
OnGuard

TurboPower Software Company
Colorado Springs, CO

www.turbopower.com

© 1997-2001 TurboPower Software Company. All rights reserved.

™



License Agreement

This software and its documentation are protected by United States copyright law and also by International Treaty provisions. Any 
use of this software in violation of copyright law or the terms of this agreement will be prosecuted to the best of our ability.

© 1997-2001 by TurboPower Software Company. All rights reserved.

TurboPower Software Company authorizes you to make archival copies of this software for the sole purpose of back-up and 
protecting your investment from loss. Under no circumstances may you copy this software or documentation for the purposes of 
distribution to others. Under no conditions may you remove the copyright notices made part of the software or documentation.

You may distribute, without run-time fees or further licenses, your own compiled programs based on any of the source code of 
OnGuard. You may not distribute any of the OnGuard source code, compiled units, or compiled example programs without written 
permission from TurboPower Software Company. You may not use OnGuard to create components or controls to be used by other 
developers without written approval from TurboPower Software Company.

Note that the previous restrictions do not prohibit you from distributing your own source code or units that depend upon 
OnGuard. However, others who receive your source code or units need to purchase their own copies of OnGuard in order to 
compile the source code or to write programs that use your units.

The supplied software may be used by one person on as many computer systems as that person uses. Group programming projects 
making use of this software must purchase a copy of the software and documentation for each member of the group. Contact 
TurboPower Software Company for volume discounts and site licensing agreements.

This software and accompanying documentation is deemed to be “commercial software” and “commercial computer software 
documentation,” respectively, pursuant to DFAR Section 227.7202 and FAR 12.212, as applicable. Any use, modification, 
reproduction, release, performance, display or disclosure of the Software by the US Government or any of its agencies shall be 
governed solely by the terms of this agreement and shall be prohibited except to the extent expressly permitted by the terms of this 
agreement. TurboPower Software Company, Colorado Springs, CO.

With respect to the physical media and documentation provided with OnGuard, TurboPower Software Company warrants the same 
to be free of defects in materials and workmanship for a period of 60 days from the date of receipt. If you notify us of such a defect 
within the warranty period, TurboPower Software Company will replace the defective media or documentation at no cost to you.

TurboPower Software Company warrants that the software will function as described in this documentation for a period of 60 days 
from receipt. If you encounter a bug or deficiency, we will require a problem report detailed enough to allow us to find and fix the 
problem. If you properly notify us of such a software problem within the warranty period, TurboPower Software Company will 
update the defective software at no cost to you.

TurboPower Software Company further warrants that the purchaser will remain fully satisfied with the product for a period of 60 
days from receipt. If you are dissatisfied for any reason, and TurboPower Software Company cannot correct the problem, contact the 
party from whom the software was purchased for a return authorization. If you purchased the product directly from TurboPower 
Software Company, we will refund the full purchase price of the software (not including shipping costs) upon receipt of the original 
program diskette(s) and documentation in undamaged condition. TurboPower Software Company honors returns from authorized 
dealers, but cannot offer refunds directly to anyone who did not purchase a product directly from us.

TURBOPOWER SOFTWARE COMPANY DOES NOT ASSUME ANY LIABILITY FOR THE USE OF OnGuard BEYOND THE 
ORIGINAL PURCHASE PRICE OF THE SOFTWARE. IN NO EVENT WILL TURBOPOWER SOFTWARE COMPANY BE 
LIABLE TO YOU FOR ADDITIONAL DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR OTHER 
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE THESE 
PROGRAMS, EVEN IF TURBOPOWER SOFTWARE COMPANY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES.

By using this software, you agree to the terms of this section and to any additional licensing terms contained in the DEPLOY.HLP 
file. If you do not agree, you should immediately return the entire OnGuard package for a refund.

All TurboPower product names are trademarks or registered trademarks of TurboPower Software Company. Other brand and 
product names are trademarks or registered trademarks of their respective holders.



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Table of Contents
Chapter 1: Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Using OnGuard  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Protection Strategies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
System Requirements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Installation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Organization of this Manual  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Technical Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15

Chapter 2: Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Example 1: Adding a Program Expiration Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Example 2: Limiting Simultaneous Network Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Example 3: Limiting Program Executions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30

Chapter 3: Low-Level Routines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

Chapter 4: Keys and Release Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
TOgMakeKeys Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
TOgMakeCodes Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Generating Release Codes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68

Chapter 5:  Release Code Components  . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
TOgCodeBase Class  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
TOgDateCode Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
TOgDaysCode Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90
TOgNetCode Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94
TOgRegistrationCode Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
TOgSerialNumberCode Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
TOgSpecialCode Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
TOgUsageCode Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Chapter 6:  Detecting Changes to an EXE  . . . . . . . . . . . . . . . . . . . . . . . . 109
TOgProtectExe Component  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 7:  Single Instance Applications . . . . . . . . . . . . . . . . . . . . . . . . . 115
OgFirst Unit  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Subject index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
1

1



13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 1: Introduction

OnGuard is a library of components, classes, and routines that allow you to protect your 
applications after they are released to the public. Using OnGuard, you could release an 
application that is partially functional so that users can try it. When a user is ready to 
purchase the fully functional application, you supply a release code to unlock all of the 
features (or the subset that the user is purchasing). You can make your application readily 
available to a large number of potential users, but still protect your investment. Application 
protection is accomplished through the use of keys to lock or restrict one or more features of 
an application and several types of release codes (or access codes) to enable them.

By embedding a key in your application and making a few well placed calls to some of the 
routines provided by OnGuard, you can provide just about any level of protection that your 
application could need.

Through the use of a release code, you can do things such as unlock a demo version of your 
application, extend the trial usage time or run count, set the number of authorized network 
users, enable (or even disable) specific features or options, register the application, and 
much more.

A release code is a 16 hexadecimal character code that you provide to the end user. The user 
then enters the release code in a dialog that you provide in your application. The release 
code is verified and stored in the registry or an INI file for use each time the application is 
run. The executable file is not modified.

Some release codes contain additional information (such as the date that the release 
expires), which can be extracted and used by your application. A special release code allows 
you to decide what that additional information is. For example, it could contain a mask 
representing specific features that can be enabled or a number indicating a special 
configuration.

The OnGuard release codes provide many different protection methods:

Start/end date check
The application can’t be run prior to the start date or after the end date.

Number of days used
The application can only be used for a specific number of days (the days need not be 
contiguous).

Network metering
The application can be used by only a limited number of simultaneous users on a network.
     1

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Simple registration
The application is registered using a text string (for example, the user’s name or company 
name).

Serial number registration
The application is registered using a product serial number.

Special registration
The application is registered using special data that you define. 

Usage count limit
The application can be run only a limited number of times.

You can combine most of OnGuard’s protection methods to achieve a greater level of 
protection. For example, if an application is designed as a trial version (it stops working or 
provides only limited functionality after a specific number of days or uses), simply copying 
it to another computer or restoring the registry (or INI file) will allow its continued use. To 
protect this type of application further, you can embed a test for an expiration date. The 
expiration date would occur sometime after the standard trial period. The use of an 
expiration date does not preclude continued use of the application because the user could 
simply change their system date. However, this causes other problems for the user and most 
are not inclined to change their system date for the purpose of defeating an application 
protection mechanism.

OnGuard also provides a component that allows you to detect changes to your EXE file. It 
does this by storing information in the EXE and checking that information every time the 
application is run.

OnGuard makes it easy for you to control use of your application by making it a single 
instance application. A single instance application is one that refuses to allow a second 
instance of itself to be run.

OnGuard is based on code written by Robert Salesas of Eschalon Development, Inc. and 
now licensed exclusively by TurboPower Software Company.
     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Using OnGuard
OnGuard provides an assortment of components that allow you to protect the applications 
you write. Applications can be run-limited, time-limited, releasable demos, or even network 
applications. The OnGuard components that support these types of protection all operate in 
basically the same way: The component is added to the application and the application uses 
the status of the component to enable or disable some feature or function.

Since there are an almost infinite number of ways to incorporate OnGuard into your 
application, designing and implementing a protection scheme may seem very complicated. 
The following sections explain some terms and core concepts behind the OnGuard 
components in order to provide a basis of understanding.

