You've already forked lazarus-ccr
736 lines
19 KiB
ObjectPascal
736 lines
19 KiB
ObjectPascal
![]() |
// Upgraded to Delphi 2009: Sebastian Zierer
|
||
|
|
||
|
(* ***** BEGIN LICENSE BLOCK *****
|
||
|
* Version: MPL 1.1
|
||
|
*
|
||
|
* The contents of this file are subject to the Mozilla Public License Version
|
||
|
* 1.1 (the "License"); you may not use this file except in compliance with
|
||
|
* the License. You may obtain a copy of the License at
|
||
|
* http://www.mozilla.org/MPL/
|
||
|
*
|
||
|
* Software distributed under the License is distributed on an "AS IS" basis,
|
||
|
* WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
|
||
|
* for the specific language governing rights and limitations under the
|
||
|
* License.
|
||
|
*
|
||
|
* The Original Code is TurboPower SysTools
|
||
|
*
|
||
|
* The Initial Developer of the Original Code is
|
||
|
* TurboPower Software
|
||
|
*
|
||
|
* Portions created by the Initial Developer are Copyright (C) 1996-2002
|
||
|
* the Initial Developer. All Rights Reserved.
|
||
|
*
|
||
|
* Contributor(s):
|
||
|
*
|
||
|
* ***** END LICENSE BLOCK ***** *)
|
||
|
|
||
|
{*********************************************************}
|
||
|
{* SysTools: StRandom.pas 4.04 *}
|
||
|
{*********************************************************}
|
||
|
{* SysTools: Classes for random number distributions *}
|
||
|
{*********************************************************}
|
||
|
|
||
|
{$IFDEF FPC}
|
||
|
{$mode DELPHI}
|
||
|
{$ENDIF}
|
||
|
|
||
|
//{$I StDefine.inc}
|
||
|
|
||
|
unit StRandom;
|
||
|
|
||
|
interface
|
||
|
|
||
|
uses
|
||
|
{$IFNDEF FPC}
|
||
|
Windows,
|
||
|
{$ENDIF}
|
||
|
SysUtils, Classes,
|
||
|
StBase;
|
||
|
|
||
|
type
|
||
|
TStRandomBase = class
|
||
|
private
|
||
|
protected
|
||
|
function rbMarsagliaGamma(aShape : double) : double;
|
||
|
function rbMontyPythonNormal : double;
|
||
|
public
|
||
|
{uniform distributions}
|
||
|
function AsFloat : double; virtual; abstract;
|
||
|
function AsInt(aUpperLimit : integer) : integer;
|
||
|
function AsIntInRange(aLowerLimit : integer;
|
||
|
aUpperLimit : integer) : integer;
|
||
|
|
||
|
{continuous non-uniform distributions}
|
||
|
function AsBeta(aShape1, aShape2 : double) : double;
|
||
|
function AsCauchy : double;
|
||
|
function AsChiSquared(aFreedom : integer) : double;
|
||
|
function AsErlang(aMean : double;
|
||
|
aOrder : integer) : double;
|
||
|
function AsExponential(aMean : double) : double;
|
||
|
function AsF(aFreedom1 : integer;
|
||
|
aFreedom2 : integer) : double;
|
||
|
function AsGamma(aShape : double; aScale : double) : double;
|
||
|
function AsLogNormal(aMean : double;
|
||
|
aStdDev : double) : double;
|
||
|
function AsNormal(aMean : double;
