You've already forked lazarus-ccr
LazStats: Refactor CurSimUnit. Add its pdf to chm help. Some cleanup.
git-svn-id: https://svn.code.sf.net/p/lazarus-ccr/svn@7441 8e941d3f-bd1b-0410-a28a-d453659cc2b4
This commit is contained in:
Binary file not shown.
Binary file not shown.
@ -125,7 +125,6 @@ var
|
||||
cumfreq : DblDyneVec;
|
||||
prank : DblDyneVec;
|
||||
grpsize : IntDyneVec;
|
||||
scrgrp : DblDyneVec;
|
||||
done : boolean;
|
||||
NoSelected : integer;
|
||||
ColNoSelected : IntDyneVec;
|
||||
@ -173,7 +172,7 @@ begin
|
||||
NoGrps := maxgrp - mingrp + 1;
|
||||
if NoGrps > 30 then
|
||||
begin
|
||||
MessageDlg('Too many groups for meaningful plot.', mtError, [mbOK], 0);
|
||||
MessageDlg('Too many groups for a meaningful plot.', mtError, [mbOK], 0);
|
||||
exit;
|
||||
end;
|
||||
|
||||
@ -189,7 +188,6 @@ begin
|
||||
SetLength(tenpcntile,NoGrps+1);
|
||||
SetLength(ninetypcntile,NoGrps+1);
|
||||
SetLength(median,NoGrps+1);
|
||||
SetLength(scrgrp,NoGrps+1);
|
||||
|
||||
// initialize
|
||||
for j := 1 to NoGrps do
|
||||
@ -325,7 +323,6 @@ begin
|
||||
lReport.Free;
|
||||
|
||||
// Clean up
|
||||
scrgrp := nil;
|
||||
median := nil;
|
||||
ninetypcntile := nil;
|
||||
tenpcntile := nil;
|
||||
|
@ -81,7 +81,7 @@ var
|
||||
i, j, btn, nscores: integer;
|
||||
RawScores: array[0..50] of double;
|
||||
RawFreq: array[0..50] of double;
|
||||
temp, X, Y: double;
|
||||
X: double;
|
||||
begin
|
||||
if DistUseGroup.ItemIndex < 0 then
|
||||
exit;
|
||||
@ -105,12 +105,8 @@ begin
|
||||
for i := 1 to ncases - 1 do
|
||||
begin
|
||||
for j := i+1 to ncases do
|
||||
begin
|
||||
X := RawScores[i-1];
|
||||
Y := RawScores[j-1];
|
||||
if RawScores[i-1] < RawScores[j-1] then // switch
|
||||
Exchange(RawScores[i-1], RawScores[j-1]);
|
||||
end;
|
||||
end;
|
||||
|
||||
// get frequency of each score
|
||||
|
@ -1589,8 +1589,8 @@ end;
|
||||
// Call HTML help (.chm file)
|
||||
// Is is expected that help topics are specified as HelpKeyword (HelpType = htContext).
|
||||
// Using numeric HelpContext values will crash the application.
|
||||
function TOS3MainFrm.HelpHandler(Command:word; Data:PtrInt;
|
||||
var CallHelp:Boolean): Boolean;
|
||||
function TOS3MainFrm.HelpHandler(Command: Word; Data: PtrInt;
|
||||
var CallHelp: Boolean): Boolean;
|
||||
var
|
||||
topic: UnicodeString;
|
||||
begin
|
||||
@ -1599,6 +1599,9 @@ begin
|
||||
|
||||
// Don't call regular help
|
||||
CallHelp := False;
|
||||
|
||||
// silence the compiler, function result not needed
|
||||
Result := true;
|
||||
end;
|
||||
{$ENDIF}
|
||||
{$ENDIF}
|
||||
|
@ -3,10 +3,11 @@ object CorSimFrm: TCorSimFrm
|
||||
Height = 447
|
||||
Top = 126
|
||||
Width = 857
|
||||
HelpType = htKeyword
|
||||
HelpKeyword = 'BivariateScatterPlot.htm'
|
||||
Caption = 'Correlation Simulation'
|
||||
ClientHeight = 447
|
||||
ClientWidth = 857
|
||||
OnCreate = FormCreate
|
||||
OnShow = FormShow
|
||||
Position = poMainFormCenter
|
||||
LCLVersion = '2.1.0.0'
|
||||
@ -114,6 +115,7 @@ object CorSimFrm: TCorSimFrm
|
||||
Height = 23
|
||||
Top = 2
|
||||
Width = 43
|
||||
Alignment = taRightJustify
|
||||
BorderSpacing.Left = 6
|
||||
OnKeyPress = MeanXKeyPress
|
||||
TabOrder = 0
|
||||
@ -127,6 +129,7 @@ object CorSimFrm: TCorSimFrm
|
||||
Height = 23
|
||||
Top = 2
|
||||
Width = 46
|
||||
Alignment = taRightJustify
|
||||
BorderSpacing.Left = 8
|
||||
OnKeyPress = MeanYKeyPress
|
||||
TabOrder = 1
|
||||
@ -140,6 +143,7 @@ object CorSimFrm: TCorSimFrm
|
||||
Height = 23
|
||||
Top = 2
|
||||
Width = 50
|
||||
Alignment = taRightJustify
|
||||
BorderSpacing.Left = 8
|
||||
OnKeyPress = SDXKeyPress
|
||||
TabOrder = 2
|
||||
@ -153,6 +157,7 @@ object CorSimFrm: TCorSimFrm
|
||||
Height = 23
|
||||
Top = 2
|
||||
Width = 39
|
||||
Alignment = taRightJustify
|
||||
BorderSpacing.Left = 8
|
||||
OnKeyPress = SDYKeyPress
|
||||
TabOrder = 3
|
||||