Codes, keys, and modifiers
An OnGuard code is nothing more than a record consisting of two long integers (8 bytes). 
The first two bytes of the code identify the type of code. The remaining portion of the code 
differs depending on the type of code being used. In most cases the second two bytes 
contain a number representing an expiration date (when that date arrives, the code becomes 
invalid). The last four bytes are used differently for each of the OnGuard components. One 
component will store the number of times an application can be run. Another will store the 
serial number of the application. See the description of the particular component for 
additional information concerning what data the code contains. To prevent someone from 
altering the code, OnGuard requires that all codes are encoded using a key.

An OnGuard key is used to encode (or mask) the contents of the code. A key is much like a 
password used to permit access to sensitive information or one used to “lock” your 
computer ’s screen saver. In fact, OnGuard can create a key from a password (use the 
GenerateMDKey method or the GenerateTMDKeyPrim procedure). OnGuard Keys are 16 
bytes long and are used to encode the public codes that are used by applications and users.

The key is what gives all of the OnGuard components the ability to decode the code to see if 
it is valid and to make use of the information that is contained within the code. The code 
cannot be successfully altered outside of the application without using the key that was used 
to encode it. Therefore, it is important to keep the key private. The key should always be 
embedded into the application as a constant and supplied to the code component on 
demand.

Modifiers can be considered as part of a key. They are used to change a key based on some 
reproducible piece of information. For example, to make a code that is valid only for a 
particular machine, OnGuard can use a machine modifier. A machine modifier uses a 
number specific to a particular PC to alter the key used to create the code. (This number is 
created using the GenerateMachineModifier method or the GenerateMachineModifierPrim 
Using OnGuard     3

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
procedure.) To use that code, the OnGuard component must be given the same key and 
modifier that was used when creating it. If that modifier is created on-the-fly (rather than 
being read from a file) the code will only be valid if it is decoded (or unmasked) while the 
application is running on that very same machine.

Other modifiers can “tie” a code to a user name, a product serial number, or even a specific 
date. The most secure is the machine modifier, since it locks a release code to a particular 
computer and hardware configuration. 

Anatomy of a “code” component
A “code” component is any of the OnGuard components that requires a release (or 
unlocking) code. Different code components offer different types of protection, but all of 
the OnGuard code components have one thing in common, the CheckCode method. This 
method is called either automatically by the component (when the AutoCheck property is 
True) or directly from your application. When the CheckCode method is called, each 
OnGuard component reports its status using the following steps:

1.  The OnGetKey event is fired to obtain the key that was used to encode the release code. 
The key should always be embedded into the application as a constant. The key value 
can be returned in an OnGetKey event handler using a simple assignment to the key 
constant. You must provide an event handler for this event

2.  The OnGetCode event is fired to obtain the release code. The release code is normally 
stored outside of the application, but some situations may require the code to be stored 
as part of the application’s resources. The StoreCode property determines if the code is 
stored with the application. If the code is not stored in the application, you must 
provide a handler for this event.

3.  The OnGetModifier event is fired to obtain the key modifier. A modifier should almost 
always be generated dynamically, rather than reading it from a file, the registry, or 
storing it with the application’s resources (the StoreModifier property). If you don ’t 
use a modifier, no event handler is required.

4.  The modifier is applied to the key to generate the key that was used to encode the 
release code.

5.  The release code is inspected to insure that it is a valid release code.

6.  The component-specific portion of the code is tested. The specific test depends on the 
type of component being used. For example, a date code would check to see if the 
current date (as reported by the system clock) was greater than the expiration date 
stored in the code. A run-count code would test to see if there were any more “runs” 
available, etc.

7.  The OnChecked event is fired to report the results of the previous two steps. 
     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Two of the code components (the usage-count and days-count components) must have the 
ability to store a revised code value. These components read the number of uses or days 
remaining, reduce the value by one, and then store the revised code. Since the component 
does not store that information internally, it depends on you to store the revised code 
through an OnCodeChanged event handler that you supply. You could store the code in an 
INI file, the registry, or anywhere else you like.

You may have noticed that the OnGuard components depend on you to do the work of 
providing and sometimes storing the key, code, modifier, and other data. This should 
normally be done through implementation of OnGuard’s event handlers. The reason 
OnGuard does it this way rather than directly storing these values as it would property 
settings has to do with security. If OnGuard were to store the key in the stream along with 
the rest of a form’s property values, it would be very easy for someone to find it and 
compromise the application’s security.

Release code components
The OnGuard code components provide differing levels of protection., from a simple 
registration check to locking the application to a particular machine. The particular 
component you use depends on the desired level of protection. In some situations, two or 
more components could be used to increase the level of protection.

There are ways to circumvent any protection scheme and OnGuard ’s are no exception. 
Where appropriate, the weaknesses of the particular code component are described so that 
you can be aware of what a user would have to do to bypass that protection method.

TOgDateCode
The date code component provides support for a code that is valid within a specific date 
range. The start and ending date are stored as part of the release code along with 
information that identifies the code as a date code. The release code is invalid if used on a 
date outside the date range.

The protection offered by this component can be circumvented by changing the system date 
so that it returns a date that lies within the valid date range stored in the code. Storing the 
code in an obscure location in the system registry, storing multiple (fake) copies, or 
embedding it within one of the application’s data files would make this type of attack much 
more difficult.

TOgDaysCode
The days code component implements a code that acts as a day counter. Each day that the 
code is used, its internal value is reduced by one. Several uses of the code during the same 
day will result in only one reduction of the internal value. In addition to the internal “days” 
value, the code also stores the date it was last changed so attempts to restore an earlier 
version of the code can be detected.
Using OnGuard     5

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
To bypass this protection technique, a user would need to be able to save and restore the 
state of the code and change the system date. Storing the code in an obscure location in the 
system registry, storing multiple (fake) copies, or embedding it within one of the 
application’s data files would make this type of attack much more difficult.

TOgUsageCode
The usage code component is very similar to the days code component, except that it limits 
the actual number of times an application can be run rather than the number of days. Each 
time the application is run, the “run count” value stored in the code is decremented. In 
addition to the internal “count” value. The code also stores the date it was last changed so 
attempts to restore an earlier version of the code can be detected.

TOgRegistrationCode
The registration code component allows you to use a string (a user name or company name, 
for example) to create a release code. The registration code component does not store the 
string as part of the code, only a number (a hash value) created using the string. To increase 
the amount of protection provided, you could display the registration string in some 
prominent location on your main form.

Both the code and the registration string are usually stored external to the code component 
and the application. The code component tests the code to see if it has been altered but does 
not test the registration string. You could perform a test to see if the registration text has 
been changed by creating a temporary code using the stored registration string and then 
compare it to the stored code. If they don ’t match exactly, the registration text has been 
altered.

TOgSerialNumberCode
Like the registration code component, the serial number component provides minimal 
protection against someone trying to misuse your application. It allows you to use a product 
serial number to create a release code. Since the serial number is stored within the code, the 
code can be decoded, the serial number extracted, and then tested against another serial 
number to see if the code (or the serial number) has been changed. 

TOgSpecialCode
The special code component stores a long integer value as part of the code, but places no 
meaning on the value. It is essentially the same as the serial number component except for 
the references to the stored value.

TOgNetCode
Although not a release code component in the same sense as the components just described, 
TOgNetCode does use a release code to store a long integer value that represents the the 
maximum number of simultaneous users of the application. At run time, it uses a Network 
     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Access File (NAF) to keep track of current users. For each possible user, there is one access 
slot in the file. When a new user starts the application, one additional access slot is used. 
When all the slots are filled, no more users can run the application.

Other components and features
Besides release code components, OnGuard also provides several other components, as well 
as a variety of useful procedures and functions found in various units.

TOgProtectExe
This component allows you to detect changes to your EXE file, to protect it against 
unauthorized patching as well as viruses. It stores both the size of your EXE and a 32-bit 
CRC value for it at compile time, then recomputes these values at run time to check for 
changes

This component is intended primaritly to be used in conjunction with the release code 
components, to guard against attempts to patch the executable to defeat the primary 
detection scheme.

