
outline := outline + value;
|
||
|
lReport.Add(outline);
|
||
|
|
||
|
// Print standard deviations
|
||
|
lReport.Add('');
|
||
|
lReport.Add('Standard Deviations');
|
||
|
outline := 'TRT. ';
|
||
|
for i := 1 to k do
|
||
|
begin
|
||
|
value := Format('B%3d ', [i]);
|
||
|
outline := outline + value;
|
||
|
end;
|
||
|
outline := outline + 'TOTAL';
|
||
|
lReport.Add(outline);
|
||
|
lReport.Add(' A ');
|
||
|
for i := 1 to range do
|
||
|
begin
|
||
|
outline := Format('%3d ', [i+a1-1]);
|
||
|
for j := 1 to k do
|
||
|
begin
|
||
|
value := Format('%7.3f', [StdDev[i-1,j-1]]);
|
||
|
outline := outline + value;
|
||
|
end;
|
||
|
value := Format('%7.3f', [StdDev[i-1,k]]);
|
||
|
outline := outline + value;
|
||
|
lReport.Add(outline);
|
||
|
end;
|
||
|
outline := 'TOTAL';
|
||
|
for j := 1 to k do
|
||
|
begin
|
||
|
value := Format('%7.3f', [StdDev[range,j-1]]);
|
||
|
outline := outline + value;
|
||
|
end;
|
||
|
value := Format('%7.3f', [TotStdDev]);
|
||
|
outline := outline + value;
|
||
|
lReport.Add(outline);
|
||
|
|
||
|
if PosthocChk.Checked then
|
||
|
begin
|
||
|
// Do tests for the A (between groups)
|
||
|
lReport.Add('');
|
||
|
lReport.Add('===============================================================');
|
||
|
lReport.Add('');
|
||
|
lReport.Add('COMPARISONS FOR THE BETWEEN-GROUP MEANS');
|
||
|
PostHocTests(range, MS[1], degfree[1], range, sumsum, lReport);
|
||
|
lReport.Add('');
|
||
|
|
||
|
// Do tests for the B (repeated measures)
|
||
|
lReport.Add('');
|
||
|
lReport.Add('===============================================================');
|
||
|
lReport.Add('');
|
||
|
lReport.Add('COMPARISONS FOR THE REPEATED-MEASURES MEANS');
|
||
|
PostHocTests(k, ms[4], degfree[4], NoCases, coltot, lReport);
|
||
|
end;
|
||
|
|
||
|
DisplayReport(lReport);
|
||
|
|
||
|
finally
|
||
|
lReport.Free;
|
||
|
end;
|
||
|
|
||
|
if PlotChk.Checked then // PlotMeans(C,range,k,this)
|
||
|
begin
|
||
|
maxmean := 0.0;
|
||
|
SetLength(GraphFrm.Ypoints,range,k);
|
||
|
SetLength(GraphFrm.Xpoints,1,k);
|
||
|
for i := 1 to range do
|
||
|
begin
|
||
|
GraphFrm.SetLabels[i] := 'A ' + IntToStr(i);
|
||
|
for j := 1 to k do
|
||
|
begin
|
||
|
GraphFrm.Ypoints[i-1,j-1] := C[i-1,j-1];
|
||
|
if C[i-1,j-1] > maxmean then
|
||
|
maxmean := C[i-1,j-1];
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
for j := 1 to k do
|
||
|
begin
|
||
|
coltot[j-1] := j;
|
||
|
GraphFrm.Xpoints[0,j-1] := j;
|
||
|
end;
|
||
|
|
||
|
GraphFrm.nosets := range;
|
||
|
GraphFrm.nbars := k;
|
||
|
GraphFrm.Heading := 'TREATMENTS X SUBJECT REPLICATIONS ANOVA';
|
||
|
GraphFrm.XTitle := 'WITHIN (B) TREATMENT GROUP';
|
||
|
GraphFrm.YTitle := 'Mean';
|
||
|
GraphFrm.barwideprop := 0.5;
|
||
|
GraphFrm.AutoScaled := false;
|
||
|
GraphFrm.GraphType := 2; // 3d Vertical Bar Chart
|
||
|
GraphFrm.miny := 0.0;
|
||
|
GraphFrm.maxy := maxmean;
|
||
|
GraphFrm.BackColor := clCream;
|
||
|
GraphFrm.WallColor := clDkGray;
|
||
|
GraphFrm.FloorColor := clLtGray;