@ -166,14 +171,15 @@ object CorSimFrm: TCorSimFrm
|
||||
Height = 23
|
||||
Top = 2
|
||||
Width = 44
|
||||
Alignment = taRightJustify
|
||||
BorderSpacing.Left = 8
|
||||
OnKeyPress = CorrKeyPress
|
||||
TabOrder = 4
|
||||
Text = 'Corr'
|
||||
end
|
||||
object ComputeBtn: TButton
|
||||
AnchorSideTop.Control = ReturnBtn
|
||||
AnchorSideRight.Control = ReturnBtn
|
||||
AnchorSideTop.Control = CloseBtn
|
||||
AnchorSideRight.Control = CloseBtn
|
||||
Left = 702
|
||||
Height = 26
|
||||
Top = 0
|
||||
@ -182,9 +188,9 @@ object CorSimFrm: TCorSimFrm
|
||||
BorderSpacing.Right = 8
|
||||
Caption = 'Compute'
|
||||
OnClick = ComputeBtnClick
|
||||
TabOrder = 5
|
||||
TabOrder = 6
|
||||
end
|
||||
object ReturnBtn: TButton
|
||||
object CloseBtn: TButton
|
||||
AnchorSideTop.Control = Panel1
|
||||
AnchorSideTop.Side = asrCenter
|
||||
AnchorSideRight.Control = Panel1
|
||||
@ -194,9 +200,9 @@ object CorSimFrm: TCorSimFrm
|
||||
Top = 0
|
||||
Width = 66
|
||||
Anchors = [akTop, akRight]
|
||||
Caption = 'Return'
|
||||
ModalResult = 1
|
||||
TabOrder = 6
|
||||
Caption = 'Close'
|
||||
ModalResult = 11
|
||||
TabOrder = 7
|
||||
end
|
||||
object Nobs: TEdit
|
||||
AnchorSideLeft.Control = Label6
|
||||
@ -206,9 +212,10 @@ object CorSimFrm: TCorSimFrm
|
||||
Height = 23
|
||||
Top = 2
|
||||
Width = 40
|
||||
Alignment = taRightJustify
|
||||
BorderSpacing.Left = 8
|
||||
OnKeyPress = NobsKeyPress
|
||||
TabOrder = 7
|
||||
TabOrder = 5
|
||||
Text = 'Nobs'
|
||||
end
|
||||
end
|
||||
|
@ -18,7 +18,7 @@ type
|
||||
Nobs: TEdit;
|
||||
Image1: TImage;
|
||||
Label6: TLabel;
|
||||
ReturnBtn: TButton;
|
||||
CloseBtn: TButton;
|
||||
ComputeBtn: TButton;
|
||||
Corr: TEdit;
|
||||
Label5: TLabel;
|
||||
@ -33,7 +33,6 @@ type
|
||||
Panel1: TPanel;
|
||||
procedure ComputeBtnClick(Sender: TObject);
|
||||
procedure CorrKeyPress(Sender: TObject; var Key: char);
|
||||
procedure FormCreate(Sender: TObject);
|
||||
procedure FormShow(Sender: TObject);
|
||||
procedure MeanXKeyPress(Sender: TObject; var Key: char);
|
||||
procedure MeanYKeyPress(Sender: TObject; var Key: char);
|
||||
@ -45,10 +44,11 @@ type
|
||||
xmean, ymean, xsd, ysd, corxy, corsqr, yvariance, predvar : double;
|
||||
errvariance, stderror, b, constant, newxmean, newymean : double;
|
||||
newxsd, newysd, newcorr, randomerror, newb, newconstant : double;
|
||||
x, y : DblDyneVec;
|
||||
freqx, freqy : IntDyneVec;
|
||||
N : integer;
|
||||
procedure plot(Sender: TObject);
|
||||
x, y: DblDyneVec;
|
||||
freqx, freqy: IntDyneVec;
|
||||
N: integer;
|
||||
procedure Plot;
|
||||
function Validate(out AMsg: String; out AControl: TWinControl): Boolean;
|
||||
public
|
||||
{ public declarations }
|
||||
end;
|
||||
@ -62,314 +62,401 @@ implementation
|
||||
|
||||
procedure TCorSimFrm.MeanXKeyPress(Sender: TObject; var Key: char);
|
||||
begin
|
||||
if Ord(Key) = 13 then MeanY.SetFocus;
|
||||
if Key = #13 then MeanY.SetFocus;
|
||||
end;
|
||||
|
||||
procedure TCorSimFrm.CorrKeyPress(Sender: TObject; var Key: char);
|
||||
begin
|
||||
if Ord(Key) = 13 then Nobs.SetFocus;
|
||||
end;
|
||||
|
||||
procedure TCorSimFrm.FormCreate(Sender: TObject);
|
||||
begin
|
||||
if OutputFrm = nil then
|
||||
Application.CreateForm(TOutputFrm, OutputFrm);
|
||||
if Key = #13 then Nobs.SetFocus;
|
||||
end;
|
||||
|
||||
procedure TCorSimFrm.ComputeBtnClick(Sender: TObject);
|
||||
var
|
||||
outline : string;
|
||||
i : integer;
|
||||
i: integer;
|
||||
msg: String;
|
||||
C: TWinControl;
|
||||
lReport: TStrings;
|
||||
begin
|
||||
N := StrToInt(NObs.Text);
|
||||
xmean := StrToFloat(MeanX.Text);
|
||||
ymean := StrToFloat(MeanY.Text);
|
||||
xsd := StrToFloat(SDX.Text);
|
||||
ysd := StrToFloat(SDY.Text);
|
||||
corxy := StrToFloat(Corr.Text);
|
||||
Randomize;
|
||||
if not Validate(msg, C) then begin
|
||||
C.SetFocus;
|
||||
MessageDlg(msg, mtError, [mbOk], 0);
