Path Analysis

Factor analysis is a method used to identify "latent" variables which theoretically may underlie observed variables in common with those latent variables or factors. For example, a factor analysis of several intelligence, aptitude and achievement test batteries may suggest only two or three underlying factors can "explain" a large proportion of common variance among the many subtests of the original measures. Two kinds of factor analytic uses are present in the literature: exploratory and confirmatory. In exploratory FA, the researcher is attempting to develop plausible hypotheses about possible underlying common variables. In confirmatory FA, the research is typically confirming the findings of prior research or theory. For both applications, there are a variety of alternative approaches based on, for example, whether or not one is interested in estimating results for a population of variables or a population of subjects. The researcher must also decide if his or her theory "makes sense" to have correlated factors or uncorrelated (orthogonal) factors. Because FA can result in an infinite number of possible solutions as a function of how the axis of the factors are rotated and correlated, the researcher must decide on the method of rotation which is most likely to lead to a simple yet plausible solution (parsimoneous solution.)

In the Factor Analysis dialog you select the variables from the left list and enter them by clicking those selected and clicking the left arrow. Click on the Output Options desired, the method of analysis desired and the method of rotation desired. (Not all rotation options may currently be implemented in your version.) The Varimax method is frequently employed and a good place to begin. For a confirmatory analysis, you will likely select the maximum number of factors to correspond to that of the theory or previous findings. The Procrustean rotation method would also be selected in a confirmatory analysis. In that option, you will be asked to enter the factor loadings of a theoretical (or previous solution) as the "target" matrix with which to rotate the current solution to maximum congruity.

Example of a Path Analysis

In this example we will use the file CANSAS.LAZ. The user begins by selecting the Path Analysis option of the Statistics / Multivariate menu. In the figure below we have selected all variables to analyze and have entered our first path indicating that waist size is "caused" by weight:

Path Analysis		×
Available Variables:	Selected Variables: weight waist pulse chins situps jumps	Model Number: 1
Options: Construction Descriptive Statistics Each Models Cor. Matri Reproduced Cor. Matri Save Correlation Matrix	X	Reset Current Model

Figure 1. Path Analysis Form

We will also hypothesize that pulse rate is "caused" by weight, chin-ups are "caused" by weight, waist and pulse, that the number of sit-ups is "caused" by weight, waist and pulse and that jumps are "caused" by weight, waist and pulse. Each time we enter a new causal relationship we click the scroll bar to move to a new model number prior to entering the "caused" and "causing" variables. Once we have entered each model, we then click on the Compute button. Note we have elected to print descriptive statistics, each models correlation matrix, and the reproduced correlation matrix which will be our measure of how well the models "fit" the data. The results are shown below:

PATH ANALYSIS RESULTS CAUSED VARIABLE: waist Causing Variables: weight CAUSED VARIABLE: pulse Causing Variables: weight CAUSED VARIABLE: chins Causing Variables: weight waist pulse CAUSED VARIABLE: situps Causing Variables: weight waist pulse CAUSED VARIABLE: jumps Causing Variables: weight. waist pulse Correlation Matrix with 20 valid cases. Variables pulse weight waist chins situps weight 1.000 0.870 -0.366 -0.390 -0.493 0.870 1.000 -0.353 -0.552 -0.646 waist pulse -0.366 -0.353 1.000 0.151 0.225 chins -0.390 -0.552 0.151 1.000 0.696 situps -0.493 -0.646 0.225 0.696 1.000 -0.191 jumps -0.226 0.035 0.496 0.669 Variables jumps -0.226 weight waist -0.191 0.035 pulse chins 0.496 situps 0.669 jumps 1.000 20 valid cases. MEANS with weight waist pulse Variables chins situps 178.600 35.400 56.100 9.450 145.550 Variables jumps 70.300 VARIANCES with 20 valid cases. Variables weight waist pulse chins situps 609.621 10.253 51.989 27.945 3914.576 Variables iumps 2629.379

STANDARD DEVIATIONS with 20 valid cases.
 waist
 pulse
 chins
 situps

 3.202
 7.210
 5.286
 62.567
 Variables weight 24.691 Variables jumps 51.277 Dependent Variable = waist Correlation Matrix with 20 valid cases. Variables
 weight
 waist

 weight
 1.000
 0.870

 waist
 0.870
 1.000
 MEANS with 20 valid cases. Variables weight waist 178.600 35.400 VARIANCES with 20 valid cases. weight waist 609.621 10.253 Variables STANDARD DEVIATIONS with 20 valid cases. weight waist 24.691 3.202 Variables 3.202 Dependent Variable = waist R R2 F Prob.>F DF1 DF2 0.870 0.757 56.173 0.000 1 18 Adjusted R Squared = 0.744Std. Error of Estimate = 1.621
 Beta
 B
 Std.Error t
 Prob.>t