TOgMakeKeys
This non-visual component provides methods and propertiesfor creating and maintaining 
keys. It is also used internally by the other components to display the Key Maintenance and 
Key Generation dialogs. See “TOgMakeKeys Component” on page 58 for a detailed 
description of this component.

TOgMakeCodes
This non-visual component displays the Code Generation dialog when its Execute method 
is called. Thie dialog is used to generate the release codes interactively. See “TOgMakeCodes 
Component” on page 67 for a detailed description of this component.

OgFirstUnit
This unit provides a pair of routines that allow you to detect when a second instance of your 
applicationis being run on the same machine, and to force the first instance to become the 
active application.

You might want to use these routines in conjunction with the TOgUsageCode component, 
for example, to prevent the user from accidentally wasting one of their application uses 
when the application is already running.

OgUtil, OnGuard, OgNetWrk
These three units interface a variety of potentially useful low-level routines. For descriptions 
of them, see “Chapter 3: Low-Level Routines” on page 39.
Using OnGuard     7

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Protection Strategies
OnGuard provides many different protection methods so that you can select those 
necessary to create the protection strategy that is most appropriate for your application. The 
rest of this section describes protection strategies that are appropriate for some common 
situations.

Demo version application with single machine authorization
This protection strategy combines the advantages of the “Demo version application” and 
the “Single machine authorization,” both discussed later in this section. This combination 
gives one of the best protection levels and is applicable to a wide range of applications, so it is 
strongly recommended.

To prevent unauthorized copies of your application, design it so that it is initially a demo 
version. This demo version might display a registration dialog during startup(a nag screen), 
reduce the number of options available, or lack some other useful features until an 
authorized release code is entered. After entry of the release code, all features and options 
are available. A single machine authorization can be used to generate the release code to 
ensure that the registry or INI file entries cannot be copied to another computer in order to 
allow running the application there. The EXMSELECT example project demonstrates this 
approach.

Using this approach means that even fully functional “released” applications revert to their 
demo state if they are copied to another computer. It allows you to encourage the spread of 
your application without being concerned about piracy. A copied program runs only as a 
demo until an authorized release code is entered.

Single machine authorization
You can use the single machine authorization strategy with any type of release code to limit 
use of the program to a particular machine.

The release code is encoded and decoded using a key derived from machine-specific 
information. The machine-specific information used by OnGuard includes information 
such as the number of disk drives, hardware serial numbers, and the user name stored by 
Windows. This restricts the program so that it can only be run on a specific computer. If you 
use this technique, any change to the hardware will most likely result in the program not 
being able to run.

The EXMSELECT project demonstrates this approach.
     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Single instance applications
A single instance application is one that refuses to allow a second or subsequent instance of 
itself to be run. This can be done by simply ignoring the request, but is normally followed by 
making the first instance of the application the active application. Two routines provided by 
the OgFirst unit provide these capabilities for both 16-bit and 32-bit applications.

See “Chapter 7: Single Instance Applications” on page 115 for more information.

Demo version application
Another approach for protecting your application is to design it so that it is fully functional 
and then limit its use using an expiration date or a limit on the number of times it can be 
executed. This is supported by several of OnGuard’s components, but you should only 
implement this approach with the knowledge that it is easy to defeat. In most cases, simply 
reinstalling the application is sufficient. You should use this approach only for true demo 
versions of the application.
Protection Strategies     9

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
System Requirements
To use OnGuard, you must have the following hardware and software:

1.  A computer capable of running Windows 3.1, 9x, NT, 2000, or ME.

2.  Delphi or C++Builder.

3.  A hard disk with at least 10MB of free space is strongly recommended. To install all 
OnGuard files and compile the example programs requires about 5MB of disk space.
0     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Installation
Install OnGuard directly from the TurboPower Product Suite CD.  Insert the CD into your 
CD-ROM drive, select OnGuard from the list of products, click “Install”, and follow the 
instructions. If the TurboPower introductory splash screen does not appear automatically 
upon insertion of the CD, run X:\CDROM.EXE where X is the letter of your CD-ROM 
drive.

Demonstration and Example Programs
The following demonstration and example programs are installed in the Examples folder:

Table 1.1: Demonstrtation and example programs

Program Activity

EXDTREG Uses a Start/End Date release code.

EXDYREG Uses a Number of Days Used release code.

EXNET Uses a Network Metering release code.

EXRGREG Uses a Simple Registration release code.

EXSELECT This example uses the TOgUsageCOde and the TOgSpecialCode
components to implement a use “demo” application that
allows only the required features. The program can be run
three times before a special code must be obtained to
register the program and to enable various features. A
machne modifier is used to prevent the application from
being copied and run on another machine.

EXSELAPI This example is identical to EXSELECT except that OnGuard
low-level routines are used instead of OnGuard components.

EXSLCODE This example generates release codes for the companion
examples EXSELECT and EXSELAPI.

EXSNREG Uses a Serial Number Registration release code.

EXSPREG Uses a Special Registration release code.

EXUSREG Uses a Usage Count release code.

EXPROT Shows how to detect changes to your EXE file.

STAMPEXE Marks an EXE file with CRC and size.

EXINST Shows how to implement a single instance application.

CODEGEN Generates release codes for the other example programs.
Installation     11

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The example programs are provided so you can see how to use the various OnGuard 
components. Each program is documented in a memo component on the main form and in 
the source file.
2     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Organization of this Manual
Each chapter starts with an overview of the classes and components discussed in that 
chapter. The overview also includes a hierarchy for those classes and components. Each class 
and component is then documented individually, in the following format:

Overview
A description of the class or component.

Hierarchy
Shows the ancestors of the class being described, generally stopping at a VCL class. The 
hierarchy also lists the unit in which each class is declared and the number of the first page of 
the documentation of each ancestor. Some classes in the hierarchy are identified with a 
number in a bullet: !. This indicates that some of the properties, methods, or events listed 
for the class being described are inherited from this ancestor and documented in the 
ancestor class.

Properties
Lists all the properties in the class. Some properties may be identified with a number in a 
bullet: !. These properties are documented in the ancestor class from which they are 
inherited.

Methods
Lists all the methods in the class. Some methods may be identified with a number in a bullet: 
!. These methods are documented in the ancestor class from which they are inherited.

Events
Lists all the events in the unit. Some events may be identified with a number in a bullet: !. 
These events are documented in the ancestor class from which they are inherited.

Reference Section
Details the properties, methods, and events of the class or component. These descriptions 
are in alphabetical order. They have the following format:

• Declaration of the property, method, or event.

• Default value for properties, if appropriate.

• A short, one-sentence purpose. The !symbol is used to mark the purpose to make it 
easy to skim through these descriptions.

• Description of the property, method, or event. Parameters are also described here.
Organization of this Manual     13

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
• Examples are provided in many cases.

• The “See also” section lists other properties, methods, or events that are pertinent to 
this item.

Throughout the manual, the "symbol is used to mark a warning or caution. Please pay 
special attention to these items.

Naming Conventions
To avoid class name conflicts with VCL components and classes or from other third party 
suppliers, all OnGuard class names begin with ‘TOg’. The ‘Og’ stands for OnGuard.

On-Line Help
Although this manual provides a complete discussion of each component, keep in mind that 
there is an alternative source of information available. Once properly installed, help is 
available from within the IDE when you press <F1> with the caret on an OnGuard class, 
property, or method name in the editor or when an OnGuard property or event is selected in 
the Object Inspector.
4     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Technical Support
The best way to get an answer to your technical support question is to post it in the OnGuard 
newsgroup on our news server (news.turbopower.com). Many of our customers find the 
newsgroups a valuable resource where they can learn from others’ experiences and share 
ideas in addition to getting quick answers to questions.

To get the most from the newsgroups, we recommend you use dedicated newsreader 
software. 

Newsgroups are public, so please do not post your product serial number, product 
unlocking code, or any other private numbers (such as credit card numbers) in your 
messages.

TurboPower’s KnowledgeBase is another excellent support option. It has hundreds of 
articles about TurboPower products accessible through an easy-to-use search engine 
(www.turbopower.com/search). The KnowledgeBase is open 24 hours a day, 7 days a week 
so you’ll have another way to find answers to your questions even when we’re not available.