|
||
|
aStdDev : double) : double;
|
||
|
function AsT(aFreedom : integer) : double;
|
||
|
function AsWeibull(aShape : double;
|
||
|
aScale : double) : double;
|
||
|
end;
|
||
|
|
||
|
TStRandomSystem = class(TStRandomBase)
|
||
|
private
|
||
|
FSeed : integer;
|
||
|
protected
|
||
|
procedure rsSetSeed(aValue : integer);
|
||
|
public
|
||
|
constructor Create(aSeed : integer);
|
||
|
function AsFloat : double; override;
|
||
|
property Seed : integer read FSeed write rsSetSeed;
|
||
|
end;
|
||
|
|
||
|
TStRandomCombined = class(TStRandomBase)
|
||
|
private
|
||
|
FSeed1 : integer;
|
||
|
FSeed2 : integer;
|
||
|
protected
|
||
|
procedure rcSetSeed1(aValue : integer);
|
||
|
procedure rcSetSeed2(aValue : integer);
|
||
|
public
|
||
|
constructor Create(aSeed1, aSeed2 : integer);
|
||
|
function AsFloat : double; override;
|
||
|
property Seed1 : integer read FSeed1 write rcSetSeed1;
|
||
|
property Seed2 : integer read FSeed2 write rcSetSeed2;
|
||
|
end;
|
||
|
|
||
|
TStRandomMother = class(TStRandomBase)
|
||
|
private
|
||
|
FNminus4 : integer;
|
||
|
FNminus3 : integer;
|
||
|
FNminus2 : integer;
|
||
|
FNminus1 : integer;
|
||
|
FC : integer;
|
||
|
protected
|
||
|
procedure rsSetSeed(aValue : integer);
|
||
|
public
|
||
|
constructor Create(aSeed : integer);
|
||
|
function AsFloat : double; override;
|
||
|
property Seed : integer write rsSetSeed;
|
||
|
end;
|
||
|
|
||
|
implementation
|
||
|
|
||
|
uses
|
||
|
StConst;
|
||
|
|
||
|
var
|
||
|
Root2Pi : double;
|
||
|
InvRoot2Pi : double;
|
||
|
RootLn4 : double;
|
||
|
Ln2 : double;
|
||
|
MPN_s : double;
|
||
|
Ln2MPN_s : double;
|
||
|
MPN_sPlus1 : double;
|
||
|
|
||
|
Mum1 : integer;
|
||
|
Mum2 : integer;
|
||
|
Mum3 : integer;
|
||
|
Mum4 : integer;
|
||
|
|
||
|
{===Helper routines==================================================}
|
||
|
function GetRandomSeed : integer;
|
||
|
var
|
||
|
Hash : integer;
|
||
|
SystemTime: TSystemTime;
|
||
|
G : integer;
|
||
|
begin
|
||
|
{start with the tick count}
|
||
|
Hash := integer(GetTickCount);
|
||
|
|
||
|
{get the current time}
|
||
|
GetLocalTime(SystemTime);
|
||
|
|
||
|
{hash in the milliseconds}
|
||
|
Hash := (Hash shl 4) + SystemTime.wMilliseconds;
|
||
|
G := Hash and longint($F0000000);
|
||
|
if (G <> 0) then
|
||
|
Hash := (Hash xor (G shr 24)) xor G;
|
||
|
|
||
|
{hash in the second}
|
||
|
Hash := (Hash shl 4) + SystemTime.wSecond;
|
||
|
G := Hash and longint($F0000000);
|
||
|
if (G <> 0) then
|
||
|
Hash := (Hash xor (G shr 24)) xor G;
|
||
|
|
||
|
{hash in the minute}
|
||
|
Hash := (Hash shl 4) + SystemTime.wMinute;
|
||
|
G := Hash and longint($F0000000);
|
||
|
if (G <> 0) then
|
||
|
Hash := (Hash xor (G shr 24)) xor G;
|
||
|
|
||
|
