Files
lazarus-ccr/components/systools/source/general/run/stdecmth.pas

1309 lines
34 KiB
ObjectPascal
Raw Normal View History

// Upgraded to Delphi 2009: Sebastian Zierer
(* ***** BEGIN LICENSE BLOCK *****
* Version: MPL 1.1
*
* The contents of this file are subject to the Mozilla Public License Version
* 1.1 (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
* http://www.mozilla.org/MPL/
*
* Software distributed under the License is distributed on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
* for the specific language governing rights and limitations under the
* License.
*
* The Original Code is TurboPower SysTools
*
* The Initial Developer of the Original Code is
* TurboPower Software
*
* Portions created by the Initial Developer are Copyright (C) 1996-2002
* the Initial Developer. All Rights Reserved.
*
* Contributor(s):
*
* ***** END LICENSE BLOCK ***** *)
{*********************************************************}
{* SysTools: StDecMth.pas 4.04 *}
{*********************************************************}
{* SysTools: Class for doing decimal arithmetic *}
{*********************************************************}
{$IFDEF FPC}
{$mode DELPHI}
{$ENDIF}
//{$I StDefine.inc}
unit StDecMth;
interface
{Note: StDecMth declares and implements TStDecimal. This is a fixed-
point value with a total of 38 significant digits of which
16 are to the right of the decimal point.}
uses
SysUtils;
type
TStRoundMethod = ( {different rounding methods...}
rmNormal, {..normal (round away from zero if half way)}
rmTrunc, {..truncate (always round to zero)}
rmBankers, {..bankers (round to even digit if half way)}
rmUp); {..force round up (always round from zero)}
TStInt128 = array [0..3] of longint; // must be longint, not DWORD
TStDecimal = class
private
FInt : TStInt128;
protected
function dcGetAsStr : AnsiString;
procedure dcSetFromStr(const aValue : AnsiString); {!!.02}
public
constructor Create;
destructor Destroy; override;
function Compare(X : TStDecimal) : integer;
{-returns <0 if Self < X, 0 is equal, >0 otherwise}
function IsNegative : boolean;
{-returns Self < 0.0}
function IsOne : boolean;
{-returns Self = 1.0}
function IsPositive : boolean;
{-returns Self > 0.0}
function IsZero : boolean;
{-returns Self = 0.0}
procedure SetToOne;
{-sets Self equal to 1.0}
procedure SetToZero;
{-sets Self equal to 0.0}
procedure Assign(X : TStDecimal);
{-sets Self equal to X}
procedure AssignFromFloat(aValue : double);
{-sets Self equal to aValue}
procedure AssignFromInt(aValue : integer);
{-sets Self equal to aValue}
function AsFloat : double;
{-returns Self as an floating point value}
function AsInt(aRound : TStRoundMethod) : integer;
{-returns Self as an integer, rounded}
procedure Abs;
{-calculates Self := Abs(Self)}
procedure Add(X : TStDecimal);
{-calculates Self := Self + X}
procedure AddOne;
{-calculates Self := Self + 1.0}
procedure ChangeSign;
{-calculates Self := ChgSign(Self)}
procedure Divide(X : TStDecimal);
{-calculates Self := Self div X}
procedure Multiply(X : TStDecimal);
{-calculates Self := Self * X}
procedure RaiseToPower(N : integer);
{-calculates Self := Self ^ N}
procedure Round(aRound : TStRoundMethod; aDecPl : integer);
{-calculates Self := Round(Self)}
procedure Subtract(X : TStDecimal);
{-calculates Self := Self - X}
procedure SubtractOne;
{-calculates Self := Self - 1}
property AsString : AnsiString read dcGetAsStr write dcSetFromStr;
{-returns Self as a string, sets Self from a string}
end;
implementation
uses
StConst,
StBase;
type
TStInt256 = array [0..7] of integer;
TStInt192 = array [0..5] of integer;
const
MaxDecPl = 16;
Int128One_0 = longint($6FC10000);
Int128One_1 = longint($002386F2);
PowerOf10 : array [0..MaxDecPl div 2] of integer =
(1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
100000000);
{===Helper routines==================================================}
procedure Int256Div10E8(var X : TStInt256; var aRem : integer);