|
||||
exit;
|
||||
end;
|
||||
|
||||
SetLength(freqx,N + 1);
|
||||
SetLength(freqy,N + 1);
|
||||
SetLength(x,N + 1);
|
||||
SetLength(y,N + 1);
|
||||
N := StrToInt(NObs.Text);
|
||||
xmean := StrToFloat(MeanX.Text);
|
||||
ymean := StrToFloat(MeanY.Text);
|
||||
xsd := StrToFloat(SDX.Text);
|
||||
ysd := StrToFloat(SDY.Text);
|
||||
corxy := StrToFloat(Corr.Text);
|
||||
|
||||
// generate x and y data observations
|
||||
corsqr := corxy * corxy;
|
||||
yvariance := ysd * ysd;
|
||||
predvar := corsqr * yvariance;
|
||||
errvariance := yvariance - predvar;
|
||||
stderror := sqrt(errvariance);
|
||||
b := corxy * (ysd / xsd);
|
||||
constant := ymean - (b * xmean);
|
||||
Randomize;
|
||||
|
||||
newxmean := 0.0;
|
||||
newymean := 0.0;
|
||||
newxsd := 0.0;
|
||||
newysd := 0.0;
|
||||
newcorr := 0.0;
|
||||
SetLength(freqx, N + 1);
|
||||
SetLength(freqy, N + 1);
|
||||
SetLength(x, N + 1);
|
||||
SetLength(y, N + 1);
|
||||
|
||||
// generate x and y data observations
|
||||
corsqr := corxy * corxy;
|
||||
yvariance := ysd * ysd;
|
||||
predvar := corsqr * yvariance;
|
||||
errvariance := yvariance - predvar;
|
||||
stderror := sqrt(errvariance);
|
||||
b := corxy * (ysd / xsd);
|
||||
constant := ymean - b * xmean;
|
||||
|
||||
newxmean := 0.0;
|
||||
newymean := 0.0;
|
||||
newxsd := 0.0;
|
||||
newysd := 0.0;
|
||||
newcorr := 0.0;
|
||||
for i := 1 to N do
|
||||
begin
|
||||
x[i] := RandG(xmean, xsd);
|
||||
randomerror := RandG(0.0, stderror);
|
||||
y[i] := b * x[i] + constant + randomerror;
|
||||
newxmean := newxmean + x[i];
|
||||
newymean := newymean + y[i];
|
||||
newxsd := newxsd + sqr(x[i]);
|
||||
newysd := newysd + sqr(y[i]);
|
||||
newcorr := newcorr + x[i] * y[i];
|
||||
end;
|
||||
|
||||
newxsd := newxsd - sqr(newxmean) / N;
|
||||
newxsd := newxsd / (N - 1);
|
||||
newxsd := sqrt(newxsd);
|
||||
|
||||
newysd := newysd - sqr(newymean) / N;
|
||||
newysd := newysd / (N - 1);
|
||||
newysd := sqrt(newysd);
|
||||
|
||||
newcorr := newcorr - newxmean * newymean / N;
|
||||
newcorr := newcorr / (N - 1);
|
||||
newcorr := newcorr / (newxsd * newysd);
|
||||
|
||||
newxmean := newxmean / N;
|
||||
newymean := newymean / N;
|
||||
newb := newcorr * (newysd / newxsd);
|
||||
newconstant := newymean - newb * newxmean;
|
||||
|
||||
lReport := TStringList.Create;
|
||||
try
|
||||
lReport.Add('POPULATION PARAMETERS FOR THE SIMULATION');
|
||||
lReport.Add('');
|
||||
lReport.Add('Mean X: %8.3f', [xmean]);
|
||||
lReport.Add('Std. Dev. X: %8.3f', [xsd]);
|
||||
lReport.Add('');
|
||||
lReport.Add('Mean Y: %8.3f', [ymean]);
|
||||
lReport.Add('Std. Dev. Y: %8.3f', [ysd]);
|
||||
lReport.Add('');
|
||||
lReport.Add('Product-Moment Correlation: %8.3f', [corxy]);
|
||||
lReport.Add('Regression line slope: %8.3f', [b]);
|
||||
lReport.Add(' constant: %8.3f', [constant]);
|
||||
lReport.Add('');
|
||||
lReport.Add(DIVIDER);
|
||||
lReport.Add('');
|
||||
lReport.Add('SAMPLE STATISTICS FOR %d OBSERVATIONS FROM THE POPULATION', [N]);
|
||||
lReport.Add('');
|
||||
lReport.Add('Mean X: %8.3f', [newxmean]);
|
||||
lReport.Add('Std. Dev. X: %8.3f', [newxsd]);
|
||||
lReport.Add('');
|
||||
lReport.Add('Mean Y: %8.3f', [newymean]);
|
||||
lReport.Add('Std. Dev. Y: %8.3f', [newysd]);
|
||||
lReport.Add('');
|
||||
lReport.Add('Product-Moment Correlation: %8.3f', [newcorr]);
|
||||
lReport.Add('Regression line slope: %8.3f', [newb]);
|
||||
lReport.Add(' constant: %8.3f', [newconstant]);
|
||||
lReport.Add('');
|
||||
lReport.Add(DIVIDER);
|
||||
lReport.Add('');
|
||||
lReport.Add('Pair No. X Y ');
|
||||
lReport.Add('-------- --------- ---------');
|
||||
for i := 1 to N do
|
||||
begin
|
||||
x[i] := RandG(xmean,xsd);
|
||||
randomerror := RandG(0.0,stderror);
|
||||
y[i] := (b * x[i]) + constant + randomerror;
|
||||
newxmean := newxmean + x[i];
|
||||
newymean := newymean + y[i];
|
||||