{hash in the hour}
|
||
|
Hash := (Hash shl 3) + SystemTime.wHour;
|
||
|
G := Hash and longint($F0000000);
|
||
|
if (G <> 0) then
|
||
|
Hash := (Hash xor (G shr 24)) xor G;
|
||
|
|
||
|
{return the hash}
|
||
|
Result := Hash;
|
||
|
end;
|
||
|
{====================================================================}
|
||
|
|
||
|
|
||
|
{===TStRandomBase====================================================}
|
||
|
function TStRandomBase.AsBeta(aShape1, aShape2 : double) : double;
|
||
|
var
|
||
|
R1, R2 : double;
|
||
|
begin
|
||
|
if not ((aShape1 > 0.0) and (aShape2 > 0.0)) then
|
||
|
raise EStPRNGError.Create(stscPRNGBetaShapeS);
|
||
|
|
||
|
if (aShape2 = 1.0) then begin
|
||
|
repeat
|
||
|
R1 := AsFloat;
|
||
|
until R1 <> 0.0;
|
||
|
Result := exp(ln(R1) / aShape1);
|
||
|
end
|
||
|
else if (aShape1 = 1.0) then begin
|
||
|
repeat
|
||
|
R1 := AsFloat;
|
||
|
until R1 <> 0.0;
|
||
|
Result := 1.0 - exp(ln(R1) / aShape1);
|
||
|
end
|
||
|
else begin
|
||
|
R1 := AsGamma(aShape1, 1.0);
|
||
|
R2 := AsGamma(aShape2, 1.0);
|
||
|
Result := R1 / (R1 + R2);
|
||
|
end;
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsCauchy : double;
|
||
|
var
|
||
|
x : double;
|
||
|
y : double;
|
||
|
begin
|
||
|
repeat
|
||
|
repeat
|
||
|
x := AsFloat;
|
||
|
until (x <> 0.0);
|
||
|
y := (AsFloat * 2.0) - 1.0;
|
||
|
until sqr(x) + sqr(y) < 1.0;
|
||
|
Result := y / x;
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsChiSquared(aFreedom : integer) : double;
|
||
|
begin
|
||
|
if not (aFreedom > 0) then
|
||
|
raise EStPRNGError.Create(stscPRNGDegFreedomS);
|
||
|
|
||
|
Result := AsGamma(aFreedom * 0.5, 2.0)
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsErlang(aMean : double;
|
||
|
aOrder : integer) : double;
|
||
|
var
|
||
|
Product : double;
|
||
|
i : integer;
|
||
|
begin
|
||
|
if not (aMean > 0.0) then
|
||
|
raise EStPRNGError.Create(stscPRNGMeanS);
|
||
|
if not (aOrder > 0) then
|
||
|
raise EStPRNGError.Create(stscPRNGErlangOrderS);
|
||
|
|
||
|
if (aOrder < 10) then begin
|
||
|
Product := 1.0;
|
||
|
for i := 1 to aOrder do
|
||
|
Product := Product * AsFloat;
|
||
|
Result := -aMean * ln(Product) / aOrder;
|
||
|
end
|
||
|
else begin
|
||
|
Result := AsGamma(aOrder, aMean);
|
||
|
end;
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsExponential(aMean : double) : double;
|
||
|
var
|
||
|
R : double;
|
||
|
begin
|
||
|
if not (aMean > 0.0) then
|
||
|
raise EStPRNGError.Create(stscPRNGMeanS);
|
||
|
|
||
|
repeat
|
||
|
R := AsFloat;
|
||
|
until (R <> 0.0);
|
||
|
Result := -aMean * ln(R);
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsF(aFreedom1 : integer;
|
||
|
aFreedom2 : integer) : double;
|
||
|
begin
|
||
|
Result := (AsChiSquared(aFreedom1) * aFreedom1) /