{Note: this routine assumes X is positive}
asm
push ebx // save ebx
push edx // save address of remainder variable
mov ecx, 100000000 // we're dividing by 10^8
mov ebx, eax // ebx points to X
xor edx, edx // start off with high dividend digit zero
mov eax, [ebx+28] // get last 32-bit digit
div ecx // divide by 10: eax is quotient, edx remainder
mov [ebx+28], eax // save highest quotient digit
mov eax, [ebx+24] // get next 32-bit digit
div ecx // divide by 10: eax is quotient, edx remainder
mov [ebx+24], eax // save next quotient digit
mov eax, [ebx+20] // get next 32-bit digit
div ecx // divide by 10: eax is quotient, edx remainder
mov [ebx+20], eax // save next quotient digit
mov eax, [ebx+16] // get next 32-bit digit
div ecx // divide by 10: eax is quotient, edx remainder
mov [ebx+16], eax // save next quotient digit
mov eax, [ebx+12] // get next 32-bit digit
div ecx // divide by 10: eax is quotient, edx remainder
mov [ebx+12], eax // save next quotient digit
mov eax, [ebx+8] // get next 32-bit digit
div ecx // divide by 10: eax is quotient, edx remainder
mov [ebx+8], eax // save next quotient digit
mov eax, [ebx+4] // get next 32-bit digit
div ecx // divide by 10: eax is quotient, edx remainder
mov [ebx+4], eax // save next quotient digit
mov eax, [ebx] // get first 32-bit digit
div ecx // divide by 10: eax is quotient, edx remainder
mov [ebx], eax // save first quotient digit
pop eax // pop off the address of remainder variable
mov [eax], edx // store remainder
pop ebx // restore ebx
end;
{--------}
procedure Int192Times10E8(var X : TStInt192);
{Note: this routine assumes X is positive}
asm
push ebx // save ebx
push ebp // save ebp
mov ecx, 100000000 // we're multiplying by 10^8
mov ebx, eax // ebx points to X
mov eax, [ebx] // get the first 32-bit digit
mul ecx // multiply it by 10^8 to give answer in edx:eax
mov [ebx], eax // save first digit of result
mov ebp, edx // save overflow
mov eax, [ebx+4] // get the second 32-bit digit
mul ecx // multiply it by 10^8 to give answer in edx:eax
add eax, ebp // add the overflow from the first digit
adc edx, 0
mov [ebx+4], eax // save second digit of result
mov ebp, edx // save overflow
mov eax, [ebx+8] // get the third 32-bit digit
mul ecx // multiply it by 10^8 to give answer in edx:eax
add eax, ebp // add the overflow from the second digit
adc edx, 0
mov [ebx+8], eax // save third digit of result
mov ebp, edx // save overflow
mov eax, [ebx+12] // get the fourth 32-bit digit
mul ecx // multiply it by 10^8 to give answer in edx:eax
add eax, ebp // add the overflow from the third digit
adc edx, 0
mov [ebx+12], eax // save fourth digit of result
mov ebp, edx // save overflow
mov eax, [ebx+16] // get the fifth 32-bit digit
mul ecx // multiply it by 10^8 to give answer in edx:eax
add eax, ebp // add the overflow from the fourth digit
adc edx, 0
mov [ebx+16], eax // save fifth digit of result
mov ebp, edx // save overflow
mov eax, [ebx+20] // get the sixth 32-bit digit
mul ecx // multiply it by 10^8 to give answer in edx:eax
add eax, ebp // add the overflow from the fifth digit
mov [ebx+20], eax // save sixth digit of result
pop ebp // restore ebp
pop ebx // restore ebx
end;
{--------}
function Int32MultPrim(X, Y : longint;
var P : longint; Carry : longint) : longint;
asm
{Note: calculates X * Y + P + Carry
returns answer in P, with overflow as result value}
mul edx
add eax, [ecx]
adc edx, 0
add eax, Carry
adc edx, 0
mov [ecx], eax
mov eax, edx
end;
{--------}
procedure Int128Add(var X : TStInt128; const Y : TStInt128);
asm
push ebx
mov ecx, [edx]
mov ebx, [edx+4]
add [eax], ecx
adc [eax+4], ebx
mov ecx, [edx+8]
mov ebx, [edx+12]
adc [eax+8], ecx
adc [eax+12], ebx
pop ebx
end;
{--------}
procedure Int128AddInt(var X : TStInt128; aDigit : integer);
asm
add [eax], edx
adc dword ptr [eax+4], 0
adc dword ptr [eax+8], 0
adc dword ptr [eax+12], 0
end;
{--------}
procedure Int128ChgSign(var X : TStInt128);
asm