 0.870
 0.113
 0.015
 7.495
 0.000
 Variable weight Constant = 15.244 Dependent Variable = pulse Correlation Matrix with 20 valid cases. Variables
 weight
 pulse

 weight
 1.000
 -0.366

 pulse
 -0.366
 1.000
 pulse weight MEANS with 20 valid cases. weight pulse 178.600 56.100 Variables VARIANCES with 20 valid cases. Variables weight pulse 609.621 51.989

STANDARD DEVIATIONS with 20 valid cases. Variables weight 7.210 Dependent Variable = pulse R R2 F Prob.>F DF1 DF2 0.366 0.134 2.780 0.113 1 18 Adjusted R Squared = 0.086 Std. Error of Estimate = 6.895
 Beta
 B
 Std.Error t
 Prob.>t

 -0.366
 -0.107
 0.064
 -1.667
 0.113
 Variable weight Constant = 75.177 Dependent Variable = chins Correlation Matrix with 20 valid cases. Variables weightwaistpulsechins1.0000.870-0.366-0.3900.8701.000-0.353-0.552-0.366-0.3531.0000.151-0.390-0.5520.1511.000 weight weight waist pulse chins MEANS with 20 valid cases. chins 56.100 weight waist 178.600 35.400 Variables 9.450 VARIANCES with 20 valid cases. chins pulse weight waist Variables 609.621 10.253 51.989 27.945 STANDARD DEVIATIONS with 20 valid cases. chins 7.210 Variables weight waist pulse 3.202 7.210 24.691 5.286 Dependent Variable = chins R R2 F Prob.>F DF1 DF2 583 0.340 2.742 0.077 3 16 0.583 Adjusted R Squared = 0.216 Std. Error of Estimate = 4.681 iableBetaBStd.Error tProb.>tweight0.3680.0790.0890.8860.389waist-0.882-1.4560.683-2.1320.049pulse-0.026-0.0190.160-0.1180.907 Variable weight Constant = 47.968 Dependent Variable = situps Correlation Matrix with 20 valid cases. Variables pulse -0.366 weight waist 0.870 1.000 situps 1.000 0.870 weight -0.493 -0.646 -0.353 waist. -0.366 -0.353 1.000 -0.646 0.225 pulse 0.225 -0.493 1.000 situps MEANS with 20 valid cases.
 Variables
 weight
 waist
 pulse
 situps