|
||
|
(AsChiSquared(aFreedom2) * aFreedom2);
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsGamma(aShape : double; aScale : double) : double;
|
||
|
var
|
||
|
R : double;
|
||
|
begin
|
||
|
if not (aShape > 0.0) then
|
||
|
raise EStPRNGError.Create(stscPRNGGammaShapeS);
|
||
|
if not (aScale > 0.0) then
|
||
|
raise EStPRNGError.Create(stscPRNGGammaScaleS);
|
||
|
|
||
|
{there are three cases:
|
||
|
..0.0 < shape < 1.0, use Marsaglia's technique of
|
||
|
Gamma(shape) = Gamma(shape+1) * uniform^(1/shape)}
|
||
|
if (aShape < 1.0) then begin
|
||
|
repeat
|
||
|
R := AsFloat;
|
||
|
until (R <> 0.0);
|
||
|
Result := aScale * rbMarsagliaGamma(aShape + 1.0) *
|
||
|
exp(ln(R) / aShape);
|
||
|
end
|
||
|
|
||
|
{..shape = 1.0: this is the same as exponential}
|
||
|
else if (aShape = 1.0) then begin
|
||
|
repeat
|
||
|
R := AsFloat;
|
||
|
until (R <> 0.0);
|
||
|
Result := aScale * -ln(R);
|
||
|
end
|
||
|
|
||
|
{..shape > 1.0: use Marsaglia./Tsang algorithm}
|
||
|
else begin
|
||
|
Result := aScale * rbMarsagliaGamma(aShape);
|
||
|
end;
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsInt(aUpperLimit : integer) : integer;
|
||
|
begin
|
||
|
if not (aUpperLimit > 0) then
|
||
|
raise EStPRNGError.Create(stscPRNGLimitS);
|
||
|
|
||
|
Result := Trunc(AsFloat * aUpperLimit);
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsIntInRange(aLowerLimit : integer;
|
||
|
aUpperLimit : integer) : integer;
|
||
|
begin
|
||
|
if not (aLowerLimit < aUpperLimit) then
|
||
|
raise EStPRNGError.Create(stscPRNGUpperLimitS);
|
||
|
|
||
|
Result := Trunc(AsFloat * (aUpperLimit - aLowerLimit)) + ALowerLimit;
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsLogNormal(aMean : double;
|
||
|
aStdDev : double) : double;
|
||
|
begin
|
||
|
Result := exp(AsNormal(aMean, aStdDev));
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsNormal(aMean : double;
|
||
|
aStdDev : double) : double;
|
||
|
begin
|
||
|
if not (aStdDev > 0.0) then
|
||
|
raise EStPRNGError.Create(stscPRNGStdDevS);
|
||
|
|
||
|
Result := (rbMontyPythonNormal * aStdDev) + aMean;
|
||
|
|
||
|
(*** alternative: The Box-Muller transformation
|
||
|
var
|
||
|
R1, R2 : double;
|
||
|
RadiusSqrd : double;
|
||
|
begin
|
||
|
{get two random numbers that define a point in the unit circle}
|
||
|
repeat
|
||
|
R1 := (2.0 * aRandGen.AsFloat) - 1.0;
|
||
|
R2 := (2.0 * aRandGen.AsFloat) - 1.0;
|
||
|
RadiusSqrd := sqr(R1) + sqr(R2);
|
||
|
until (RadiusSqrd < 1.0) and (RadiusSqrd > 0.0);
|
||
|
|
||
|
{apply Box-Muller transformation}
|
||
|
Result := (R1 * sqrt(-2.0 * ln(RadiusSqrd) / RadiusSqrd) * aStdDev)
|
||
|
+ aMean;
|
||
|
***)
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsT(aFreedom : integer) : double;