mov ecx, [eax]
mov edx, [eax+4]
not ecx
not edx
add ecx, 1
adc edx, 0
mov [eax], ecx
mov [eax+4], edx
mov ecx, [eax+8]
mov edx, [eax+12]
not ecx
not edx
adc ecx, 0
adc edx, 0
mov [eax+8], ecx
mov [eax+12], edx
end;
{--------}
function Int128Compare(const X, Y : TStInt128) : integer;
asm
// Can be called from pascal
// All registers are preserved, except eax, which returns the
// result of the comparison
push ebx
push ecx
mov ecx, [eax+12]
mov ebx, [edx+12]
xor ecx, $80000000
xor ebx, $80000000
cmp ecx, ebx
jb @@LessThan
ja @@GreaterThan
mov ecx, [eax+8]
mov ebx, [edx+8]
cmp ecx, ebx
jb @@LessThan
ja @@GreaterThan
mov ecx, [eax+4]
mov ebx, [edx+4]
cmp ecx, ebx
jb @@LessThan
ja @@GreaterThan
mov ecx, [eax]
mov ebx, [edx]
cmp ecx, ebx
jb @@LessThan
ja @@GreaterThan
xor eax, eax
jmp @@Exit
@@LessThan:
mov eax, -1
jmp @@Exit
@@GreaterThan:
mov eax, 1
@@Exit:
pop ecx
pop ebx
end;
{--------}
procedure Int192SHL(var X : TStInt192);
asm
// DO NOT CALL FROM PASCAL
// IN: eax -> 192-bit integer to shift left
// OUT: eax -> 192-bit integer shifted left
// CF = most significant bit shifted out
// All registers are preserved
push ebx
push ecx
mov ebx, [eax]
mov ecx, [eax+4]
shl ebx, 1
rcl ecx, 1
mov [eax], ebx
mov [eax+4], ecx
mov ebx, [eax+8]
mov ecx, [eax+12]
rcl ebx, 1
rcl ecx, 1
mov [eax+8], ebx
mov [eax+12], ecx
mov ebx, [eax+16]
mov ecx, [eax+20]
rcl ebx, 1
rcl ecx, 1
mov [eax+16], ebx
mov [eax+20], ecx
pop ecx
pop ebx
end;
{--------}
procedure Int128RCL(var X : TStInt128);
asm
// DO NOT CALL FROM PASCAL
// IN: eax -> 128-bit integer to shift left
// CF = least significant bit to shift in
// OUT: eax -> 128-bit integer shifted left
// CF -> topmost bit shifted out
// All registers are preserved
push ebx
push ecx
mov ebx, [eax]
mov ecx, [eax+4]
rcl ebx, 1
rcl ecx, 1
mov [eax], ebx
mov [eax+4], ecx
mov ebx, [eax+8]
mov ecx, [eax+12]
rcl ebx, 1
rcl ecx, 1
mov [eax+8], ebx
mov [eax+12], ecx
pop ecx
pop ebx
end;
{--------}
procedure Int128FastDivide(var X : TStInt192;
var Y, aRem : TStInt128);
asm
push ebp
push ebx
push edi
push esi
mov esi, eax // esi -> dividend
mov edi, edx // edi -> divisor
mov ebp, ecx // ebp -> remainder
mov ecx, 192 // we'll do the loop for all 192 bits in the
// dividend
xor eax, eax // zero the remainder
mov [ebp], eax
mov [ebp+4], eax
mov [ebp+8], eax
mov [ebp+12], eax
@@GetNextBit:
mov eax, esi // shift the dividend left, and...
call Int192SHL
mov eax, ebp // ...shift the topmost bit into the remainder
call Int128RCL
mov eax, ebp // compare the remainder with the divisor
mov edx, edi
call Int128Compare
cmp eax, 0 // if the remainder is smaller, we can't
jl @@TooSmall // subtract the divisor
// essentially we've shown that the divisor
// divides the remainder exactly once, so
add dword ptr [esi], 1 // add one to the quotient
mov eax, [ebp] // subtract the divisor from the remainder
mov ebx, [ebp+4]
sub eax, [edi]
sbb ebx, [edi+4]
mov [ebp], eax
mov [ebp+4], ebx
mov eax, [ebp+8]
mov ebx, [ebp+12]
sbb eax, [edi+8]
sbb ebx, [edi+12]
mov [ebp+8], eax
mov [ebp+12], ebx
@@TooSmall:
dec ecx // go get the next bit to work on
jnz @@GetNextBit
pop esi
pop edi
pop ebx
pop ebp
end;
{--------}
function Int128DivInt(var X : TStInt128; aDivisor : integer) : integer;
{Note: this routine assumes X is positive}
asm
push ebx // save ebx
mov ecx, edx // ecx is now the divisor
mov ebx, eax // ebx points to X
xor edx, edx // start off with high dividend digit zero
mov eax, [ebx+12] // get last 32-bit digit
div ecx // divide by ecx: eax is quotient, edx remainder
mov [ebx+12], eax // save highest quotient digit
mov eax, [ebx+8] // get next 32-bit digit
div ecx // divide by ecx: eax is quotient, edx remainder
mov [ebx+8], eax // save next quotient digit
mov eax, [ebx+4] // get next 32-bit digit
div ecx // divide by ecx: eax is quotient, edx remainder
mov [ebx+4], eax // save next quotient digit
mov eax, [ebx] // get first 32-bit digit
div ecx // divide by ecx: eax is quotient, edx remainder