newxsd := newxsd + (x[i] * x[i]);
|
||||
newysd := newysd + (y[i] * y[i]);
|
||||
newcorr := newcorr + (x[i] * y[i]);
|
||||
end;
|
||||
newxsd := newxsd - ((newxmean * newxmean) / N);
|
||||
newxsd := newxsd / (N - 1.0);
|
||||
newxsd := sqrt(newxsd);
|
||||
newysd := newysd - ((newymean * newymean) / N);
|
||||
newysd := newysd / (N - 1.0);
|
||||
newysd := sqrt(newysd);
|
||||
newcorr := newcorr - ((newxmean * newymean) / N);
|
||||
newcorr := newcorr / (N - 1.0);
|
||||
newcorr := newcorr / (newxsd * newysd);
|
||||
newxmean := newxmean / N;
|
||||
newymean := newymean / N;
|
||||
newb := newcorr * (newysd / newxsd);
|
||||
newconstant := newymean - (newb * newxmean);
|
||||
OutputFrm.RichEdit.Lines.Clear;
|
||||
outline := 'POPULATION PARAMETERS FOR THE SIMULATION';
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
OutputFrm.RichEdit.Lines.Add('');
|
||||
outline := format('Mean X := %8.3f, Std. Dev. X := %8.3f',[xmean, xsd]);
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
outline := format('Mean Y := %8.3f, Std. Dev. Y := %8.3f',[ymean, ysd]);
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
outline := format('Product-Moment Correlation := %8.3f',[corxy]);
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
outline := format('Regression line slope := %8.3f, constant := %8.3f',
|
||||
[b, constant]);
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
OutputFrm.RichEdit.Lines.Add('');
|
||||
OutputFrm.RichEdit.Lines.Add('');
|
||||
outline := format('SAMPLE STATISTICS FOR %d OBSERVATIONS FROM THE POPULATION',[N]);
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
OutputFrm.RichEdit.Lines.Add('');
|
||||
outline := format('Mean X := %8.3f, Std. Dev. X := %8.3f',[newxmean, newxsd]);
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
outline := format('Mean Y := %8.3f, Std. Dev. Y := %8.3f',[newymean, newysd]);
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
outline := format('Product-Moment Correlation := %8.3f',[newcorr]);
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
outline := format('Regression line slope := %8.3f, constant := %8.3f',
|
||||
[newb, newconstant]);
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
OutputFrm.RichEdit.Lines.Add('');
|
||||
OutputFrm.RichEdit.Lines.Add('Pair No. X Y');
|
||||
for i := 1 to N do
|
||||
begin
|
||||
outline := format(' %3d %9.3f %9.3f',[i,x[i],y[i]]);
|
||||
OutputFrm.RichEdit.Lines.Add(outline);
|
||||
end;
|
||||
OutputFrm.ShowModal;
|
||||
plot(self);
|
||||
lReport.Add(' %4d %8.3f %8.3f', [i, x[i], y[i]]);
|
||||
|
||||
DisplayReport(lReport);
|
||||
|
||||
Plot();
|
||||
|
||||
finally
|
||||
lReport.Free;
|
||||
freqx := nil;
|
||||
freqy := nil;
|
||||
x := nil;
|
||||
y := nil;
|
||||
ReturnBtn.SetFocus;
|
||||
end;
|
||||
end;
|
||||
|
||||
procedure TCorSimFrm.FormShow(Sender: TObject);
|
||||
begin
|
||||
Image1.Canvas.Pen.Color := clBlack;
|
||||
Image1.Canvas.Brush.Color := clWhite;
|
||||
Image1.Canvas.Rectangle(0, 0, Image1.Width, Image1.Height);
|
||||
//Image1.Canvas.FloodFill(1,1,clWhite,fsborder);
|
||||
MeanX.Text := '100';
|
||||
MeanY.Text := '100';
|
||||
SDX.Text := '15';
|
||||
SDY.Text := '15';
|
||||
Corr.Text := '.8';
|
||||
Nobs.Text := '100';
|
||||
Image1.Canvas.Pen.Color := clBlack;
|
||||
Image1.Canvas.Brush.Color := clWhite;
|
||||
Image1.Canvas.Rectangle(0, 0, Image1.Width, Image1.Height);
|
||||
|
||||
MeanX.Text := '100';
|
||||
MeanY.Text := '100';
|
||||
SDX.Text := '15';
|
||||
SDY.Text := '15';
|
||||
Corr.Text := '.8';
|
||||
Nobs.Text := '100';
|
||||
end;
|
||||
|
||||
procedure TCorSimFrm.MeanYKeyPress(Sender: TObject; var Key: char);
|
||||
begin
|
||||
if Ord(Key) = 13 then SDX.SetFocus;
|
||||
if Key = #13 then SDX.SetFocus;
|
||||
end;
|
||||
|
||||
procedure TCorSimFrm.NobsKeyPress(Sender: TObject; var Key: char);
|
||||
begin
|
||||
if Ord(Key) = 13 then ComputeBtn.SetFocus;