|
||
|
GraphFrm.ShowBackWall := true;
|
||
|
GraphFrm.ShowModal;
|
||
|
end;
|
||
|
|
||
|
// Clean up
|
||
|
GraphFrm.Xpoints := nil;
|
||
|
GraphFrm.Ypoints := nil;
|
||
|
StdDev := nil;
|
||
|
sumsum := nil;
|
||
|
sumxsquared := nil;
|
||
|
coltot := nil;
|
||
|
squaredsumx := nil;
|
||
|
N := nil;
|
||
|
C := nil;
|
||
|
ColNoSelected := nil;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.DepOutBtnClick(Sender: TObject);
|
||
|
begin
|
||
|
if GrpVar.Text <> '' then
|
||
|
begin
|
||
|
VarList.Items.Add(GrpVar.Text);
|
||
|
GrpVar.Text := '';
|
||
|
end;
|
||
|
UpdateBtnStates;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.PostHocTests(NoSelected: Integer; MSerr: double;
|
||
|
dferr: integer; Count: integer; ColMeans: DblDyneVec; AReport: TStrings);
|
||
|
var
|
||
|
group_total: DblDyneVec;
|
||
|
group_count: DblDyneVec;
|
||
|
i, mingrp: integer;
|
||
|
begin
|
||
|
SetLength(group_total,NoSelected);
|
||
|
SetLength(group_count,NoSelected);
|
||
|
for i := 0 to NoSelected - 1 do
|
||
|
begin
|
||
|
group_count[i] := double(Count);
|
||
|
group_total[i] := double(Count) * ColMeans[i];
|
||
|
end;
|
||
|
|
||
|
mingrp := 1;
|
||
|
Tukey(MSerr, dferr, Count, group_total, group_count, mingrp, NoSelected, AReport);
|
||
|
Tukey_Kramer(MSerr, dferr, Count, group_total, group_count, mingrp, NoSelected, AReport);
|
||
|
TukeyBTest(MSerr, dferr, group_total, group_count, mingrp,NoSelected, Count, AReport);
|
||
|
ScheffeTest(MSerr, group_total, group_count, mingrp, NoSelected, Count*NoSelected, AReport);
|
||
|
Newman_Keuls(MSerr, dferr, Count, group_total, group_count, mingrp, NoSelected, AReport);
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.Tukey(
|
||
|
error_ms : double; { mean squared for residual }
|
||
|
error_df : double; { deg. freedom for residual }
|
||
|
value : double; { size of smallest group }
|
||
|
group_total : DblDyneVec; { sum of scores in a group }
|
||
|
group_count : DblDyneVec; { no. of cases in a group }
|
||
|
min_grp : integer; { minimum group code }
|
||
|
max_grp : integer; { maximum group code }
|
||
|
AReport : TStrings);
|
||
|
var
|
||
|
sig: boolean;
|
||
|
divisor: double;
|
||
|
df1: integer;
|
||
|
alpha: double;
|
||
|
contrast, mean1, mean2: double;
|
||
|
q_stat: double;
|
||
|
i,j: integer;
|
||
|
outline: string;
|
||
|
begin
|
||
|
alpha := DEFAULT_ALPHA_LEVEL;
|
||
|
AReport.Add('---------------------------------------------------------------');
|
||
|
AReport.Add(' Tukey HSD Test for Differences Between Means');
|
||
|
AReport.Add(' alpha selected = %.2f', [alpha]);
|
||
|
AReport.Add('');
|
||
|
AReport.Add('Groups Difference Statistic Probability Significant?');
|
||
|
AReport.Add('---------------------------------------------------------------');
|
||
|
|
||
|
divisor := sqrt(error_ms / value);
|
||
|
for i := min_grp to max_grp - 1 do
|
||
|
for j := i + 1 to max_grp do
|
||
|
begin
|
||
|
outline := Format('%2d - %2d ', [i,j]);
|
||
|
mean1 := group_total[i-1] / group_count[i-1];