|
||
|
begin
|
||
|
if not (aFreedom > 0) then
|
||
|
raise EStPRNGError.Create(stscPRNGDegFreedomS);
|
||
|
|
||
|
Result := rbMontyPythonNormal / sqrt(AsChiSquared(aFreedom) / aFreedom);
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.AsWeibull(aShape : double;
|
||
|
aScale : double) : double;
|
||
|
var
|
||
|
R : double;
|
||
|
begin
|
||
|
if not (aShape > 0) then
|
||
|
raise EStPRNGError.Create(stscPRNGWeibullShapeS);
|
||
|
if not (aScale > 0) then
|
||
|
raise EStPRNGError.Create(stscPRNGWeibullScaleS);
|
||
|
|
||
|
repeat
|
||
|
R := AsFloat;
|
||
|
until (R <> 0.0);
|
||
|
Result := exp(ln(-ln(R)) / aShape) * aScale;
|
||
|
end;
|
||
|
{--------}
|
||
|
|
||
|
function TStRandomBase.rbMarsagliaGamma(aShape : double) : double;
|
||
|
var
|
||
|
d : double;
|
||
|
c : double;
|
||
|
x : double;
|
||
|
v : double;
|
||
|
u : double;
|
||
|
Done : boolean;
|
||
|
begin
|
||
|
{Notes: implements the Marsaglia/Tsang method of generating random
|
||
|
numbers belonging to the gamma distribution:
|
||
|
|
||
|
Marsaglia & Tsang, "A Simple Method for Generating Gamma
|
||
|
Variables", ACM Transactions on Mathematical Software,
|
||
|
Vol. 26, No. 3, September 2000, Pages 363-372
|
||
|
|
||
|
It is pointless to try and work out what's going on in this
|
||
|
routine without reading this paper :-)
|
||
|
}
|
||
|
|
||
|
d := aShape - (1.0 / 3.0);
|
||
|
c := 1.0 / sqrt(9.0 * d);
|
||
|
Done := false;
|
||
|
{$IFDEF SuppressWarnings}
|
||
|
v := 0.0;
|
||
|
{$ENDIF}
|
||
|
|
||
|
while not Done do begin
|
||
|
repeat
|
||
|
x := rbMontyPythonNormal;
|
||
|
v := 1.0 + (c * x);
|
||
|
until (v > 0.0);
|
||
|
|
||
|
v := v * v * v;
|
||
|
u := AsFloat;
|
||
|
|
||
|
Done := u < (1.0 - 0.0331 * sqr(sqr(x)));
|
||
|
|
||
|
if not Done then
|
||
|
Done := ln(u) < (0.5 * sqr(x)) + d * (1.0 - v + ln(v))
|
||
|
end;
|
||
|
|
||
|
Result := d * v;
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomBase.rbMontyPythonNormal : double;
|
||
|
var
|
||
|
x : double;
|
||
|
y : double;
|
||
|
v : double;
|
||
|
NonZeroRandom : double;
|
||
|
begin
|
||
|
{Notes: implements the Monty Python method of generating random
|
||
|
numbers belonging to the Normal (Gaussian) distribution:
|
||
|
|
||
|
Marsaglia & Tsang, "The Monty Python Method for Generating
|
||
|
Random Variables", ACM Transactions on Mathematical
|
||
|
Software, Vol. 24, No. 3, September 1998, Pages 341-350
|
||
|
|
||
|
It is pointless to try and work out what's going on in this
|
||
|
routine without reading this paper :-)
|
||
|
|
||
|
Some constants:
|
||
|
a = sqrt(ln(4))
|
||
|
b = sqrt(2 * pi)
|
||
|
s = a / (b - a)
|
||
|
}
|
||
|
|
||
|
{step 1: generate a random number x between +/- sqrt(2*Pi) and
|
