Files
lazarus-ccr/applications/fpvviewer/fpvectorialsrc/fpvutils.pas

169 lines
4.6 KiB
ObjectPascal
Raw Normal View History

{
fpvutils.pas
Vector graphics document
License: The same modified LGPL as the Free Pascal RTL
See the file COPYING.modifiedLGPL for more details
AUTHORS: Felipe Monteiro de Carvalho
Pedro Sol Pegorini L de Lima
}
unit fpvutils;
{$ifdef fpc}
{$mode delphi}
{$endif}
interface
uses
Classes, SysUtils, Math,
fpvectorial, fpimage;
type
T10Strings = array[0..9] of shortstring;
// Color Conversion routines
function FPColorToRGBHexString(AColor: TFPColor): string;
function RGBToFPColor(AR, AG, AB: byte): TFPColor; inline;
// Other routine
function CanvasCoordsToFPVectorial(AY: Integer; AHeight: Integer): Integer; inline;
function CanvasTextPosToFPVectorial(AY: Integer; ACanvasHeight, ATextHeight: Integer): Integer;
function SeparateString(AString: string; ASeparator: char): T10Strings;
// Mathematical routines
procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint);
procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1, P2, P3, P4: T3DPoint);
implementation
{@@ This function is utilized by the SVG writer and some other places, so
it shouldn't be changed.
}
function FPColorToRGBHexString(AColor: TFPColor): string;
begin
Result := Format('%.2x%.2x%.2x', [AColor.Red shr 8, AColor.Green shr 8, AColor.Blue shr 8]);
end;
function RGBToFPColor(AR, AG, AB: byte): TFPColor; inline;
begin
Result.Red := (AR shl 8) + AR;
Result.Green := (AG shl 8) + AG;
Result.Blue := (AB shl 8) + AB;
Result.Alpha := $FFFF;
end;
{@@ Converts the coordinate system from a TCanvas to FPVectorial
The basic difference is that the Y axis is positioned differently and
points upwards in FPVectorial and downwards in TCanvas.
The X axis doesn't change. The fix is trivial and requires only the Height of
the Canvas as extra info.
@param AHeight Should receive TCanvas.Height
}
function CanvasCoordsToFPVectorial(AY: Integer; AHeight: Integer): Integer; inline;
begin
Result := AHeight - AY;
end;
{@@
LCL Text is positioned based on the top-left corner of the text.
Besides that, one also needs to take the general coordinate change into account too.
@param ACanvasHeight Should receive TCanvas.Height
@param ATextHeight Should receive TFont.Size
}
function CanvasTextPosToFPVectorial(AY: Integer; ACanvasHeight, ATextHeight: Integer): Integer;
begin
Result := CanvasCoordsToFPVectorial(AY, ACanvasHeight) - ATextHeight;
end;
{@@
Reads a string and separates it in substring
using ASeparator to delimite them.
Limits:
Number of substrings: 10 (indexed 0 to 9)
Length of each substring: 255 (they are shortstrings)
}
function SeparateString(AString: string; ASeparator: char): T10Strings;
var
i, CurrentPart: integer;
begin
CurrentPart := 0;
{ Clears the result }
for i := 0 to 9 do
Result[i] := '';
{ Iterates througth the string, filling strings }
for i := 1 to Length(AString) do
begin
if Copy(AString, i, 1) = ASeparator then
begin
Inc(CurrentPart);
{ Verifies if the string capacity wasn't exceeded }
if CurrentPart > 9 then
Exit;
end
else
Result[CurrentPart] := Result[CurrentPart] + Copy(AString, i, 1);
end;
end;
{ Considering a counter-clockwise arc, elliptical and alligned to the axises
An elliptical Arc can be converted to
the following Cubic Bezier control points:
P1 = E(startAngle) <- start point
P2 = P1+alfa * dE(startAngle) <- control point
P3 = P4−alfa * dE(endAngle) <- control point
P4 = E(endAngle) <- end point
source: http://www.spaceroots.org/documents/ellipse/elliptical-arc.pdf
The equation of an elliptical arc is:
X(t) = Xc + Rx * cos(t)
Y(t) = Yc + Ry * sin(t)
dX(t)/dt = - Rx * sin(t)
dY(t)/dt = + Ry * cos(t)
}
procedure EllipticalArcToBezier(Xc, Yc, Rx, Ry, startAngle, endAngle: Double;
var P1, P2, P3, P4: T3DPoint);
var
halfLength, arcLength, alfa: Double;
begin
arcLength := endAngle - startAngle;
halfLength := (endAngle - startAngle) / 2;
alfa := sin(arcLength) * (Sqrt(4 + 3*sqr(tan(halfLength))) - 1) / 3;
// Start point
P1.X := Xc + Rx * cos(startAngle);
P1.Y := Yc + Ry * sin(startAngle);
// End point
P4.X := Xc + Rx * cos(endAngle);
P4.Y := Yc + Ry * sin(endAngle);
// Control points
P2.X := P1.X + alfa * -1 * Rx * sin(startAngle);
P2.Y := P1.Y + alfa * Ry * cos(startAngle);
P3.X := P4.X - alfa * -1 * Rx * sin(endAngle);
P3.Y := P4.Y - alfa * Ry * cos(endAngle);
end;
procedure CircularArcToBezier(Xc, Yc, R, startAngle, endAngle: Double; var P1,
P2, P3, P4: T3DPoint);
begin
EllipticalArcToBezier(Xc, Yc, R, R, startAngle, endAngle, P1, P2, P3, P4);
end;
end.