mov [ebx], eax // save first quotient digit
mov eax, edx // return remainder
pop ebx // restore ebx
end;
{--------}
procedure Int128Divide(var X, Y : TStInt128);
var
XTemp : TStInt192;
Rem : TStInt128;
begin
{note: the easy cases have been dealt with
X and Y are both positive
X will be set to the quotient X/Y and Y will be trashed}
{we need to increase the number of decimal places to 32, so convert
the 128 bit dividend to a 192 bit one and multiply by 10^16}
XTemp[0] := X[0];
XTemp[1] := X[1];
XTemp[2] := X[2];
XTemp[3] := X[3];
XTemp[4] := 0;
XTemp[5] := 0;
Int192Times10E8(XTemp);
Int192Times10E8(XTemp);
{Note: this algorithm follows that described by Knuth in volume 2 of
The Art of Computer Programming. Algorithm D of section 4.3
as applied to binary numbers (radix=2)}
{divide the 192-bit dividend by the 128-bit divisor}
Int128FastDivide(XTemp, Y, Rem);
{have we overflowed? ie, have we divided a very big number by one
much less than zero}
if (XTemp[3] < 0) or (XTemp[4] <> 0) or (XTemp[5] <> 0) then
raise EStDecMathError.Create(stscDecMathDivOverflowS);
{return the result of the computation}
X[0] := XTemp[0];
X[1] := XTemp[1];
X[2] := XTemp[2];
X[3] := XTemp[3];
end;
{--------}
procedure Int128Multiply(var X, Y : TStInt128);
var
P : TStInt256;
XIsNeg : boolean;
YIsNeg : boolean;
YInx : integer;
YDigit : integer;
Carry : integer;
YTemp : TStInt128;
begin
{Note: calculates X * Y and puts the answer in X}
{get rid of the easy cases where one of the operands is zero}
if (X[0] = 0) and (X[1] = 0) and (X[2] = 0) and (X[3] = 0) then
Exit;
if (Y[0] = 0) and (Y[1] = 0) and (Y[2] = 0) and (Y[3] = 0) then begin
X[0] := 0;
X[1] := 0;
X[2] := 0;
X[3] := 0;
Exit;
end;
{we might need to trash Y, so we use a local variable}
YTemp[0] := Y[0];
YTemp[1] := Y[1];
YTemp[2] := Y[2];
YTemp[3] := Y[3];
{convert both operands to positive values: we'll fix the sign later}
XIsNeg := X[3] < 0;
if XIsNeg then
Int128ChgSign(X);
YIsNeg := YTemp[3] < 0;
if YIsNeg then
Int128ChgSign(YTemp);
{initialize the temporary product}
P[0] := 0;
P[1] := 0;
P[2] := 0;
P[3] := 0;
P[4] := 0;
P[5] := 0;
P[6] := 0;
P[7] := 0;
{for every digit in Y we shall multiply by all the X digits and sum}
for YInx := 0 to 3 do begin
{get the Y digit}
YDigit := YTemp[YInx];
{there's only something to do if the Y digit is non-zero}
if (YDigit <> 0) then begin
{multiply this digit with all the X digits, storing the result
in the temporary product}
Carry := Int32MultPrim(X[0], YDigit, P[YInx], 0);
Carry := Int32MultPrim(X[1], YDigit, P[YInx + 1], Carry);
Carry := Int32MultPrim(X[2], YDigit, P[YInx + 2], Carry);
P[YInx + 4] := Int32MultPrim(X[3], YDigit, P[YInx + 3], Carry);
end;
end;
{the product has 32 decimal places, so divide by 10^8 twice to get
the answer to the 16 decimal places we need}
Int256Div10E8(P, Carry);
Int256Div10E8(P, Carry);
{note: if Carry <> 0 then we're losing precision}
{check for multiplication overflow}
if (P[3] < 0) or
(P[4] <> 0) or (P[5] <> 0) or (P[6] <> 0) or (P[7] <> 0) then
raise EStDecMathError.Create(stscDecMathMultOverflowS);
{return the value in X, remembering to set the sign}
X[0] := P[0];
X[1] := P[1];
X[2] := P[2];
X[3] := P[3];
(*
{round if necessary}
if (Carry >= 500000000) then
Int128AddInt(X, 1);
*)
{set the sign}
if (XIsNeg xor YIsNeg) then
Int128ChgSign(X);
end;
{--------}
procedure Int128TimesInt(var X : TStInt128; aValue : integer);
{Note: this routine assumes X is positive}
asm
push ebx // save ebx
push ebp // save ebp
mov ecx, edx // we're multiplying by aValue
mov ebx, eax // ebx points to X
mov eax, [ebx] // get the first 32-bit digit
mul ecx // multiply it by 10 to give answer in edx:eax
mov [ebx], eax // save first digit of result
mov ebp, edx // save overflow
mov eax, [ebx+4] // get the second 32-bit digit
mul ecx // multiply it by 10 to give answer in edx:eax
add eax, ebp // add the overflow from the first digit
adc edx, 0