|
||
|
mean2 := group_total[j-1] / group_count[j-1];
|
||
|
contrast := mean1 - mean2;
|
||
|
outline := outline + Format('%7.3f q = ', [contrast]);
|
||
|
contrast := abs(contrast / divisor) ;
|
||
|
outline := outline + Format('%6.3f ', [contrast]);
|
||
|
df1 := max_grp - min_grp + 1;
|
||
|
q_stat := STUDENT(contrast, error_df, df1);
|
||
|
outline := outline + Format(' %6.4f', [q_stat]);
|
||
|
if alpha >= q_stat then sig := TRUE else sig := FALSE;
|
||
|
if sig = TRUE then
|
||
|
outline := outline + ' YES '
|
||
|
else
|
||
|
outline := outline + ' NO';
|
||
|
AReport.Add(outline);
|
||
|
end;
|
||
|
|
||
|
AReport.Add('---------------------------------------------------------------');
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.ScheffeTest(
|
||
|
error_ms : double; { mean squared residual }
|
||
|
group_total : DblDyneVec; { sum of scores in a group }
|
||
|
group_count : DblDyneVec; { count of cases in a group }
|
||
|
min_grp : integer; { code of first group }
|
||
|
max_grp : integer; { code of last group }
|
||
|
total_n : double; { total number of cases }
|
||
|
AReport : TStrings);
|
||
|
var
|
||
|
statistic, stat_var, stat_sd: double;
|
||
|
mean1, mean2, alpha, difference, prob_scheffe, f_prob, df1, df2: double;
|
||
|
outline: string;
|
||
|
i, j: integer;
|
||
|
begin
|
||
|
alpha := DEFAULT_ALPHA_LEVEL;
|
||
|
AReport.Add('');
|
||
|
AReport.Add('----------------------------------------------------------------');
|
||
|
AReport.Add(' Scheffe contrasts among pairs of means.');
|
||
|
AReport.Add(' alpha selected = %.2f', [alpha]);
|
||
|
AReport.Add('');
|
||
|
AReport.Add('Group vs Group Difference Scheffe Critical Significant?');
|
||
|
AReport.Add(' Statistic Value');
|
||
|
AReport.Add('----------------------------------------------------------------');
|
||
|
|
||
|
alpha := 1.0 - alpha ;
|
||
|
for i:= min_grp to max_grp - 1 do
|
||
|
for j := i + 1 to max_grp do
|
||
|
begin
|
||
|
outline := Format('%2d %2d ', [i,j]);
|
||
|
mean1 := group_total[i-1] / group_count[i-1];
|
||
|
mean2 := group_total[j-1] / group_count[j-1];
|
||
|
difference := mean1 - mean2;
|
||
|
outline := outline + Format('%8.2f ', [difference]);
|
||
|
stat_var := error_ms * ( 1.0 / group_count[i-1] + 1.0 / group_count[j-1]);
|
||
|
stat_sd := sqrt(stat_var);
|
||
|
statistic := abs(difference / stat_sd);
|
||
|
outline := outline + Format('%8.2f ', [statistic]);
|
||
|
df1 := max_grp - min_grp;
|
||
|
df2 := total_n - df1 + 1;
|
||
|
f_prob := fpercentpoint(alpha, round(df1), round(df2) );
|
||
|
prob_scheffe := sqrt(df1 * f_prob);
|
||
|
outline := outline + Format('%8.3f ', [prob_scheffe]);
|
||
|
if statistic > prob_scheffe then
|
||
|
outline := outline + 'YES'
|
||
|
else
|
||
|
outline := outline + 'NO';
|
||
|
AReport.Add(outline);
|
||
|
end;
|
||
|
|
||
|
AReport.Add('----------------------------------------------------------------');
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.Newman_Keuls(
|
||
|