|
||||
if Key = #13 then ComputeBtn.SetFocus;
|
||||
end;
|
||||
|
||||
procedure TCorSimFrm.SDXKeyPress(Sender: TObject; var Key: char);
|
||||
begin
|
||||
if Ord(Key) = 13 then SDY.SetFocus;
|
||||
if Key = #13 then SDY.SetFocus;
|
||||
end;
|
||||
|
||||
procedure TCorSimFrm.SDYKeyPress(Sender: TObject; var Key: char);
|
||||
begin
|
||||
if Ord(Key) = 13 then Corr.SetFocus;
|
||||
if Key = #13 then Corr.SetFocus;
|
||||
end;
|
||||
|
||||
procedure TCorSimFrm.plot(Sender: TObject);
|
||||
procedure TCorSimFrm.Plot;
|
||||
var
|
||||
minx, maxx, miny, maxy, xincrement, yincrement : double;
|
||||
predy1, predy2, lowerx, upperx, frange, prop : double;
|
||||
charlabel : string;
|
||||
xpos, ypos, xpos1, ypos1, xpos2, ypos2 : integer;
|
||||
i, winwidth, winheight, xoffset, yoffset, xaxislong, yaxislong : integer;
|
||||
j, xspacing, yspacing, labelwidth, minfreq, maxfreq : integer;
|
||||
flength, theight, lowery, uppery : integer;
|
||||
minx, maxx, miny, maxy, xincrement, yincrement: double;
|
||||
predy1, predy2, lowerx, upperx, frange, prop: double;
|
||||
charlabel: string;
|
||||
xpos, ypos, xpos1, ypos1, xpos2, ypos2: integer;
|
||||
i, winwidth, winheight, xoffset, yoffset, xaxislong, yaxislong: integer;
|
||||
j, xspacing, yspacing, labelwidth, minfreq, maxfreq: integer;
|
||||
flength, theight, lowery, uppery: integer;
|
||||
begin
|
||||
// get min and max of x and y points
|
||||
minx := x[1];
|
||||
maxx := minx;
|
||||
miny := y[1];
|
||||
maxy := miny;
|
||||
for i := 1 to N do
|
||||
begin
|
||||
if (minx > x[i]) then minx := x[i];
|
||||
if (maxx < x[i]) then maxx := x[i];
|
||||
if (miny > y[i]) then miny := y[i];
|
||||
if (maxy < y[i]) then maxy := y[i];
|
||||
end;
|
||||
xincrement := (maxx - minx) / 10;
|
||||
yincrement := (maxy - miny) / 10;
|
||||
// get min and max of x and y points
|
||||
minx := x[1];
|
||||
maxx := minx;
|
||||
miny := y[1];
|
||||
maxy := miny;
|
||||
for i := 1 to N do
|
||||
begin
|
||||
if (minx > x[i]) then minx := x[i];
|
||||
if (maxx < x[i]) then maxx := x[i];
|
||||
if (miny > y[i]) then miny := y[i];
|
||||
if (maxy < y[i]) then maxy := y[i];
|
||||
end;
|
||||
xincrement := (maxx - minx) / 10;
|
||||
yincrement := (maxy - miny) / 10;
|
||||
|
||||
winwidth := Image1.Width;
|
||||
winheight := Image1.Height;
|
||||
xoffset := winwidth div 5;
|
||||
yoffset := winheight div 5;
|
||||
xaxislong := winwidth - xoffset- winwidth div 10;
|
||||
yaxislong := winheight - yoffset - winheight div 10;
|
||||
Image1.Canvas.Pen.Color := clBlack;
|
||||
Image1.Canvas.MoveTo(xoffset,yaxislong);
|
||||
Image1.Canvas.LineTo(winwidth,yaxislong);
|
||||
Image1.Canvas.MoveTo(xoffset,yaxislong);
|
||||
Image1.Canvas.LineTo(xoffset,0);
|
||||
xspacing := xaxislong div 10;
|
||||
yspacing := yaxislong div 10;
|
||||
// do xaxis
|
||||
for i := 0 to 11 do
|
||||
begin
|
||||
Image1.Canvas.MoveTo(xoffset + (i * xspacing),yaxislong);
|
||||
Image1.Canvas.LineTo(xoffset + (i * xspacing),yaxislong + 10);
|
||||
charlabel := format('%8.3f',[minx + (i * xincrement)]);
|
||||
labelwidth := Image1.Canvas.TextWidth(charlabel);
|
||||
xpos := xoffset + (i * xspacing)-labelwidth div 2;
|
||||
ypos := yaxislong + 12;
|
||||
Image1.Canvas.TextOut(xpos,ypos,charlabel);
|
||||
end;
|
||||
// do yaxis
|
||||
for i := 0 to 11 do
|
||||
begin
|
||||
Image1.Canvas.MoveTo(xoffset, yaxislong - (i * yspacing));
|
||||
Image1.Canvas.LineTo(xoffset-10,yaxislong - (i * yspacing));
|
||||
charlabel := format('%8.3f',[miny + (i * yincrement)]);
|
||||
labelwidth := Image1.Canvas.TextWidth(charlabel);
|
||||
xpos := xoffset-10-labelwidth;
|
||||
ypos := yaxislong - (i * yspacing);
|
||||
Image1.Canvas.TextOut(xpos,ypos,charlabel);
|
||||
end;
|
||||
// plot points
|
||||
Image1.Canvas.Pen.Color := clRed;
|
||||
for i := 1 to N do
|
||||
begin
|
||||
xpos := round(xoffset + ((x[i] - minx) / (maxx - minx) * xaxislong));