In addition to the newsgroups, TurboPower Software Company offers a variety of technical 
support options. For details, please see the “Product Support News” enclosed in the original 
package or go to www.turbopower.com/support.
Technical Support     15

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
6     Chapter 1: Introduction



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 2: Tutorials

This tutorial section provides three simple, step-by-step examples that illustrate some of the 
most common uses of the OnGuard components. Example 1 shows how  to create a program 
that expires after a given period of time. Example 2 shows how to create a program that can 
be run only by a limited number of users on a network at any one time. Example 3 shows 
how to create a program that can be run only a fixed number of times. Although you can 
simply read through these examples, the greatest benefit lies in following the instructions 
while using Delphi or C++Builder.
     17

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Example 1: Adding a Program Expiration Date
In this example, we limit the range of dates for program execution. Although this protection 
strategy is easy for a user to bypass, it is sufficient for some applications and it is certainly 
useful as a demonstration of the steps involved in using OnGuard to protect your 
application. 

1.  Create a new project.

2.  From the OnGuard tab, add a TOgDateCode component to the project’s main form.

3.  Click the right mouse button on the TOgDateCode component to invoke the local 
menu and then select the Generate Key option to invoke the Key Maintenance dialog 
box. The Key Maintenance dialog box is displayed as shown in Figure 2.1.

The “File name” field is used to specify the INI file that holds the generated keys for all your 
protected projects. By default, OnGuard creates ONGUARD.INI in the Windows directory 
during installation. You can choose to store your keys in this file or any other INI file. See the 

 Figure 2.1:  The Key Maintenance dialog box.
8     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
manual for more details on creating and using other INI files to store project keys. Do not 
distribute this file with any application. You’ll be giving away the keys to this and other 
projects if you do. This example uses the default INI file but adds a new project.

4.  Click the Add button to display the Description and Key dialog box as shown in Figure 
2.2.

5.  Enter the name of your application in the “Description” edit control. For this example, 
enter “MyTest”. Click on the button to the far right (with the picture of a key) to 
generate a key for your application. The Key Generation dialog box is displayed as 
shown in Figure 2.3.

 Figure 2.2: The Description and Key dialog box.

 Figure 2.3: The Key Generation dialog box.
Example 1: Adding a Program Expiration Date     19

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
6.  Be sure that “Random” is selected as the key type and click “Generate Key”. Two 
hexadecimal representation of the key will be displayed in the edit controls. Click OK 
to return to the Description and Key dialog box. Click OK to return to the Key 
Maintenance dialog box as shown in Figure 2.4

7.  Select your application (MyTest) in the “Applications” list box and the generated key is 
displayed in the “Key’ edit controls. Click on the Copy button (the first speed button to 
the right of the bottom edit control) to copy the key to the clipboard. Use the Copy 
button on the bottom edit control because it is the hexadecimal representation of the 
key that is appropriate for pasting directly into a constant expression in an application. 
Click OK to exit the dialog box.

 Figure 2.4: The Key Maintenance dialog box with keys generated.
0     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

"

8.  Add the following to the implementation section of the unit:

const
CKey : TKey =
($18,$C1,$99,$64,$3F,$FC,$DA,$6C,$38,$BC,$DF,$CB,$B8,$BE,$DF,$21);

(The underlined portion of this statement was copied from the clipboard)

Caution: Don’t store the key in the registry or an INI file. Doing so drastically reduces the 
security of your application.

9.  With the TOgDateCode component selected, double-click the OnGetKey event in the 
Events tab of the Object Inspector to create the shell for the event handler. Enter the 
following statement:

Key := CKey;

This event is fired by the TOgDateCode component to get the key to encode or decode the 
release code.

10.  With the TOgDateCode component selected, double-click the Code property in the 
Properties tab of the Object Inspector to invoke the Code Generation dialog box. The 
Code Generation dialog box is displayed and the Key Maintenance dialog box is 
automaticallydisplayed on top of it so that you can select the key to use. 
Example 1: Adding a Program Expiration Date     21

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Enter ONGUARD.INI in the file name edit field, press the Open button, select 
“MyTest” in the “Application” list and click OK. The Code Generation dialog box 
should look like the one shown in Figure 2.5

Be sure that the Date tab is selected. The “Start date” is automatically set to today's date. 
Enter a date in the “End date” edit field. Press the Generate button to create and encode the 
release code. The release code is displayed in the edit control to the right of the Generate 
button. Click  OK to accept the generated release code.

For this example, the release code will be stored with the application, so set the Store Code 
property to True and then save the project.

This completes the portion of this example that concerns the TOgDateCode directly. 
However, there is one more very important thing that must be done. You need to take some 
type of action based of the status of the code. This is done in an OnChecked event handler.

 Figure 2.5: The Code Generation dialog box.
2     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
11.  With the TOgDateCode component selected, double-click the OnChecked event in 
the Events tab of the Object Inspector to create the shell for the event handler. Enter 
the code so that the event handler looks like this:

procedure TForm1.OgDateCode1Checked(
Sender: TObject; Status:TCodeStatus);

begin
case Status of

ogValidCode : ShowMessage('Valid code');
ogPastEndDate : ShowMessage('Date has expired');
ogInvalidCode : ShowMessage('Invalid release code');

end;

if Status <> ogValidCode then
Application.Terminate;

end;

12.  Compile and run the application You should see the “Valid code” message. If you run 
the application on a day after the end date, the “Date has expired” message is 
displayed and the application terminates. You can test this without waiting for the end 
date by performing the steps to generate the release code and using a date in the past.
Example 1: Adding a Program Expiration Date     23

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Example 2: Limiting Simultaneous Network Users
In this example, we build a network application that limits the number of concurrent users 
to two. To keep to its most basic form, this example stores the release code in the program 
rather than allowing the user to enter it. This would be the approach to use if distributing a 
program that would always allow a fixed number of maximum users.

1.  Create a new project.

2.  From the OnGuard tab, add a TOgNetCode component to the projects main form.

3.  Right click on the TOgNetCode component and select “Generate Key” to display the 
Key Maintenance dialog box as shown in Figure 2.6. You’ll use this dialog box to 
generate the key used to encode and decode the release code for the program.

The “File name” field is used to specify the INI file that holds the generated keys for all your 
protected projects. By default, OnGuard creates ONGUARD.INI in the Windows directory 
during installation.We'll use the default INI file but add a new project. 

 Figure 2.6: The Key Maintenance dialog box.
4     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
4.  Click the Add button to display the Description and Key dialog box. In the Description 
field, enter “NetPrj1”.  The result of these actions appears in Figure 2.7.

5.  Click on the far right speed button (with the picture of a key) to generate the key for 
this application. The Key Generation dialog box is displayed as shown in Figure 2.8.

6.  Be sure “Random” is selected in the “Key Type” and press the Generate Key button. 
Two hexadecimal representations of the generated key are displayed in the two edit 
controls at the bottom of the dialog box. Click OK to return to the Description and Key 
dialog box. Click OK to return to the Key Maintenance dialog box.

 Figure 2.7: The Description and Key dialog box with the Description field filled in.

 Figure 2.8: The Key Generation dialog box.
Example 2: Limiting Simultaneous Network Users     25

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

"

7.  In the “Applications” list box, select NetPrj1. The generated key, in both forms, is 
displayed in the edit controls at the bottom of the dialog box.

8.  Click the Copy  button immediately to the right of the lower of the two edit controls. 
This copies this string into the clipboard so you won’t have to type it into the program. 
You use the lower of the two because this representation is appropriate for pasting 
directly into a constant expression in an application. Click OK to exit the dialog box.

Caution: Do not store the key in an INI file or the Registry. Doing so makes it available to 
users and drastically reduces program security.