error_ms : double; { residual mean squared }
|
||
|
error_df : double; { deg. freedom for error }
|
||
|
value : double; { number in smallest group }
|
||
|
group_total : DblDyneVec; { sum of scores in a group }
|
||
|
group_count : DblDyneVec; { count of cases in a group }
|
||
|
min_grp : integer; { lowest group code }
|
||
|
max_grp : integer; { largest group code }
|
||
|
AReport : TStrings);
|
||
|
var
|
||
|
i, j: integer;
|
||
|
temp1, temp2: double;
|
||
|
groupno: IntDyneVec;
|
||
|
alpha: double;
|
||
|
contrast, mean1, mean2: double;
|
||
|
q_stat: double;
|
||
|
divisor: double;
|
||
|
tempno: integer;
|
||
|
df1: integer;
|
||
|
sig: boolean;
|
||
|
outline: string;
|
||
|
begin
|
||
|
SetLength(groupno, max_grp - min_grp + 1);
|
||
|
|
||
|
for i := min_grp to max_grp do
|
||
|
groupno[i-1] := i;
|
||
|
|
||
|
for i := min_grp to max_grp - 1 do
|
||
|
begin
|
||
|
for j := i + 1 to max_grp do
|
||
|
begin
|
||
|
if group_total[i-1] / group_count[i-1] > group_total[j-1] / group_count[j-1] then
|
||
|
begin
|
||
|
temp1 := group_total[i-1];
|
||
|
temp2 := group_count[i-1];
|
||
|
tempno := groupno[i-1];
|
||
|
group_total[i-1] := group_total[j-1];
|
||
|
group_count[i-1] := group_count[j-1];
|
||
|
groupno[i-1] := groupno[j-1];
|
||
|
group_total[j-1] := temp1;
|
||
|
group_count[j-1] := temp2;
|
||
|
groupno[j-1] := tempno;
|
||
|
end;
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
alpha := DEFAULT_ALPHA_LEVEL;
|
||
|
AReport.Add('');
|
||
|
AReport.Add('----------------------------------------------------------------------');
|
||
|
AReport.Add(' Neuman-Keuls Test for Contrasts on Ordered Means');
|
||
|
AReport.Add(' alpha selected = %.2f', [alpha]);
|
||
|
AReport.Add('');
|
||
|
AReport.Add('Group Mean');
|
||
|
for i := 1 to max_grp do
|
||
|
AReport.Add('%3d %10.3f', [groupno[i-1], group_total[i-1] / group_count[i-1]]);
|
||
|
AReport.Add('');
|
||
|
AReport.Add('Groups Difference Statistic d.f. Probability Significant?');
|
||
|
AReport.Add('----------------------------------------------------------------------');
|
||
|
|
||
|
divisor := sqrt(error_ms / value);
|
||
|
for i := min_grp to max_grp - 1 do
|
||
|
begin
|
||
|
for j := i + 1 to max_grp do
|
||
|
begin
|
||
|
outline := Format('%2d - %2d ', [groupno[i-1], groupno[j-1]]);
|
||
|
mean1 := group_total[i-1] / group_count[i-1];
|
||
|
mean2 := group_total[j-1] / group_count[j-1];
|
||
|
contrast := mean1 - mean2;
|
||
|
outline := outline + Format('%7.3f q = ', [contrast]);
|
||
|
contrast := abs(contrast / divisor );
|
||
|
df1 := j - i + 1;
|
||
|
outline := outline + Format('%6.3f %2d %3.0f ', [contrast, df1, error_df]);
|
||
|
q_stat := STUDENT(contrast, error_df, df1);
|
||
|
outline := outline + Format(' %6.4f', [q_stat]);
|
||
|
sig := alpha > q_stat;
|
||
|
if sig then
|
||
|
outline := outline + ' YES'
|
||
|
else
|
||
|
outline := outline + ' NO';
|
||
|
AReport.Add(outline);
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