mov [ebx+4], eax // save second digit of result
mov ebp, edx // save overflow
mov eax, [ebx+8] // get the third 32-bit digit
mul ecx // multiply it by 10 to give answer in edx:eax
add eax, ebp // add the overflow from the second digit
adc edx, 0
mov [ebx+8], eax // save second digit of result
mov ebp, edx // save overflow
mov eax, [ebx+12] // get the third 32-bit digit
mul ecx // multiply it by 10 to give answer in edx:eax
add eax, ebp // add the overflow from the second digit
mov [ebx+12], eax // save third digit of result
pop ebp // restore ebp
pop ebx // restore ebx
end;
{--------}
procedure Int128Round(var X : TStInt128;
aRound : TStRoundMethod;
aDecPl : integer);
var
Rem : integer;
HadRem : boolean;
AddOne : boolean;
Expnt : integer;
NeedInt : boolean;
begin
{Assumptions: X is positive, 0 <= aDecPl <= MaxDecPl
--the caller *must* ensure these}
{if the number of decimal places is -1, it's a special signal to
perform the rounding to an integer, but not to multiply the result
by 10^16 at the end; the caller is AsInt, in other words}
if (aDecPl >= 0) then
NeedInt := false
else begin
NeedInt := true;
aDecPl := 0;
end;
{if we're asked to round to the precision of the type, there's
nothing to do}
if (aDecPl = MaxDecPl) then
Exit;
{perform the required rounding}
AddOne := false; // keep the compiler happy
case aRound of
rmNormal :
begin
{to do normal rounding: divide by the required power of ten,
if the most significant digit of the remainder was 5 or more,
we'll add one to the result}
Expnt := MaxDecPl - aDecPl - 1;
if (Expnt > 0) then begin
if (Expnt > 8) then begin
Int128DivInt(X, PowerOf10[8]);
dec(Expnt, 8);
end;
Int128DivInt(X, PowerOf10[Expnt]);
end;
AddOne := Int128DivInt(X, 10) >= 5;
end;
rmTrunc :
begin
{to truncate: just divide by the required power of ten}
Expnt := MaxDecPl - aDecPl;
if (Expnt > 8) then begin
Int128DivInt(X, PowerOf10[8]);
dec(Expnt, 8);
end;
Int128DivInt(X, PowerOf10[Expnt]);
AddOne := false;
end;
rmBankers :
begin
{to do bankers rounding:
- divide by the required power of ten, checking to see if
there's a non-zero remainder
- if the most significant digit of the remainder was greater
than 5, we'll add one to the result
- if the most significant digit of the remainder was 5 and
there was at least one other digit in the remainder, we'll
add one to the result
- if the most significant digit of the remainder was 5 and
there were no other digits in the remainder, determine if
the result is odd; if it is, we'll add one to the result}
HadRem := false;
if ((MaxDecPl - aDecPl) > 1) then begin
Expnt := MaxDecPl - aDecPl - 1;
if (Expnt > 8) then begin
if (Int128DivInt(X, PowerOf10[8]) <> 0) then
HadRem := true;
dec(Expnt, 8);
end;
if (Int128DivInt(X, PowerOf10[Expnt]) <> 0) then
HadRem := true;
end;
Rem := Int128DivInt(X, 10);
AddOne := (Rem > 5) or
((Rem = 5) and HadRem) or
((Rem = 5) and Odd(X[0]));
end;
rmUp :
begin
{to always round up: divide by the required power of ten,
if there was a remainder, we'll add one to the result}
AddOne := false;
Expnt := MaxDecPl - aDecPl;
if (Expnt > 8) then begin
if (Int128DivInt(X, PowerOf10[8]) <> 0) then
AddOne := true;
dec(Expnt, 8);
end;
if (Int128DivInt(X, PowerOf10[Expnt]) <> 0) then
AddOne := true;
end;
end;{case}
{add one to the result, if required}
if AddOne then
Int128AddInt(X, 1);
{finally, multiply by the required power of ten}
if not NeedInt then begin
Expnt := MaxDecPl - aDecPl;
if (Expnt > 8) then begin
Int128TimesInt(X, PowerOf10[8]);
dec(Expnt, 8);
end;
Int128TimesInt(X, PowerOf10[Expnt]);
end;
end;
{====================================================================}
{====================================================================}
constructor TStDecimal.Create;
begin
{create the ancestor}
inherited Create;
{note: the internal number will be automatically zero}
end;
{--------}
destructor TStDecimal.Destroy;
begin
{free the ancestor}
inherited Destroy;
end;
{--------}
procedure TStDecimal.Abs;