|
||||
ypos := round(yaxislong - ((y[i] - miny) / (maxy - miny) * yaxislong));
|
||||
Image1.Canvas.Ellipse(xpos,ypos,xpos+5,ypos+5);
|
||||
end;
|
||||
// draw regression line
|
||||
Image1.Canvas.Pen.Color := clBlack;
|
||||
predy1 := newb * minx + newconstant;
|
||||
predy2 := newb * maxx + newconstant;
|
||||
xpos1 := xoffset;
|
||||
xpos2 := xoffset + xaxislong;
|
||||
ypos1 := round(yaxislong - ((predy1 - miny) / (maxy - miny) * yaxislong));
|
||||
ypos2 := round(yaxislong - ((predy2 - miny) / (maxy - miny) * yaxislong));
|
||||
Image1.Canvas.MoveTo(xpos1,ypos1);
|
||||
Image1.Canvas.LineTo(xpos2,ypos2);
|
||||
winwidth := Image1.Width;
|
||||
winheight := Image1.Height;
|
||||
xoffset := winwidth div 5;
|
||||
yoffset := winheight div 5;
|
||||
xaxislong := winwidth - xoffset- winwidth div 10;
|
||||
yaxislong := winheight - yoffset - winheight div 10;
|
||||
xspacing := xaxislong div 10;
|
||||
yspacing := yaxislong div 10;
|
||||
|
||||
// do x frequency distribution
|
||||
xincrement := (maxx-minx) / 50.0;
|
||||
xspacing := xaxislong div 50;
|
||||
for j := 1 to 51 do freqx[j] := 0;
|
||||
for i := 1 to N do
|
||||
begin
|
||||
for j := 1 to 51 do
|
||||
begin
|
||||
lowerx := minx + (j * xincrement);
|
||||
upperx := minx + ((j+1) * xincrement);
|
||||
if ((x[i] >= lowerx) and (x[i] < upperx)) then freqx[j] := freqx[j] + 1;
|
||||
end;
|
||||
end;
|
||||
// plot the x frequencies
|
||||
minfreq := N;
|
||||
maxfreq := 0;
|
||||
for j := 1 to 51 do
|
||||
begin
|
||||
if (freqx[j] > maxfreq) then maxfreq := freqx[j];
|
||||
if (freqx[j] < minfreq) then minfreq := freqx[j];
|
||||
end;
|
||||
flength := winheight - (yaxislong + 25) - Panel1.Height;
|
||||
for j := 1 to 51 do
|
||||
begin
|
||||
xpos := xoffset + (j * xspacing);
|
||||
ypos1 := round(yaxislong + 25 +
|
||||
((freqx[j] - minfreq)/ (maxfreq-minfreq) * (flength)));
|
||||
ypos2 := yaxislong + 25;
|
||||
Image1.Canvas.MoveTo(xpos,ypos1);
|
||||
Image1.Canvas.LineTo(xpos,ypos2);
|
||||
end;
|
||||
Image1.Canvas.MoveTo(xoffset,yaxislong+25);
|
||||
Image1.Canvas.LineTo(winwidth,yaxislong+25);
|
||||
xpos := 20;
|
||||
ypos := yaxislong+30;
|
||||
Image1.Canvas.TextOut(xpos,ypos,'X DISTRIBUTION');
|
||||
theight := Image1.Canvas.TextHeight('X');
|
||||
ypos := ypos + theight;
|
||||
charlabel := format('correlation := %6.3f',[newcorr]);
|
||||
Image1.Canvas.TextOut(xpos,ypos,charlabel);
|
||||
ypos := ypos + theight;
|
||||
charlabel := format('Mean X := %8.3f, Mean Y := %8.3f',[newxmean, newymean]);
|
||||
Image1.Canvas.TextOut(xpos,ypos,charlabel);
|
||||
charlabel := format('SD X := %8.3f, SD Y := %8.3f',[newxsd, newysd]);
|
||||
ypos := ypos + theight;
|
||||
Image1.Canvas.TextOut(xpos,ypos,charlabel);
|
||||
Image1.Canvas.Pen.Color := clBlack;
|
||||
Image1.Canvas.Line(xoffset, yaxislong, winwidth, yaxislong);
|
||||
Image1.canvas.Line(xoffset, yaxislong, xoffset, 0);
|
||||
|
||||
// do y frequency distribution
|
||||
yincrement := (maxy-miny) / 50.0;
|
||||
yspacing := yaxislong div 50;
|
||||
for j := 1 to 51 do freqy[j] := 0;
|
||||
for i := 1 to N do
|
||||
begin
|
||||
for j := 1 to 51 do
|
||||
begin
|
||||
lowery := round(miny + (j * yincrement));
|
||||
uppery := round(miny + ((j+1) * yincrement));
|
||||
if ((y[i] >= lowery) and (y[i] < uppery)) then freqy[j] := freqy[j] + 1;
|
||||
end;
|
||||
end;
|
||||
// plot the y frequencies
|
||||
minfreq := N;
|
||||
maxfreq := 0;
|
||||
// do xaxis
|
||||
for i := 0 to 11 do
|
||||
begin
|
||||
Image1.Canvas.Line(xoffset + i * xspacing, yaxislong, xoffset + i * xspacing, yaxislong + 10);
|
||||
charlabel := Format('%.3f', [minx + i * xincrement]);
|
||||
labelwidth := Image1.Canvas.TextWidth(charlabel);
|
||||
xpos := xoffset + i * xspacing - labelwidth div 2;
|
||||
ypos := yaxislong + 12;
|
||||
Image1.Canvas.TextOut(xpos, ypos, charlabel);
|
||||