AReport.Add('----------------------------------------------------------------------');
|
||
|
groupno := nil;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.Tukey_Kramer(
|
||
|
error_ms : double; { residual mean squared }
|
||
|
error_df : double; { deg. freedom for error }
|
||
|
value : double; { number in smallest group }
|
||
|
group_total : DblDyneVec; { sum of scores in group }
|
||
|
group_count : DblDyneVec; { number of caes in group }
|
||
|
min_grp : integer; { code of lowest group }
|
||
|
max_grp : integer; { code of highst group }
|
||
|
AReport : TStrings);
|
||
|
var
|
||
|
sig: boolean;
|
||
|
divisor: double;
|
||
|
df1: integer;
|
||
|
alpha: double;
|
||
|
contrast, mean1, mean2: double;
|
||
|
q_stat: double;
|
||
|
outline: string;
|
||
|
i, j: integer;
|
||
|
begin
|
||
|
alpha := DEFAULT_ALPHA_LEVEL;
|
||
|
AReport.Add('');
|
||
|
AReport.Add('---------------------------------------------------------------');
|
||
|
AReport.Add(' Tukey-Kramer Test for Differences Between Means');
|
||
|
AReport.Add(' alpha selected = %.2f', [alpha]);
|
||
|
AReport.Add('');
|
||
|
AReport.Add('Groups Difference Statistic Probability Significant?');
|
||
|
AReport.Add('---------------------------------------------------------------');
|
||
|
|
||
|
for i := min_grp to max_grp - 1 do
|
||
|
for j := i + 1 to max_grp do
|
||
|
begin
|
||
|
outline := Format('%2d - %2d ', [i, j]);
|
||
|
mean1 := group_total[i-1] / group_count[i-1];
|
||
|
mean2 := group_total[j-1] / group_count[j-1];
|
||
|
contrast := mean1 - mean2;
|
||
|
outline := outline + Format('%7.3f q = ', [contrast]);
|
||
|
divisor := sqrt(error_ms * ((1.0/group_count[i-1] + 1.0/group_count[j-1]) / 2));
|
||
|
contrast := abs(contrast / divisor) ;
|
||
|
outline := outline + Format('%6.3f ', [Contrast]);
|
||
|
df1 := max_grp - min_grp + 1;
|
||
|
q_stat := STUDENT(contrast, error_df, df1);
|
||
|
outline := outline + Format(' %6.4f', [q_stat]);
|
||
|
sig := alpha >= q_stat;
|
||
|
if sig then
|
||
|
outline := outline + ' YES '
|
||
|
else
|
||
|
outline := outline + ' NO';
|
||
|
AReport.Add(outline);
|
||
|
end;
|
||
|
|
||
|
AReport.Add('---------------------------------------------------------------');
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.TukeyBTest(
|
||
|
ErrorMS : double; // within groups error
|
||
|
ErrorDF : double; // degrees of freedom within
|
||
|
group_total : DblDyneVec; // vector of group sums
|
||
|
group_count : DblDyneVec; // vector of group n's
|
||
|
min_grp : integer; // smallest group code
|
||
|
max_grp : integer; // largest group code
|
||
|
groupsize : double; // size of groups (all equal)
|
||
|
AReport : TStrings);
|
||
|
var
|
||
|
alpha : double;
|
||
|
outline: string;
|
||
|
i, j: integer;
|
||
|
df1: double;
|
||
|
qstat: double;
|
||
|
tstat: double;
|
||
|
groupno: IntDyneVec;
|
||
|
temp1, temp2: double;
|
||
|
tempno: integer;
|
||
|
NoGrps: integer;
|
||
|
contrast: double;
|
||
|
mean1, mean2: double;
|
||
|
sig: string[6];
|
||
|
groups: double;