begin
if (FInt[3] < 0) then
Int128ChgSign(FInt);
end;
{--------}
procedure TStDecimal.Add(X : TStDecimal);
begin
if (X <> nil) then
Int128Add(FInt, X.FInt);
end;
{--------}
procedure TStDecimal.AddOne;
var
One : TStInt128;
begin
One[0] := Int128One_0;
One[1] := Int128One_1;
One[2] := 0;
One[3] := 0;
Int128Add(FInt, One);
end;
{--------}
function TStDecimal.AsFloat : double;
begin
Result := StrToFloat(AsString);
end;
{--------}
function TStDecimal.AsInt(aRound : TStRoundMethod) : integer;
var
X : TStInt128;
IsNeg : boolean;
begin
{get the current value locally}
X[0] := FInt[0];
X[1] := FInt[1];
X[2] := FInt[2];
X[3] := FInt[3];
{force it to be positive}
IsNeg := X[3] < 0;
if IsNeg then
Int128ChgSign(X);
{round it to an integer}
Int128Round(X, aRound, -1);
{check for errors (the least significant digit cannot be negative,
and all the others must be zero)}
if (X[0] < 0) or (X[1] <> 0) or (X[2] <> 0) or (X[3] <> 0) then
raise EStDecMathError.Create(stscDecMathAsIntOverflowS);
{return the result}
if IsNeg then
Result := -X[0]
else
Result := X[0];
end;
{--------}
procedure TStDecimal.Assign(X : TStDecimal);
begin
if (X = nil) then
SetToZero
else begin
FInt[0] := X.FInt[0];
FInt[1] := X.FInt[1];
FInt[2] := X.FInt[2];
FInt[3] := X.FInt[3];
end;
end;
{--------}
procedure TStDecimal.AssignFromFloat(aValue : double);
begin
AsString := Format('%38.16f', [aValue]);
end;
{--------}
procedure TStDecimal.AssignFromInt(aValue : integer);
begin
FInt[0] := System.Abs(aValue);
FInt[1] := 0;
FInt[2] := 0;
FInt[3] := 0;
Int128TimesInt(FInt, PowerOf10[8]);
Int128TimesInt(FInt, PowerOf10[8]);
if (aValue < 0) then
Int128ChgSign(FInt);
end;
{--------}
procedure TStDecimal.ChangeSign;
begin
Int128ChgSign(FInt);
end;
{--------}
function TStDecimal.Compare(X : TStDecimal) : integer;
begin
Compare := Int128Compare(FInt, X.FInt);
end;
{--------}
function TStDecimal.dcGetAsStr : AnsiString;
var
X : TStInt128;
i : integer;
Rem : integer;
IsNeg : boolean;
ChStack: array [0..47] of AnsiChar;
// this is ample for 38 digits + punctuation
ChSP : integer;
begin
{initialize the stack}
ChSP := 0;
{since we're going to trash the value, store it locally}
X[0] := FInt[0];
X[1] := FInt[1];
X[2] := FInt[2];
X[3] := FInt[3];
{make sure it's positive}
IsNeg := X[3] < 0;
if IsNeg then
Int128ChgSign(X);
{push the least significant digits (those that will appear after the
radix point)}
for i := 1 to MaxDecPl do begin
Rem := Int128DivInt(X, 10);
ChStack[ChSP] := AnsiChar(Rem + ord('0'));
inc(ChSP);
end;
{push the radix point}
ChStack[ChSP] := AnsiChar({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator);
inc(ChSP);
{repeat until the local value is zero}
repeat
Rem := Int128DivInt(X, 10);
ChStack[ChSP] := AnsiChar(Rem + ord('0'));
inc(ChSP);
until (X[0] = 0) and (X[1] = 0) and (X[2] = 0) and (X[3] = 0);
{if the value was negative, push a minus sign}
if IsNeg then begin
ChStack[ChSP] := '-';
inc(ChSP);
end;
{construct the result value by popping off characters}
SetLength(Result, ChSP);
i := 1;
while (ChSP <> 0) do begin
dec(ChSP);
Result[i] := ChStack[ChSP];
inc(i);
end;
end;
{--------}
procedure TStDecimal.dcSetFromStr(const aValue : AnsiString); {!!.02}
var
State : (ScanStart, ScanSign, ScanRadix, ScanBefore,
ScanAfter, ScanEnd, GotError);
i : integer;
Ch : AnsiChar;
IsNeg : boolean;
DecPlCount : integer;
begin
{Note: this implements the following DFA:
ScanStart --space--> ScanStart
ScanStart --plus---> ScanSign
ScanStart --minus--> ScanSign
ScanStart --digit--> ScanBefore
ScanStart --radix--> ScanRadix
ScanSign --radix--> ScanRadix
ScanSign --digit--> ScanBefore
ScanRadix --digit--> ScanAfter
ScanBefore --radix--> ScanAfter
ScanBefore --digit--> ScanBefore
ScanBefore --space--> ScanEnd
ScanAfter --digit--> ScanAfter
ScanAfter --space--> ScanEnd
ScanEnd --space--> ScanEnd
The terminating states are ScanBefore, ScanAfter and ScanEnd; in
other words, a valid numeric string cannot end in a radix point.