end;
|
||||
|
||||
// do yaxis
|
||||
for i := 0 to 11 do
|
||||
begin
|
||||
Image1.Canvas.Line(xoffset, yaxislong - i * yspacing, xoffset-10, yaxislong - i * yspacing);
|
||||
charlabel := Format('%.3f', [miny + i * yincrement]);
|
||||
labelwidth := Image1.Canvas.TextWidth(charlabel);
|
||||
xpos := xoffset - 10 - labelwidth;
|
||||
ypos := yaxislong - i * yspacing;
|
||||
Image1.Canvas.TextOut(xpos, ypos, charlabel);
|
||||
end;
|
||||
|
||||
// plot points
|
||||
Image1.Canvas.Pen.Color := clRed;
|
||||
for i := 1 to N do
|
||||
begin
|
||||
xpos := round(xoffset + ((x[i] - minx) / (maxx - minx) * xaxislong));
|
||||
ypos := round(yaxislong - ((y[i] - miny) / (maxy - miny) * yaxislong));
|
||||
Image1.Canvas.Ellipse(xpos, ypos, xpos+5, ypos+5);
|
||||
end;
|
||||
|
||||
// draw regression line
|
||||
Image1.Canvas.Pen.Color := clBlack;
|
||||
predy1 := newb * minx + newconstant;
|
||||
predy2 := newb * maxx + newconstant;
|
||||
xpos1 := xoffset;
|
||||
xpos2 := xoffset + xaxislong;
|
||||
ypos1 := round(yaxislong - ((predy1 - miny) / (maxy - miny) * yaxislong));
|
||||
ypos2 := round(yaxislong - ((predy2 - miny) / (maxy - miny) * yaxislong));
|
||||
Image1.Canvas.Line(xpos1, ypos1, xpos2, ypos2);
|
||||
|
||||
// do x frequency distribution
|
||||
xincrement := (maxx - minx) / 50.0;
|
||||
xspacing := xaxislong div 50;
|
||||
for j := 1 to 51 do
|
||||
freqx[j] := 0;
|
||||
for i := 1 to N do
|
||||
begin
|
||||
for j := 1 to 51 do
|
||||
begin
|
||||
if (freqy[j] > maxfreq) then maxfreq := freqy[j];
|
||||
if (freqy[j] < minfreq) then minfreq := freqy[j];
|
||||
lowerx := minx + j * xincrement;
|
||||
upperx := minx + (j+1) * xincrement;
|
||||
if (x[i] >= lowerx) and (x[i] < upperx) then
|
||||
freqx[j] := freqx[j] + 1;
|
||||
end;
|
||||
flength := winwidth - (xaxislong + 150);
|
||||
end;
|
||||
|
||||
// plot the x frequencies
|
||||
minfreq := N;
|
||||
maxfreq := 0;
|
||||
for j := 1 to 51 do
|
||||
begin
|
||||
if (freqx[j] > maxfreq) then
|
||||
maxfreq := freqx[j];
|
||||
if (freqx[j] < minfreq) then
|
||||
minfreq := freqx[j];
|
||||
end;
|
||||
flength := winheight - (yaxislong + 25) - Panel1.Height;
|
||||
for j := 1 to 51 do
|
||||
begin
|
||||
xpos := xoffset + j * xspacing;
|
||||
ypos1 := round(yaxislong + 25 + (freqx[j] - minfreq)/ (maxfreq-minfreq) * flength);
|
||||
ypos2 := yaxislong + 25;
|
||||
Image1.Canvas.Line(xpos, ypos1, xpos, ypos2);
|
||||
end;
|
||||
Image1.Canvas.Line(xoffset, yaxislong+25, winwidth, yaxislong+25);
|
||||
|
||||
xpos := 20;
|
||||
ypos := yaxislong+30;
|
||||
Image1.Canvas.TextOut(xpos, ypos, 'X DISTRIBUTION');
|
||||
|
||||
theight := Image1.Canvas.TextHeight('X');
|
||||
ypos := ypos + theight;
|
||||
charlabel := Format('Correlation: %.3f', [newcorr]);
|
||||
Image1.Canvas.TextOut(xpos, ypos, charlabel);
|
||||
ypos := ypos + theight;
|
||||
charlabel := Format('Mean X: %.3f; Mean Y: %.3f', [newxmean, newymean]);
|
||||
Image1.Canvas.TextOut(xpos, ypos, charlabel);
|
||||
charlabel := Format('SD X: %.3f; SD Y: %.3f', [newxsd, newysd]);
|
||||
ypos := ypos + theight;
|
||||
Image1.Canvas.TextOut(xpos,ypos,charlabel);
|
||||
|
||||
// do y frequency distribution
|
||||
yincrement := (maxy-miny) / 50.0;
|
||||
yspacing := yaxislong div 50;
|
||||
for j := 1 to 51 do
|
||||
freqy[j] := 0;
|
||||
for i := 1 to N do
|
||||
begin
|
||||
for j := 1 to 51 do
|
||||
begin
|
||||
ypos := yaxislong - (j * yspacing);
|
||||
frange := maxfreq - minfreq;
|
||||
prop := (freqy[j] - minfreq) / frange;
|
||||
xpos1 := round(xoffset - 50 - (prop * flength));
|
||||
xpos2 := xoffset - 50;
|
||||
Image1.Canvas.MoveTo(xpos1,ypos);
|
||||
Image1.Canvas.LineTo(xpos2,ypos);
|
||||
lowery := round(miny + j * yincrement);
|
||||
uppery := round(miny + ((j+1) * yincrement));
|
||||
if (y[i] >= lowery) and (y[i] < uppery) then
|
||||
freqy[j] := freqy[j] + 1;
|
||||
end;
|
||||