|
||
|
divisor: double;
|
||
|
begin
|
||
|
SetLength(groupno,max_grp-min_grp+1);
|
||
|
alpha := DEFAULT_ALPHA_LEVEL;
|
||
|
|
||
|
AReport.Add('');
|
||
|
AReport.Add('---------------------------------------------------------------');
|
||
|
AReport.Add(' Tukey B Test for Contrasts on Ordered Means');
|
||
|
AReport.Add(' alpha selected = %.2f', [alpha]);
|
||
|
AReport.Add('---------------------------------------------------------------');
|
||
|
AReport.Add('');
|
||
|
AReport.Add('Groups Difference Statistic d.f. Prob.>value Significant?');
|
||
|
|
||
|
divisor := sqrt(ErrorMS / groupsize);
|
||
|
NoGrps := max_grp - min_grp + 1;
|
||
|
for i := min_grp to max_grp do
|
||
|
groupno[i-1] := i;
|
||
|
for i := 1 to NoGrps - 1 do
|
||
|
begin
|
||
|
for j := i + 1 to NoGrps do
|
||
|
begin
|
||
|
if group_total[i-1] / group_count[i-1] > group_total[j-1] / group_count[j-1] then
|
||
|
begin
|
||
|
temp1 := group_total[i-1];
|
||
|
temp2 := group_count[i-1];
|
||
|
tempno := groupno[i-1];
|
||
|
group_total[i-1] := group_total[j-1];
|
||
|
group_count[i-1] := group_count[j-1];
|
||
|
groupno[i-1] := groupno[j-1];
|
||
|
group_total[j-1] := temp1;
|
||
|
group_count[j-1] := temp2;
|
||
|
groupno[j-1] := tempno;
|
||
|
end;
|
||
|
end;
|
||
|
end;
|
||
|
|
||
|
for i := 1 to NoGrps-1 do
|
||
|
begin
|
||
|
for j := i+1 to NoGrps do
|
||
|
begin
|
||
|
mean1 := group_total[i-1] / group_count[i-1];
|
||
|
mean2 := group_total[j-1] / group_count[j-1];
|
||
|
contrast := abs((mean1 - mean2) / divisor);
|
||
|
df1 := j - i + 1.0;
|
||
|
qstat := STUDENT(contrast, ErrorDF, df1);
|
||
|
groups := NoGrps;
|
||
|
tstat := STUDENT(contrast, ErrorDF, groups);
|
||
|
qstat := (qstat + tstat) / 2.0;
|
||
|
if alpha >= qstat then
|
||
|
sig := 'YES'
|
||
|
else
|
||
|
sig := 'NO';
|
||
|
outline := Format('%3d - %3d %10.3f %10.3f %4.0f,%4.0f %5.3f %s', [
|
||
|
groupno[i-1], groupno[j-1],
|
||
|
mean1-mean2, contrast, df1, ErrorDF, qstat, sig
|
||
|
]);
|
||
|
AReport.Add(outline);
|
||
|
end;
|
||
|
end;
|
||
|
groupno := nil;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.UpdateBtnStates;
|
||
|
var
|
||
|
lSelected: Boolean;
|
||
|
i: Integer;
|
||
|
begin
|
||
|
DepInBtn.Enabled := (VarList.ItemIndex > -1) and (GrpVar.Text = '');
|
||
|
DepOutBtn.Enabled := (GrpVar.Text <> '');
|
||
|
|
||
|
lSelected := false;
|
||
|
for i := 0 to VarList.Items.Count-1 do
|
||
|
if VarList.Selected[i] then
|
||
|
begin
|
||
|
lSelected := true;
|
||
|
break;
|
||
|
end;
|
||
|
RepInBtn.Enabled := lSelected;
|
||
|
|
||
|
lSelected := false;
|
||
|
for i := 0 to RepList.Items.Count-1 do
|
||
|
if RepList.Selected[i] then
|
||
|
begin
|
||
|
lSelected := true;
|
||
|
break;
|
||
|
end;
|
||
|
RepOutBtn.Enabled := lSelected;
|
||
|
end;
|
||
|
|
||
|
procedure TAxSAnovaFrm.VarListSelectionChange(Sender: TObject; User: boolean);
|
||
|
begin
|
||
|
UpdateBtnStates;
|
||
|
end;
|
||
|
|
||
|
initialization
|
||
|
{$I axsanovaunit.lrs}
|
||
|
|
||
|
end.
|
||
|
|