}
{initialize}
SetToZero;
DecPlCount := 0;
IsNeg := false;
State := ScanStart;
{read through the input string}
for i := 1 to length(aValue) do begin
{get the current character}
Ch := aValue[i];
case State of
ScanStart :
begin
if ('0' <= Ch) and (Ch <= '9') then begin
FInt[0] := ord(Ch) - ord('0');
State := ScanBefore;
end
else if (Ch = '+') then begin
State := ScanSign;
end
else if (Ch = '-') then begin
IsNeg := true;
State := ScanSign;
end
else if (Ch = AnsiChar({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator)) then begin
State := ScanRadix;
end
else if (Ch <> ' ') then
State := GotError;
end;
ScanSign :
begin
if ('0' <= Ch) and (Ch <= '9') then begin
FInt[0] := ord(Ch) - ord('0');
State := ScanBefore;
end
else if (Ch = AnsiChar({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator)) then begin
State := ScanRadix;
end
else
State := GotError;
end;
ScanRadix :
begin
if ('0' <= Ch) and (Ch <= '9') then begin
inc(DecPlCount);
Int128TimesInt(FInt, 10);
Int128AddInt(FInt, ord(Ch) - ord('0'));
State := ScanAfter;
end
else
State := GotError;
end;
ScanBefore :
begin
if ('0' <= Ch) and (Ch <= '9') then begin
Int128TimesInt(FInt, 10);
Int128AddInt(FInt, ord(Ch) - ord('0'));
end
else if (Ch = AnsiChar({$IFDEF DELPHIXE2}FormatSettings.{$ENDIF}DecimalSeparator)) then begin
State := ScanAfter;
end
else if (Ch = ' ') then
State := ScanEnd
else
State := GotError;
end;
ScanAfter :
begin
if ('0' <= Ch) and (Ch <= '9') then begin
inc(DecPlCount);
if (DecPlCount <= MaxDecPl) then begin
Int128TimesInt(FInt, 10);
Int128AddInt(FInt, ord(Ch) - ord('0'));
end;
end
else if (Ch = ' ') then
State := ScanEnd
else
State := GotError;
end;
ScanEnd :
begin
if (Ch <> ' ') then
State := GotError;
end;
GotError :
begin
Break;
end;
end;
end;
if (State <> ScanBefore) and
(State <> ScanAfter) and
(State <> ScanEnd) then
raise EStDecMathError.Create(stscDecMathConversionS);
{make sure we have the correct number of decimal places}
if (MaxDecPl > DecPlCount) then begin
DecPlCount := MaxDecPl - DecPlCount;
if (DecPlCount > 8) then begin
Int128TimesInt(FInt, Powerof10[8]);
dec(DecPlCount, 8);
end;
Int128TimesInt(FInt, Powerof10[DecPlCount]);
end;
{force negative, if required}
if IsNeg then
Int128ChgSign(FInt);
end;
{--------}
procedure TStDecimal.Divide(X : TStDecimal);
var
TempX : TStInt128;
IsNeg : boolean;
XIsNeg : boolean;
begin
{easy case: X is nil or zero}
if (X = nil) or X.IsZero then
raise EStDecMathError.Create(stscDecMathDivByZeroS);
{easy case: Self is zero}
if IsZero then
Exit;
{we might have to change X, so make it local}
TempX[0] := X.FInt[0];
TempX[1] := X.FInt[1];
TempX[2] := X.FInt[2];
TempX[3] := X.FInt[3];
{force the divisor and dividend positive}
IsNeg := FInt[3] < 0;
if IsNeg then
Int128ChgSign(FInt);
XIsNeg := TempX[3] < 0;
if XIsNeg then
Int128ChgSign(TempX);
{easy case: X is 1.0: set the correct sign}
if (TempX[0] = Int128One_0) and (TempX[1] = Int128One_1) and
(TempX[2] = 0) and (TempX[3] = 0) then begin
if (IsNeg xor XIsNeg) then
Int128ChgSign(FInt);
Exit;
end;
{easy case: compare the dividend and divisor: if they're equal,
set ourselves to 1.0 with the correct sign}
if (Int128Compare(FInt, TempX) = 0) then begin
FInt[0] := Int128One_0;
FInt[1] := Int128One_1;
FInt[2] := 0;
FInt[3] := 0;
if (IsNeg xor XIsNeg) then
Int128ChgSign(FInt);
Exit;
end;