Image1.Canvas.MoveTo(xoffset - 50,yaxislong);
|
||||
Image1.Canvas.LineTo(xoffset - 50,0);
|
||||
Image1.Canvas.TextOut(0,0,'Y DISTRIBUTION');
|
||||
end;
|
||||
|
||||
// plot the y frequencies
|
||||
minfreq := N;
|
||||
maxfreq := 0;
|
||||
for j := 1 to 51 do
|
||||
begin
|
||||
if (freqy[j] > maxfreq) then maxfreq := freqy[j];
|
||||
if (freqy[j] < minfreq) then minfreq := freqy[j];
|
||||
end;
|
||||
flength := winwidth - (xaxislong + 150);
|
||||
for j := 1 to 51 do
|
||||
begin
|
||||
ypos := yaxislong - j * yspacing;
|
||||
frange := maxfreq - minfreq;
|
||||
prop := (freqy[j] - minfreq) / frange;
|
||||
xpos1 := round(xoffset - 50 - prop * flength);
|
||||
xpos2 := xoffset - 50;
|
||||
Image1.Canvas.Line(xpos1, ypos, xpos2, ypos);
|
||||
end;
|
||||
Image1.Canvas.Line(xoffset - 50, yaxislong, xoffset - 50, 0);
|
||||
Image1.Canvas.TextOut(0,0,'Y DISTRIBUTION');
|
||||
end;
|
||||
|
||||
function TCorSimFrm.Validate(out AMsg: String; out AControl: TWinControl): Boolean;
|
||||
begin
|
||||
Result := false;
|
||||
|
||||
if (MeanX.Text = '') or (MeanY.Text = '') or
|
||||
(SDX.Text = '') or (SDY.Text = '') or
|
||||
(Corr.Text = '') or (NObs.Text = '') then
|
||||
begin
|
||||
if MeanX.Text = '' then
|
||||
AControl := MeanX
|
||||
else if MeanY.Text = '' then
|
||||
AControl := MeanY
|
||||
else if SDX.Text = '' then
|
||||
AControl := SDX
|
||||
else if SDY.Text = '' then
|
||||
AControl := SDY
|
||||
else if Corr.Text = '' then
|
||||
AControl := Corr
|
||||
else if NObs.Text = '' then
|
||||
AControl := NObs;
|
||||
AMsg := 'Input cannot be empty.';
|
||||
exit;
|
||||
end;
|
||||
|
||||
if not TryStrToFloat(MeanX.Text, xMean) then
|
||||
begin
|
||||
AControl := MeanX;
|
||||
AMsg := 'Mean X must be a valid number.';
|
||||
exit;
|
||||
end;
|
||||
|
||||
if not TryStrToFloat(MeanY.Text, yMean) then
|
||||
begin
|
||||
AControl := MeanY;
|
||||
AMsg := 'Mean Y must be a valid number.';
|
||||
exit;
|
||||
end;
|
||||
|
||||
if not TryStrToFloat(SDX.Text, xSD) or (xSD <= 0) then
|
||||
begin
|
||||
AControl := SDX;
|
||||
AMsg := 'Std.Dev X must be a valid positive number.';
|
||||
exit;
|
||||
end;
|
||||
|
||||
if not TryStrToFloat(SDY.Text, ySD) or (ySD <= 0) then
|
||||
begin
|
||||
AControl := SDY;
|
||||
AMsg := 'Std.Dev Y must be a valid positive number.';
|
||||
exit;
|
||||
end;
|
||||
|
||||
if not TryStrToFloat(Corr.Text, corXY) then
|
||||
begin
|
||||
AControl := Corr;
|
||||
AMsg := 'Correlation XY must be a valid number.';
|
||||
exit;
|
||||
end;
|
||||
|
||||
if not TryStrToInt(NObs.Text, N) or (N <= 0) then
|
||||
begin
|
||||
AControl := NObs;
|
||||
AMsg := 'Number of observations must be a valid positive integer.';
|
||||
exit;
|
||||
end;
|
||||
|
||||
Result := true;
|
||||
end;
|
||||
|
||||
initialization
|
||||
|
@ -78,7 +78,7 @@ procedure MReg(NoIndep : integer;
|
||||
procedure MReg(NoIndep: integer; const IndepCols: IntDyneVec; DepCol: integer;
|
||||
const RowLabels: StrDyneVec;
|
||||
const Means, Variances, StdDevs, BWeights, BetaWeights, BStdErrs, Bttests, tProbs: DblDyneVec;
|
||||
out R2, StdErrEst: double; out NCases: integer; out ErrorCode: boolean;
|
||||
out R2, StdErrEst: double; NCases: integer; out ErrorCode: boolean;
|
||||
PrintAll: boolean; AReport: TStrings);
|
||||
|
||||
procedure Dynnonsymroots(var a : DblDyneMat; nv : integer;
|
||||
@ -699,7 +699,7 @@ end;
|
||||
procedure MReg(NoIndep: integer; const IndepCols: IntDyneVec; DepCol: integer;
|
||||
const RowLabels: StrDyneVec;
|
||||
const Means, Variances, StdDevs, BWeights, BetaWeights, BStdErrs, Bttests, tProbs: DblDyneVec;
|
||||
out R2, StdErrEst: double; out NCases: integer; out ErrorCode: boolean;
|
||||
out R2, StdErrEst: double; NCases: integer; out ErrorCode: boolean;
|
||||
PrintAll: boolean; AReport: TStrings);
|
||||
var
|
||||
i, j, N: integer;
|
||||
|
Reference in New Issue
Block a user