 178.600
 35.400
 56.100
 145.550

20 valid ca weight 609.621	waist 10.253	pulse 51.989	situps 3914.576					
			situps 62.567					
able = situps								
Estimate =	51.181							
-0.890 -17.3	728 0.973 887 7.465	0.748 -2.329	Prob.>t 0.466 0.033 0.938					
523.282								
able = jumps								
trix with 20) valid cases							
weight 1.000 0.870 -0.366 -0.226	waist 0.870 1.000 -0.353 -0.191	pulse -0.366 -0.353 1.000 0.035	jumps -0.226 -0.191 0.035 1.000					
) valid cases. weight 178.600	waist 35.400	pulse 56.100	jumps 70.300					
20 valid ca weight 609.621	waist 10.253	pulse 51.989	jumps 2629.379					
FIONS with 2 weight 24.691	20 valid case waist 3.202	s. pulse 7.210	jumps 51.277					
Dependent Variable = jumps								
		DF1 DF2 3 16						
Estimate =	54.351							
0.015 0.2	538 1.034 234 7.928	rror t -0.520 0.029 -0.209	Prob.>t 0.610 0.977 0.837					
179.887								
Matrix of Path Coefficients with 20 valid cases. Variables								
weight 0.000 0.870 -0.366 0.368 0.287 -0.259	waist 0.870 0.000 0.000 -0.882 -0.890 0.015	pulse -0.366 0.000 0.000 -0.026 0.016 -0.055	chins 0.368 -0.882 -0.026 0.000 0.000 0.000					
	<pre>weight 609.621 TIONS with 2 weight 24.691 able = situps R2 F 436 4.131 ared = 0.331 Estimate = Beta B 0.287 0.7 0.890 -17.3 0.016 0.1 523.282 able = jumps Crix with 20 weight 1.000 0.870 -0.366 -0.226 0 valid cases. weight 178.600 20 valid cases. weight 24.691 able = jumps R2 F 0.54 0.304 ared = -0.123 Estimate = Beta B 0.259 -0.5 0.015 0.2 0.055 -0.3 179.887 Coefficients weight 0.366 0.368 0.287</pre>	609.621 10.253 FIONS with 20 valid case weight waist 24.691 3.202 able = situps R2 F Prob.>F 436 4.131 0.024 ared = 0.331 Estimate = 51.181 Beta B Std.E 0.287 0.728 0.973 0.890 -17.387 7.465 0.016 0.139 1.755 523.282 able = jumps trix with 20 valid cases weight waist 1.000 0.870 0.870 1.000 -0.366 -0.353 -0.226 -0.191 0 valid cases. weight waist 178.600 35.400 20 valid cases. weight waist 609.621 10.253 FIONS with 20 valid case. weight waist 609.621 10.253 FIONS with 20 valid case. weight waist 24.691 3.202 able = jumps R2 F Prob.>F 0.54 0.304 0.822 ared = -0.123 Estimate = 54.351 Beta B Std.E -0.259 -0.538 1.034 0.015 0.234 7.928 -0.055 -0.389 1.863 179.887 Coefficients with 20 valid weight waist 0.000 0.870 0.870 0.000 0.366 0.000 0.368 -0.882 0.287 -0.890	<pre>weight waist pulse 609.621 10.253 51.989 TIONS with 20 valid cases. weight waist pulse 24.691 3.202 7.210 able = situps R2 F Prob.>F DF1 DF2 436 4.131 0.024 3 16 ared = 0.331 Estimate = 51.181 Beta B Std.Error t 0.287 0.728 0.973 0.748 -0.890 -17.387 7.465 -2.329 0.016 0.139 1.755 0.079 523.282 able = jumps trix with 20 valid cases. weight waist pulse 1.000 0.870 -0.366 0.870 1.000 -0.353 -0.366 -0.353 1.000 -0.226 -0.191 0.035 0 valid cases. weight waist pulse 178.600 35.400 56.100 20 valid cases. weight waist pulse 24.691 3.202 7.210 able = jumps R2 F Prob.>F DF1 DF2 0.54 0.304 0.822 3 16 ared = -0.123 Stimate = 54.351 Beta B Std.Error t -0.259 -0.538 1.034 -0.520 0.015 0.234 7.928 0.029 -0.055 -0.389 1.863 -0.209 179.887 Coefficients with 20 valid cases. weight waist pulse 0.000 0.870 -0.366 0.870 0.000 0.000 -0.366 -0.882 -0.026 0.287 -0.890 0.016</pre>					

situps 0.287 -0.890 0.016 0.000 0.000 0.000

Variables weight waist pulse chins situps jumps	jumps -0.259 0.015 -0.055 0.000 0.000 0.000					
SUMMARY OF CA	USAL MODELS					
Var. Caused waist pulse chins chins chins situps situps situps jumps jumps jumps	Causing Var. weight weight weight waist	Path Co 0.870 -0.366 0.368 -0.882 -0.026 0.287 -0.890 0.016 -0.259 0.015 -0.055	efficient			
Reproduced Correlation Matrix with 20 valid cases. Variables						
variables	weight	waist	pulse	chins	situps	
weight	1.000	0.870	-0.366	-0.390	-0.493	
waist	0.870	1.000	-0.318	-0.553	-0.645	
pulse	-0.366	-0.318	1.000	0.120	0.194	
chins	-0.390	-0.553	0.120	1.000	0.382	
situps	-0.493	-0.645	0.194	0.382	1.000	
jumps	-0.226	-0.193	0.035	0.086	0.108	
Variables						
	jumps					
weight	-0.226					

-0.193

0.035 0.086

0.108 1.000

Maximum difference found := 0.562

Average absolute difference between observed and reproduced

coefficients indicates our model of causation may have been inadequate.

We note that pulse is not a particularly important predictor of chin-ups or sit-ups. The largest

discrepancy of 0.562 between an original correlation and a correlation reproduced using the path

waist pulse

chins situps

jumps

coefficients := 0.077