 Figure 2.9: The Key Maintenance dialog box.
6     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
9.  Click once on the TOgNetCode component. On the Events tab of the Object Inspector, 
double click the OnGetKey event. In the source code editor, modify the generated 
event code as follows:

procedure TForm1.OgNetCode1GetKey(
Sender: TObject; var Key: TKey)

const
CKey : TKey =

($44,$OE,$E2,$DO,$O8,$F6,$5C,$F7,$92,$2B,$DC,$6C,$AC,$5B,$39,$4E);
begin

Key := CKey;
end;

The underlined code was pasted from the clipboard into the editor and is the string that was 
copied at the end of step 3. This procedure automatically retrieves the key every time the 
program starts up. Without this event, an exception would be generated and you would not 
be able to run the program. The key is like a password that the program needs to encode and 
decode the release code.

10.  With the TOgNetCode component selected, double-click the Code property in the 
Properties tab of the Object Inspector to invoke the Code Generation dialog box. The 
Code Generation dialog box is displayed and the Key Maintenance dialog box is 
automatically displayed on top of it so that you can select the key to use. 
Example 2: Limiting Simultaneous Network Users     27

1

1



2

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Enter ONGUARD.INI in the file name edit field, press the Open button, select 
“NetPrj1” in the “Application” list and click OK. The Code Generation dialog box 
looks like the one shown in Figure 2.10.

11.  Click on the Net tab of the notebook. Note that the key for the program has been 
automatically entered in the edit control near the bottom of the dialog box. In the 
“Access Slots” edit control, enter the number 2 (2 is the minimum number). To keep 
the program simple, don’t check any of the check boxes in the “Key used to encode” 
group. These allow a “second-level” of protection by altering the key used to encode 
the code that will be generated. For example, the machine’s information might be 
included so that the code would only be valid for that specific machine.

12.  Click the Generate button. This creates a unique code based on the number of slots 
and, if any are checked, modifiers.

 Figure 2.10: The Code Generation dialog box with the Access Slots field filled.
8     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
13.  Click the OK button on the dialog box. The generated code is seen in the Code 
property of the ObjectInspector.

14.  Click on the StoreCode property.  Click once on the down arrow and select True. This 
stores the release code as part of the application, meaning the user does not have to 
enter it nor will it be stored in an external file such as the Registry or an INI file.

15.  Click on the FileName property.  Enter “NETPRJ1.NAF”. This provides the name of 
the Network Access File generated by the component that is used by all instances of 
the project to compare the number of users against the maximum number allowed.

16.  Click on the Events tab of the Object Inspector. Double click on the OnChecked 
event. In the source code editor, modify the generated procedure as follows:

procedure TForm1.OgNetCode1Checked(
Sender: TObject; Status: TCodeStatus);

begin
case Status of

ogInvalidCode :
begin

ShowMessage('Invalid Code');
Application.Terminate;

end;

ogNetCountUsed :
begin

ShowMessage('No more users allowed');
Application.Terminate;

end;
end;

end;

17.  Select File|Save File As from the main menu. Enter “NETPRJ1U” in the File Save 
dialog box and click OK. Select File|Save Project As from the main menu. Enter 
“NETPRJ1” in the File Save dialog box and click OK.

18.  Compile and run the application, and leave it running.

19.  From either a DOS box or using Start|Run from the task bar, start another copy of the 
application. A second form should appear. It will be on top of the first form so move it 
a little to one side. Lave this instance running as well.

20.  Try to run a third instance of the application. You should see the “No more users 
allowed” message. Click the OK button to quit the attempt to run the third instance. 
Close the other two instances of the application. 
Example 2: Limiting Simultaneous Network Users     29

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Example 3: Limiting Program Executions
In this example, we show how to use OnGuard to limit the number of times a program can 
be run.  As always, the key is stored in the application. However, the release code must be 
stored elsewhere (an INI file or the Registry) since it must be altered to record the remaining 
run counts.

1. Create a New Project.

2.  From the OnGuard tab, add a TOgUsageCode component to the form.

3.  Right click the TOgUsageCode component. and select “Generate Key” to display the 
Key Maintenance dialog box as shown in Figure 2.11. You’ll use this dialog box to 
generate the key used to encode and decode the release code for the program.

 Figure 2.11: The Key Maintenance dialog box.
0     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The “File name” field is used to specify the INI file that holds the generated keys for all your 
protected projects. By default, OnGuard creates ONGUARD.INI in the Windows directory 
during installation. You can choose to store your keys in this file or any other INI file. See the 
manual for more details on creating and using other INI files to store project keys. Do not 
distribute this file with any application. We'll use the default INI file but add a new project.

4.  Click the Add button to display the Description and Key dialog box as shown in Figure 
2.12.

5.  In the Description field, enter “UsgPrj1” as shown in Figure 2.12. Click on the far right 
speed button (with the picture of a key) to generate the key for this application. The 
Key Generation dialog box is displayed as shown in Figure 2.13.

 Figure 2.12: The Description and Key dialog box with the Description field filled.

 Figure 2.13: The Key Generation dilog showing genreated keys.
Example 3: Limiting Program Executions     31

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
"

6.  Be sure “Random” is selected in the “Key Type” edit control and press the Generate 
Key button. Two hexadecimal representations of the generated key are displayed in the 
two edit controls at the bottom of the dialog box as shown in Figure 2.13. Click OK to 
return to the Description and Key dialog box. Click OK to return to the Key 
Maintenance dialog box.

7.  In the “Applications” list box, select UsgPrj1. The generated key, in both forms, is 
displayed in the edit controls at the bottom of the dialog box as shown in Figure 2.14.

8.  Click the Copy button immediately to the right of the lower of the two edit controls. 
This copies this string into the clipboard so you won’t have to type it into the program. 
You use the lower of the two because this representation is appropriate for pasting 
directly into a constant expression in an application. Click OK to exit the dialog box. 

Caution: Do not store the key in an INI file or the Registry. Doing so makes it available to 
users and drastically reduces program security.

 Figure 2.14: The Key Maintenance dialog box with the keys displayed.
2     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
9.  Click once on the TOgUsageCode component.  On the Events tab of the Object 
Inspector, double click the OnGetKey event. In the source code editor, modify the 
generated event code to the following:

procedure TForm1.OgUsageCode1GetKey(
Sender: TObject; var Key: TKey);

const
CKey : TKey =

($BD,$42,$EF,$13,$E7,$40,$6E,$13,$77,$08,$B1,$6E,$21,$B5,$C7,$FE);
begin
Key := CKey;

end;

The OnGetKey event automatically retrieves the key every time the program starts. Without 
this event, an exception would be raised and you would not be able to run the application. 
The key is like a password that the program needs to encode and decode the release code.

10.  Right click on the TOgUsageCode component and select “Generate Code” from the 
context menu. This again displays the Key Maintenance dialog box. Click on 
“UsgPrj1” in the “Applications” list box. Click OK. This displays the Code Generation 
dialog box box.
Example 3: Limiting Program Executions     33

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
11.  Click on the Usage tab of the notebook.  Note that the key for the program has been 
automatically entered in the edit control towards the bottom of the dialog box as 
shown in Figure 2.15.

12.  In the Usage Count edit control, enter the number 1 to limit the program to only one 
run as shown in Figure 2.15. 

13.  Click on the Expires edit control and enter an expiration date in the format you’ve set 
up for Windows. A typical U.S. entry would be 12/31/2004 as shown in Figure 2.15.

14.  The TOgUsageCode component provides a second level of protection by allowing 
you to enter an absolute expiration date. The program will cease to run after this date 
regardless of the number of times the program has been used. Since the release code 
(with its embedded usage count) is stored in the Registry or an INI file, an 
industrious user would simply reinstall the application and/or restore the INI file or 
Registry. The expiration date entered in this field becomes part of the release code 

 Figure 2.15: The Code Generation dialog box with the Usage count and Expires fields filled.
4     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
and so helps prevent the application from being used forever. If the program is run 
after the date indicated in this field, no matter how many times it’s been run, the code 
is reported as invalid. The default date is December 31, 9999, meaning the program 
never expires

15.  Click the Generate button.  This creates a unique code based on the number of 
allowed uses and the Expires date.

16.  Write down this code. You will need it later. Click the OK button on the dialog box.

17.  Add OgUtil and IniFiles to the uses clause of the unit.  OgUtil contains routines used 
to convert a string to and from a TCode data type while IniFiles is the VCL unit that 
allows simple access to an INI file. The top of your unit should look something like 
the following example:

unit unit1;

interface

uses
WinTypes, WinProcs, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, OnGuard, IniFiles, OgUtil;

Note that the uses clause was generated by Delphi 1, i.e., it has WinTypes and WinProcs. 
Had the clause been generated in Delphi 2, the two units would have been replaced with the 
single unit, Windows.