||
|
return it if its absolute value is less than sqrt(ln(4));
|
||
|
note that this exit will happen about 47% of the time}
|
||
|
x := ((AsFloat * 2.0) - 1.0) * Root2Pi;
|
||
|
if (abs(x) < RootLn4) then begin
|
||
|
Result := x;
|
||
|
Exit;
|
||
|
end;
|
||
|
|
||
|
{step 2a: generate another random number y strictly between 0 and 1}
|
||
|
repeat
|
||
|
y := AsFloat;
|
||
|
until (y <> 0.0);
|
||
|
|
||
|
{step 2b: the first quadratic pretest avoids ln() calculation
|
||
|
calculate v = 2.8658 - |x| * (2.0213 - 0.3605 * |x|)
|
||
|
return x if y < v}
|
||
|
v := 2.8658 - Abs(x) * (2.0213 - 0.3605 * Abs(x));
|
||
|
if (y < v) then begin
|
||
|
Result := x;
|
||
|
Exit;
|
||
|
end;
|
||
|
|
||
|
{step 2c: the second quadratic pretest again avoids ln() calculation
|
||
|
return s * (b - x) if y > v + 0.0506}
|
||
|
if (y > v + 0.0506) then begin
|
||
|
if (x > 0) then
|
||
|
Result := MPN_s * (Root2Pi - x)
|
||
|
else
|
||
|
Result := -MPN_s * (Root2Pi + x);
|
||
|
Exit;
|
||
|
end;
|
||
|
|
||
|
{step 2d: return x if y < f(x) or
|
||
|
ln(y) < ln(2) - (0.5 * x * x) }
|
||
|
if (ln(y) < (Ln2 - (0.5 * x * x))) then begin
|
||
|
Result := x;
|
||
|
Exit;
|
||
|
end;
|
||
|
|
||
|
{step 3: translate x to s * (b - x) and return it if y > g(x) or
|
||
|
ln(1 + s - y) < ln(2 * s) - (0.5 * x * x) }
|
||
|
if (x > 0) then
|
||
|
x := MPN_s * (Root2Pi - x)
|
||
|
else
|
||
|
x := -MPN_s * (Root2Pi + x);
|
||
|
if (ln(MPN_sPlus1 - y) < (Ln2MPN_s - (0.5 * x * x))) then begin
|
||
|
Result := x;
|
||
|
Exit;
|
||
|
end;
|
||
|
|
||
|
{step 4: the iterative process}
|
||
|
repeat
|
||
|
repeat
|
||
|
NonZeroRandom := AsFloat;
|
||
|
until (NonZeroRandom <> 0.0);
|
||
|
x := -ln(NonZeroRandom) * InvRoot2Pi;
|
||
|
repeat
|
||
|
NonZeroRandom := AsFloat;
|
||
|
until (NonZeroRandom <> 0.0);
|
||
|
y := -ln(NonZeroRandom);
|
||
|
until (y + y) > (x * x);
|
||
|
if (NonZeroRandom < 0.5) then
|
||
|
Result := -(Root2Pi + x)
|
||
|
else
|
||
|
Result := Root2Pi + x;
|
||
|
end;
|
||
|
{====================================================================}
|
||
|
|
||
|
|
||
|
{===TStRandomSystem==================================================}
|
||
|
constructor TStRandomSystem.Create(aSeed : integer);
|
||
|
begin
|
||
|
inherited Create;
|
||
|
Seed := aSeed;
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomSystem.AsFloat : double;
|
||
|
var
|
||
|
SaveSeed : integer;
|
||
|
begin
|
||
|
SaveSeed := RandSeed;
|
||
|
RandSeed := FSeed;
|
||
|
Result := System.Random;
|
||
|
FSeed := RandSeed;
|
||
|
RandSeed := SaveSeed;
|
||
|
end;
|
||
|
{--------}
|
||
|
procedure TStRandomSystem.rsSetSeed(aValue : integer);
|
||
|
begin
|
||
|
if (aValue = 0) then
|
||
|
FSeed := GetRandomSeed
|
||
|
else
|
||