{no more easy cases: just do the division}
Int128Divide(FInt, TempX);
{set the sign}
if (IsNeg xor XIsNeg) then
Int128ChgSign(FInt);
end;
{--------}
function TStDecimal.IsNegative : boolean;
begin
{if the most significant longint is negative, so is the value}
Result := FInt[3] < 0;
end;
{--------}
function TStDecimal.IsOne : boolean;
begin
Result := (FInt[0] = Int128One_0) and (FInt[1] = Int128One_1) and
(FInt[2] = 0) and (FInt[3] = 0);
end;
{--------}
function TStDecimal.IsPositive : boolean;
begin
{if the most significant longint is positive, so is the value; if it
is zero, one of the other longints must be non-zero for the value
to be positive}
Result := (FInt[3] > 0) or
((FInt[3] = 0) and
((FInt[2] <> 0) or (FInt[1] <> 0) or (FInt[0] <> 0)));
end;
{--------}
function TStDecimal.IsZero : boolean;
begin
Result := (FInt[0] = 0) and (FInt[1] = 0) and
(FInt[2] = 0) and (FInt[3] = 0);
end;
{--------}
procedure TStDecimal.Multiply(X : TStDecimal);
begin
if (X = nil) then
SetToZero
else
Int128Multiply(FInt, X.FInt);
end;
{--------}
procedure TStDecimal.RaiseToPower(N : integer);
var
Accum : TStInt128;
Mask : longint;
IsNeg : boolean;
begin
{take care of some easy cases}
if (N < 0) then
raise EStDecMathError.Create(stscDecMathNegExpS);
if (N = 0) then begin
SetToOne;
Exit;
end;
if (N = 1) then
Exit;
{force the value positive}
IsNeg := FInt[3] < 0;
if IsNeg then
Int128ChgSign(FInt);
{initialize the accumulator to 1.0}
Accum[0] := Int128One_0;
Accum[1] := Int128One_1;
Accum[2] := 0;
Accum[3] := 0;
{set the bit mask}
Mask := longint($80000000);
{find the first set bit in the exponent}
while ((N and Mask) = 0) do
Mask := Mask shr 1;
{calculate the power}
while (Mask <> 0) do begin
Int128Multiply(Accum, Accum);
if ((N and Mask) <> 0) then
Int128Multiply(Accum, FInt);
Mask := Mask shr 1;
end;
{save the calculated value}
FInt[0] := Accum[0];
FInt[1] := Accum[1];
FInt[2] := Accum[2];
FInt[3] := Accum[3];
{force the value negative if required}
if IsNeg and Odd(N) then
Int128ChgSign(FInt);
end;
{--------}
procedure TStDecimal.Round(aRound : TStRoundMethod; aDecPl : integer);
var
IsNeg : boolean;
begin
{check decimal places parameter to be in range}
if not ((0 <= aDecPl) and (aDecPl <= MaxDecPl)) then
raise EStDecMathError.Create(stscDecMathRoundPlacesS);
{force the value positive}
IsNeg := FInt[3] < 0;
if IsNeg then
Int128ChgSign(FInt);
{perform the rounding}
Int128Round(FInt, aRound, aDecPl);
{force the value negative if it was negative}
if IsNeg then
Int128ChgSign(FInt);
end;
{--------}
procedure TStDecimal.SetToOne;
begin
FInt[0] := Int128One_0;
FInt[1] := Int128One_1;
FInt[2] := 0;
FInt[3] := 0;
end;
{--------}
procedure TStDecimal.SetToZero;
begin
FInt[0] := 0;
FInt[1] := 0;
FInt[2] := 0;
FInt[3] := 0;
end;
{--------}
procedure TStDecimal.Subtract(X : TStDecimal);
var
MinusX : TStInt128;
begin
if (X <> nil) then begin
MinusX[0] := X.FInt[0];
MinusX[1] := X.FInt[1];
MinusX[2] := X.FInt[2];
MinusX[3] := X.FInt[3];
Int128ChgSign(MinusX);
Int128Add(Fint, MinusX);
end;
end;
{--------}
procedure TStDecimal.SubtractOne;
var
MinusOne : TStInt128;
begin
MinusOne[0] := Int128One_0;
MinusOne[1] := Int128One_1;
MinusOne[2] := 0;
MinusOne[3] := 0;
Int128ChgSign(MinusOne);
Int128Add(FInt, MinusOne);
end;
{====================================================================}
end.