18.  Click once on the TOgUsageCode component.  Double click the OnGetCode event on 
the Events tab of the Object Inspector. In the source editor, modify the generated code 
to look like the following:

procedure TForm1.OgUsageCode1GetCode(
Sender: TObject; var Code: TCode);

var
IniFile : TIniFile;
S : string;

begin
IniFile := TIniFile.Create('usgprj1.ini');
try

S := IniFile.ReadString('Codes', 'UsageCode', '');
HexToBuffer(S, Code, SizeOf(Code));

finally
IniFile.Free;

end;
end;

The OnGetCode event is responsible for retrieving the release code when the program runs.
Example 3: Limiting Program Executions     35

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
19.  Double click the OnChecked event in the Object Inspector.  In the source editor, 
modify the generated code as in the following example:

procedure TForm1.OgUsageCode1Checked(
Sender: TObject; Status: TCodeStatus);

var
Code : TCode;
IniFile : TIniFile;
S : string;

begin
case Status of

ogInvalidCode :
begin

if InputQuery('Useage Test Program', 'Code', S) then
begin

if (HexToBuffer(S, Code, SizeOf(Code))) then begin
IniFile.WriteString('Codes', 'UsageCode', S);
OgUsageCode1.CheckCode(True);
Exit;

end;
end;

end;
ogCodeExpired : ShowMessage('Code Expired');
ogRunCountUsed : ShowMessage('Run Count exceeded');

end;

if Status <> ogValidCode then
Application.Terminate;

end;

The OnChecked event of the TOgUsageCode component is fired as a result of the release 
code being checked by the program, either automatically at startup (when the AutoCheck 
property is True) or when you call the CheckCode method (as shown in the previous step). 

If the code is invalid, the cutoff date has been exceeded, or the number of permitted uses has 
been exceeded, this event handler displays a message via Delphi's ShowMessage procedure. 
The application is terminated if the usage count has been used or if the entered code is 
invalid.

20.  Double click the OnChangeCode event in the Object Inspector. In the source editor, 
change the generated event as in the following example:
6     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
procedure TForm1.OgUsageCode1ChangeCode(
Sender: TObject; Code: TCode);

var
IniFile : TIniFile;
S : string;

begin
IniFile := TIniFile.Create('usgprj1.ini');
try

S := BufferToHex(Code, SizeOf(Code));
IniFile.WriteString('Codes', 'UsageCode', S);

finally
IniFile.Free;

end;
end;

The OnChangeCode event is fired when the OgUsageCode component needs to update the 
information in the INI file. In this case, it will be to decrement the usage counter and replace 
the existing encoded entry with a new one. 

21.  Select File|Save File As from the main menu. Enter “USGPRJ1U” in the File Save 
dialog box and click OK. Select File|Save Project As from the main menu. Enter 
“USGPRJ1” in the File Save dialog box and click OK.

22.  Compile and run the application. When the InputQuery box appears, enter the code 
you wrote down back in step 8 then Click OK. The application’s form appears. 
Experiment by deleting the INI file and entering a code you know is not valid.

23.  Close the application and try to run the program again. The “Run Count Exceeded” 
message appears and, after you click OK, the program terminates. 
Example 3: Limiting Program Executions     37

1

1



3

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
8     Chapter 2: Tutorials



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 3: Low-Level Routines

If you need more control over how and when release codes are handled, you can move one 
level lower (beneath the component layer) and use the procedural approach to code creation 
and maintenance. In doing so, you take on all responsibility for creating, storing, testing, 
and updating of the code (things that the code components handle for you).

The ONGUARD.PAS unit not only implements all of the “Code” components, it provides 
access to the low-level procedures and functions that do most of the work of creating, 
checking and managing release codes.

For example, the following four routines are used to create and manage usage codes.

procedure InitUsageCode(const Key : TKey; Count : LongInt;
Expires : TDateTime; var Code : TCode);

function IsUsageCodeValid(const Key : TKey;
const Code : TCode) :Boolean;

procedure DecUsageCode(const Key : TKey; var Code : TCode);

function GetUsageCodeValue(const Key : TKey;
const Code : TCode) : LongInt;

function IsUsageCodeExpired(const Key : TKey;
const Code: TCode) : Boolean;

The first parameter for each of these routines is the key. The key is used to encode and 
decode the values stored in the TCode structure. The same key used when initializing (or 
creating) a code must be used when calling the other, related, routines.

InitUsageCode takes an already initialized key value, a usage count, an expiration date 
(Expire), and returns a properly structured and initialized code value. The 
IsUsageCodeValid function tests the code value and returns True if it is a valid usage code. 
DecUsageCode is called to reduce the stored usage count value by one. GetUsageCodeValue 
returns the number of uses remaining in the code. IsUsageCodeExpired tests the Expiration 
date stored in the code and returns True if the current date is past the expiration date.

The date, days, registration, serial number, and special codes all have similar, low-level, 
routines that are implemented in the ONGUARD.PAS unit. The low-level network code 
routines are defined in the OGNETWRK.PAS unit. The actual unit that implements these 
and the other low-level routines is stated in the description of that routine.
     39

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Procedures/Functions
ApplyModifierToKeyPrim

BufferToHex

BufferToHexBytes

CreateMachineID

CheckNetAccessFile

CreateNetAccessFile

CreateNetAccessFileEx

DecDaysCode

DecodeNAFCountCode

DecUsageCode

EncodeNAFCountCode

ExpandDate

GenerateDateModifierPrim

GenerateMachineModifierPr...

GenerateMD5KeyPrim

GenerateRandomKeyPrim

GenerateStringModifierPrim

GenerateTMDKeyPrim

GenerateUniqueModifierPrim

GetCodeType

GetDateCodeValue

GetDaysCodeValue

GetExpirationDate

GetNetAccessFileInfo

GetSerialNumberCodeValue

GetSpecialCodeValue

GetUsageCodeValue

HexStringIsZero

HexToBuffer

InitDateCode

InitDaysCode

InitRegCode

InitSerialNumberCode

InitSpecialCode

InitUsageCode

IsAppOnNetwork

IsDateCodeExpired

IsDateCodeValid

IsDaysCodeExpired

IsDaysCodeValid

IsRegCodeExpired

IsRegCodeValid

IsSerialNumberCodeExpired

IsSerialNumberCodeValid

IsSpecialCodeExpired

IsSpecialCodeValid

IsUsageCodeExpired

IsUsageCodeValid

LockNetAccessFile

ResetNetAccessFile

ShrinkDate

StringHashElf

UnlockNetAccessFile

Refernce Section

ApplyModifierToKeyPrim procedure

procedure ApplyModifierToKeyPrim(
Modifier : LongInt; var Key; KeySize : Cardinal);

ApplyModifierToKeyPrim XOR’s the Modifier value with the Key returning the modified 
key as the Key parameter.

Use this routine to sign a key.

KeySize if the size of the key in bytes

This routine is defined in the OnGuard unit.
0     Chapter 3: Low-Level Routines



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

BufferToHex function

function BufferToHex(const Buf; BufSize : Cardinal) : string;

BufferToHex converts one or more bytes to a hexidecimal string.

Buf contains one or more bytes and BufSize if the number of bytes in Buf. The hexadecimal 
version of Buf is returned as the function result.

This routine is defined in the OgUtil unit.

BufferToHexBytes function

function BufferToHexBytes(const Buf; BufSize : Cardinal) : string;

BufferToHexBytes performs the same operation as the BufferToHex function except that the 
function result is formatted to represent an array of hexadecimal bytes separated by 
commas.

Example result: “$02, $67, $FF”

This routine is defined in the OgUtil unit.