|
FSeed := aValue;
|
||
|
end;
|
||
|
{====================================================================}
|
||
|
|
||
|
|
||
|
{===TStRandomCombined================================================}
|
||
|
const
|
||
|
m1 = 2147483563;
|
||
|
m2 = 2147483399;
|
||
|
{--------}
|
||
|
constructor TStRandomCombined.Create(aSeed1, aSeed2 : integer);
|
||
|
begin
|
||
|
inherited Create;
|
||
|
Seed1 := aSeed1;
|
||
|
if (aSeed1 = 0) and (aSeed2 = 0) then
|
||
|
Sleep(10); // a small delay to enable seed to change
|
||
|
Seed2 := aSeed2;
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomCombined.AsFloat : double;
|
||
|
const
|
||
|
a1 = 40014;
|
||
|
q1 = 53668; {equals m1 div a1}
|
||
|
r1 = 12211; {equals m1 mod a1}
|
||
|
|
||
|
a2 = 40692;
|
||
|
q2 = 52774; {equals m2 div a2}
|
||
|
r2 = 3791; {equals m2 mod a2}
|
||
|
|
||
|
OneOverM1 : double = 1.0 / m1;
|
||
|
var
|
||
|
k : longint;
|
||
|
Z : longint;
|
||
|
begin
|
||
|
{advance first PRNG}
|
||
|
k := FSeed1 div q1;
|
||
|
FSeed1 := (a1 * (FSeed1 - (k * q1))) - (k * r1);
|
||
|
if (FSeed1 < 0) then
|
||
|
inc(FSeed1, m1);
|
||
|
|
||
|
{advance second PRNG}
|
||
|
k := FSeed2 div q2;
|
||
|
FSeed2 := (a2 * (FSeed2 - (k * q2))) - (k * r2);
|
||
|
if (FSeed2 < 0) then
|
||
|
inc(FSeed2, m2);
|
||
|
|
||
|
{combine the two seeds}
|
||
|
Z := FSeed1 - FSeed2;
|
||
|
if (Z <= 0) then
|
||
|
Z := Z + m1 - 1;
|
||
|
Result := Z * OneOverM1;
|
||
|
end;
|
||
|
{--------}
|
||
|
procedure TStRandomCombined.rcSetSeed1(aValue : integer);
|
||
|
begin
|
||
|
if (aValue = 0) then
|
||
|
FSeed1 := GetRandomSeed
|
||
|
else
|
||
|
FSeed1 := aValue;
|
||
|
end;
|
||
|
{--------}
|
||
|
procedure TStRandomCombined.rcSetSeed2(aValue : integer);
|
||
|
begin
|
||
|
if (aValue = 0) then
|
||
|
FSeed2 := GetRandomSeed
|
||
|
else
|
||
|
FSeed2 := aValue;
|
||
|
end;
|
||
|
{====================================================================}
|
||
|
|
||
|
|
||
|
{===TStRandomMother==================================================}
|
||
|
constructor TStRandomMother.Create(aSeed : integer);
|
||
|
begin
|
||
|
inherited Create;
|
||
|
Seed := aSeed;
|
||
|
end;
|
||
|
{--------}
|
||
|
function TStRandomMother.AsFloat : double;
|
||
|
const
|
||
|
TwoM31 : double = 1.0 / $7FFFFFFF;
|
||
|
begin
|
||
|
asm
|
||
|
push esi
|
||
|
push edi
|
||
|
push ebx
|
||
|
|
||
|
{get around a compiler bug where it doesn't notice that edx is
|
||
|
being changed in the asm code !!! D5 bug}
|
||
|
push edx
|
||
|
|
||
|
{set ebx to point to self}
|
||
|
mov ebx, eax
|
||
|
|
||
|
{multiply X(n-4) by 21111111}
|
||
|
mov eax, [ebx].TStRandomMother.FNMinus4
|
||
|
mul [Mum1]
|
||
|
mov edi, eax
|
||
|
mov esi, edx
|
||
|
|
||
|
{multiply X(n-3) by 1492 (save it in X(n-4) before though)}