CheckNetAccessFile function

function CheckNetAccessFile(
const NetAccess : TNetAccess) : Boolean;

TNetAccess = packed record
Fh : Integer;
Key : TKey;
CheckValue : Word;
Index : Word;

end;

CheckNetAccessFile verifies that the net access file referenced by NetAccess has at least one 
slot that is not in use.

If there is at least one open slot in the net access file, CheckNetAccessFile returns True, 
otherwise False.

This routine is defined in the OgNetWrk unit.
Chapter 3: Low-Level Routines     41

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

CreateMachineID function

function CreateMachineID (
MachineInfo : TEsMachineInfoSet) : LongInt;

TEsMachineInfoSet = set of(
midUser, midSystem, midNetwork, midDrives);

CreateMachineID produces a key modifier based on specific hardware information.

This function allows you to choose which factors to use when creating the machine 
identifier. midUser includes the use of the user and company name (if available—not 
available under Win16). midSystem includes the use of system specific informationobtained 
by using the GetSystemInfo API. midNetwork includes the network card ID (if available). 
midNetwork should only be used while attached to a network since some versions of 
Window’s produce different network ID’s after each boot. midDrives includes the capacities 
and serial numbers of each of the local drives.

CreateNetAccessFile function

function CreateNetAccessFile(const FileName : string;
const Key : TKey;Count : Word) : Boolean;

CreateNetAccessFile creates a net access for Count users file using FileName as the name of 
the file and Key to encode the file.

If a file with FileName as its name exists, it is overwritten without warning.

This routine is defined in the OgNetWrk unit.

CreateNetAccessFileEx function

function CreateNetAccessFileEx(const FileName : string;
const Key : TKey; const Code : TCode) : Boolean;

CreateNetAccessFileEx creates a net access file using the access count value from a 
previously encoded net access Code.

Key must be the same key that was used to create the code or the code is considered invalid.

This routine is defined in the OgNetWrk unit.
2     Chapter 3: Low-Level Routines



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

DecDaysCode procedure

procedure DecDaysCode(const Key : TKey; var Code : TCode);

DecDaysCode reduces the internal days count value by one and returns the modified code 
as the Code parameter.

Key must be the same key that was used to create the code or the code is considered invalid.

This routine is defined in the OnGuard unit.

DecodeNAFCountCode function

function DecodeNAFCountCode(
const Key : TKey; const Code : TCode) : LongInt;

DecodeNAFCountCode uses Key to decode Code and returns the number of authorized 
users as the function result.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, 0 is returned.

This routine is defined in the OgNetWrk unit.

DecUsageCode procedure

procedure DecUsageCode(const Key : TKey; var Code : TCode);

DecUsageCode reduces the internal usage count value by one and returns the modified code 
as the Code parameter.

Key must be the same key that was used to create the code or the code is considered invalid.

This routine is defined in the OnGuard unit.

EncodeNAFCountCode procedure

procedure EncodeNAFCountCode(
const Key : TKey; Count : Cardinal; var Code : TCode);

EncodeNAFCountCode uses Key to create and encode the usage Count value creating a 
network code.

The resulting code is returned as the Code parameter.

This routine is defined in the OgNetWrk unit.
Chapter 3: Low-Level Routines     43

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

ExpandDate function

function ExpandDate(D : Word) : TDateTime;

ExpandDate translates an OnGuard date offset to an actual date.

OnGuard uses a date offset to reduce the amount of space necessary to store a date. 
OnGuard creates a date offset by subtracting the TDateTime value for 1 January 1996 from 
the actual date.

Exceptions to the conversion rules are that a value of 0 expands to 1 January 9999 and date 
offsets larger than 65535 are represented as 0.

This routine is defined in the OnGuard unit.

GenerateDateModifierPrim function

function GenerateDateModifierPrim(D : TDateTime) : LongInt;

GenerateDateModifierPrim produces a key modifier based on the date D.

This routine is defined in the OnGuard unit.

GenerateMachineModifierPrim function

function GenerateMachineModifierPrim: LongInt;

GenerateMachineModifierPrim produces a key modifier based on default hardware 
information.

Information about hard disk capacity, network card serial number, and other items specific 
to a particular computer are used to create this value.

This routine is defined in the OnGuard unit.

GenerateMD5KeyPrim procedure

procedure GenerateMD5KeyPrim(var Key: TKey; const Str : string);

GenerateMD5KeyPrim produces a Key by applying the MD5 hash to the string passed as Str

The routine is case sensitive.

This routine is defined in the OnGuard unit.
4     Chapter 3: Low-Level Routines



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

GenerateRandomKeyPrim procedure

procedure GenerateRandomKeyPrim(var Key; KeySize : Cardinal);

GenerateRandomKeyPrim produces a Key using a random numbers.

This routine is defined in the OnGuard unit.

GenerateStringModifierPrim function

function GenerateStringModifierPrim(const S : string) : LongInt;

GenerateStringModifierPrim produces a key modifier by applying a hash algorithm to the 
string passed in S.

This routine is case sensitive.

This routine is defined in the OnGuard unit.

GenerateTMDKeyPrim procedure

procedure GenerateTMDKeyPrim(
var Key; KeySize : Cardinal; const Str : string);

GenerateTMDKeyPrim produces key by applying a hash algorithm to the string passed in 
Str.

This routine is defined in the OnGuard unit.

GenerateUniqueModifierPrim function

function GenerateUniqueModifierPrim: LongInt;

GenerateUniqueModifierPrim produces a key modifier using random numbers.

This routine is defined in the OnGuard unit.
Chapter 3: Low-Level Routines     45

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

GetCodeType function

function GetCodeType(
const Key : TKey; const Code : TCode) : TCodeType;

TCodeType =(ctDate, ctDays, ctRegistration, ctSerialNumber,
ctUsage, ctNetwork, ctSpecial, ctUnknown);

GetCodeType returns the type of code passed as the Code parameter.

Key must be the same key that was used when the code was created or ctUnknown is 
returned.

This routine is defined in the OnGuard unit.

GetDateCodeValue function

function GetDateCodeValue(
const Key : TKey; const Code : TCode) : TDateTime;

GetDateCodeValue returns the expiration date stored in the Code.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, 1 January 9999 is returned.

This routine is defined in the OnGuard unit.

GetDaysCodeValue function

function GetDaysCodeValue(
const Key : TKey; const Code : TCode) : LongInt;

GetDaysCodeValue returns the expiration date stored in the Code.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, 0 is returned.

This routine is defined in the OnGuard unit.

GetExpirationDate function

function GetExpirationDate(
const Key : TKey; const Code : TCode) : TDateTime;

GetExpirationDate returns the date that the code passed as the Code parameter expires.

If the code has no expiration date or is invalid, 1 January 9999 is returned.Key must be the 
same key that was used to create the code or the code is considered invalid.

This routine is defined in the OnGuard unit.
6     Chapter 3: Low-Level Routines



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

GetNetAccessFileInfo function

function GetNetAccessFileInfo(const FileName : string;
const Key : TKey; var NetAccessInfo : TNetAccessInfo) : Boolean;

TNetAccessInfo = packed record
Total : Cardinal;
Locked : Cardinal;
Invalid : Cardinal;

end;

etNetAccessFileInfo obtains information about the specified network access file.

FileName is the name of an existing network access file and Key is the key that was used to 
create it. The network access file information is returned as the NetAccessInfo parameter 
and consists of the total number of access slots, the number of locked slots, and the number 
of invalid access slots. (An access slot becomes invalid when the application using it is 
terminated in a non-standard way.)

GetNetAccessFileInfo returns False if there was an error, otherwise True.

This routine is defined in the OgNetWrk unit.

GetSerialNumberCodeValue function

function GetSerialNumberCodeValue(
const Key : TKey; const Code : TCode) : LongInt;

GetSerialNumberCodeValue returns the serial number that was used to create the Code.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, 0 is returned.

This routine is defined in the OnGuard unit.

GetSpecialCodeValue function

function GetSpecialCodeValue(
const Key : TKey; const Code : TCode) : LongInt;

GetSpecialCodeValue returns the value that was used to create the Code.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, 0 is returned.