|
||
|
mov eax, [ebx].TStRandomMother.FNMinus3
|
||
|
mov [ebx].TStRandomMother.FNMinus4, eax
|
||
|
mul [Mum2]
|
||
|
add edi, eax
|
||
|
adc esi, edx
|
||
|
|
||
|
{multiply X(n-2) by 1776 (save it in X(n-3) before though)}
|
||
|
mov eax, [ebx].TStRandomMother.FNMinus2
|
||
|
mov [ebx].TStRandomMother.FNMinus3, eax
|
||
|
mul [Mum3]
|
||
|
add edi, eax
|
||
|
adc esi, edx
|
||
|
|
||
|
{multiply X(n-1) by 5115 (save it in X(n-2) before though)}
|
||
|
mov eax, [ebx].TStRandomMother.FNMinus1
|
||
|
mov [ebx].TStRandomMother.FNMinus2, eax
|
||
|
mul [Mum4]
|
||
|
add edi, eax
|
||
|
adc esi, edx
|
||
|
|
||
|
{add in the remainder}
|
||
|
add edi, [ebx].TStRandomMother.FC
|
||
|
adc esi, 0;
|
||
|
|
||
|
{save the lower 32 bits in X(n-1), the upper into the remainder}
|
||
|
mov [ebx].TStRandomMother.FNMinus1, edi
|
||
|
mov [ebx].TStRandomMother.FC, esi
|
||
|
|
||
|
{get around a compiler bug where it doesn't notice that edx was
|
||
|
changed in the asm code !!! D5 bug}
|
||
|
pop edx
|
||
|
|
||
|
pop ebx
|
||
|
pop edi
|
||
|
pop esi
|
||
|
end;
|
||
|
Result := (FNMinus1 shr 1) * TwoM31;
|
||
|
end;
|
||
|
{--------}
|
||
|
{$IFOPT Q+}
|
||
|
{note: TStRandomMother.rsSetSeed expressly overflows integers (it's
|
||
|
equivalent to calculating mod 2^32), so we have to force
|
||
|
overflow checks off}
|
||
|
{$DEFINE SaveQPlus}
|
||
|
{$Q-}
|
||
|
{$ENDIF}
|
||
|
procedure TStRandomMother.rsSetSeed(aValue : integer);
|
||
|
begin
|
||
|
if (aValue = 0) then
|
||
|
aValue := GetRandomSeed;
|
||
|
FNminus4 := aValue;
|
||
|
{note: the following code uses the generator
|
||
|
Xn := (69069 * Xn-1) mod 2^32
|
||
|
from D.E.Knuth, The Art of Computer Programming, Vol. 2
|
||
|
(second edition), Addison-Wesley, 1981, pp.102}
|
||
|
FNminus3 := 69069 * FNminus4;
|
||
|
FNminus2 := 69069 * FNminus3;
|
||
|
FNminus1 := 69069 * FNminus2;
|
||
|
FC := 69069 * FNminus1;
|
||
|
end;
|
||
|
{$IFDEF SaveQPlus}
|
||
|
{$Q+}
|
||
|
{$ENDIF}
|
||
|
{====================================================================}
|
||
|
|
||
|
|
||
|
{====================================================================}
|
||
|
procedure CalcConstants;
|
||
|
begin
|
||
|
{for the normal variates}
|
||
|
Root2Pi := sqrt(2 * Pi);
|
||
|
InvRoot2Pi := 1.0 / Root2Pi;
|
||
|
RootLn4 := sqrt(ln(4.0));
|
||
|
Ln2 := ln(2.0);
|
||
|
MPN_s := RootLn4 / (Root2Pi - RootLn4);
|
||
|
Ln2MPN_s := ln(2.0 * MPN_s);
|
||
|
MPN_sPlus1 := MPN_s + 1.0;
|
||
|
|
||
|
Mum1 := 2111111111;
|
||
|
Mum2 := 1492;
|
||
|
Mum3 := 1776;
|
||
|
Mum4 := 5115;
|
||
|
end;
|
||
|
{====================================================================}
|
||
|
|
||
|
|
||
|
initialization
|
||
|
CalcConstants;
|
||
|
|
||
|
end.
|