This routine is defined in the OnGuard unit.
Chapter 3: Low-Level Routines     47

1

1



4

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

GetUsageCodeValue function

function GetUsageCodeValue(
const Key : TKey; const Code : TCode) : LongInt;

GetUsageCodeValue returns the current usage count value store in the Code.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, 0 is returned.

This routine is defined in the OnGuard unit.

HexStringIsZero function

function HexStringIsZero(const Hex : string) : Boolean;

HexStringIsZero returns True only if the hexadecimal string passed as Hex consists entirely 
of zeros.

This routine is defined in the OgUtil unit.

HexToBuffer function

function HexToBuffer(
const Hex : string; var Buf; BufSize : Cardinal) : Boolean;

HexToBuffer converts the hexadecimal string in Hex to bytes that are stored in Buf.

Punctuation ($, spaces, commas, parentheses, etc.) is ignored.

BufSize is the number of bytes to store in Buf and must be the number of hexadecimal bytes 
in Hex. False is returned if an error occurs. Otherwise, True is returned.

This routine is defined in the OgUtil unit.

InitDateCode procedure

procedure InitDateCode(const Key : TKey;
StartDate, EndDate : TDateTime; var Code : TCode);

InitDateCode creates and initializes a date code using Key, StartDate, and EndDate.

The resulting code is valid for dates between StartDate and  EndDate inclusive.

This routine is defined in the OnGuard unit.
8     Chapter 3: Low-Level Routines



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

InitDaysCode procedure

procedure InitDaysCode(const Key : TKey;
Days : Word; Expires : TDateTime; var Code : TCode);

InitDaysCode creates and initializes a days code using Key, Days, and Expires.

Days is stored as part of the Code.

The resulting code is valid for the number of days of use specified in the Days parameter and 
until the date stored in Expires is reached.

This routine is defined in the OnGuard unit.

InitRegCode procedure

procedure InitRegCode(const Key : TKey;
const RegStr : string; Expires : TDateTime; var Code : TCode);

InitRegCode creates and initializes a registration code using Key, RegStr, and Expires.

The code stores a hash value that was derived from RegStr. RegStr cannot be extracted from 
the code.

The resulting code is valid until the date stored in Expires is reached.

This routine is defined in the OnGuard unit.

InitSerialNumberCode procedure

procedure InitSerialNumberCode(const Key : TKey;
Serial : LongInt; Expires : TDateTime; var Code : TCode);

InitSerialNumberCode creates and initializes a serial number code using Key, Serial, and 
Expires.

Serial is stored as part of the Code.

The resulting code is valid until the date stored in Expires is reached.

This routine is defined in the OnGuard unit.
Chapter 3: Low-Level Routines     49

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

InitSpecialCode procedure

procedure InitSpecialCode(const Key : TKey;
Value : LongInt; Expires : TDateTime; var Code : TCode);

InitSpecialCode creates and initializes a special code using Key, Value, and Expires.

Value is stored as part of the Code. 

The resulting code is valid until the date stored in Expires is reached.

This routine is defined in the OnGuard unit.

InitUsageCode procedure

procedure InitUsageCode(const Key : TKey;
Count : Word; Expires : TDateTime; var Code : TCode);

InitUsageCode creates and initializes a usage code using Key, Count, and Expires.

Count is stored as part of the Code. 

The resulting code is valid until the internal Count is 0 or the date stored in Expires is 
reached.

This routine is defined in the OnGuard unit.

IsAppOnNetwork function

function IsAppOnNetwork(const ExePath : string) : Boolean;

IsAppOnNetwork returns True if the drive specified in ExePath is a remote drive, otherwise 
False.

This routine is defined in the OgNetWrk unit.

IsDateCodeExpired function

function IsDateCodeExpired(
const Key : TKey; const Code : TCode) : Boolean;

IsDateCodeExpired returns True if the Code has expired, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, this function returns True.

This routine is defined in the OnGuard unit.
0     Chapter 3: Low-Level Routines



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

IsDateCodeValid function

function IsDateCodeValid(
const Key : TKey; const Code : TCode) : Boolean;

IsDateCodeValid returns True if Code is a valid date code, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid.

This routine is defined in the OnGuard unit.

IsDaysCodeExpired function

function IsDaysCodeExpired(
const Key : TKey; const Code : TCode) : Boolean;

IsDaysCodeExpired returns True if the Code has expired, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, this function returns True.

This routine is defined in the OnGuard unit.

IsDaysCodeValid function

function IsDaysCodeValid(
const Key : TKey; const Code : TCode) : Boolean;

IsDaysCodeValid returns True if Code is a valid days code, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid.

This routine is defined in the OnGuard unit.

IsRegCodeExpired function

function IsRegCodeExpired(
const Key : TKey; const Code : TCode) : Boolean;

IsRegCodeExpired returns True if the Code has expired, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, this function returns True.

This routine is defined in the OnGuard unit.
Chapter 3: Low-Level Routines     51

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

IsRegCodeValid function

function IsRegCodeValid(
const Key : TKey; const Code : TCode) : Boolean;

IsRegCodeValid returns True if Code is a valid registration code, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid.

This routine is defined in the OnGuard unit.

IsSerialNumberCodeExpired function

function IsSerialNumberCodeExpired(
const Key : TKey; const Code : TCode) : Boolean;

IsSerialNumberCodeExpired returns True if the Code has expired, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, this function returns True.

This routine is defined in the OnGuard unit.

IsSerialNumberCodeValid function

function IsSerialNumberCodeValid(
const Key : TKey; const Code : TCode) : Boolean;

IsSerialNumberCodeValid returns True if Code is a valid serial number code, otherwise 
False.

Key must be the same key that was used to create the code or the code is considered invalid.

This routine is defined in the OnGuard unit.

IsSpecialCodeExpired function

function IsSpecialCodeExpired(
const Key : TKey; const Code : TCode) : Boolean;

IsSpecialCodeExpired returns True if the Code has expired, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, this function returns True.

This routine is defined in the OnGuard unit.
2     Chapter 3: Low-Level Routines



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

IsSpecialCodeValid function

function IsSpecialCodeValid(
const Key : TKey; const Code : TCode) : Boolean;

IsSpecialCodeValid returns True if Code is a valid special code, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid.

This routine is defined in the OnGuard unit.

IsUsageCodeExpired function

function IsUsageCodeExpired(
const Key : TKey; const Code: TCode) : Boolean;

IsUsageCodeExpired returns True if the Code has expired, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid. 
If the code is invalid, this function returns True.

This routine is defined in the OnGuard unit.

IsUsageCodeValid function

function IsUsageCodeValid(
const Key : TKey; const Code : TCode) : Boolean;

IsUsageCodeValid returns True if Code is a valid usage code, otherwise False.

Key must be the same key that was used to create the code or the code is considered invalid.

This routine is defined in the OnGuard unit.

LockNetAccessFile function

function LockNetAccessFile(const FileName : string;
const Key : TKey; var NetAccess : TNetAccess) : Boolean;

TNetAccess = packed record
Fh : Integer;
Key : TKey;
CheckValue : Word;
Index : Word;

end;

LockNetAccessFile locks an access slot in the network access file specified by FileName and 
returns False if an error occurs.

This routine is defined in the OgNetWrk unit.
Chapter 3: Low-Level Routines     53

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

ResetNetAccessFile function

function ResetNetAccessFile(
const FileName : string; const Key : TKey) : Boolean;

ResetNetAccessFile resets invalid access slots by clearing each slot’s “in-use” status.

Access slots that are currently in use are skipped.

This routine is defined in the OgNetWrk unit.

ShrinkDate function

function ShrinkDate(D : TDateTime) : Word;

ShrinkDate translates a date to an OnGuard date offset.

OnGuard uses a date offset to reduce the amount of space necessary to store a date. 
OnGuard creates a date offset by subtracting the TDateTime value for 1 January 1996 from 
the actual date.

Exceptions to the conversion rules are that a value of 0 expands to 1 January 9999 and date 
offsets larger than 65535 are represented as 0.

This routine is defined in the OnGuard unit.

StringHashElf function

function StringHashElf(const Str : string) : LongInt;

StringHashElf produces a hash value based on the text passed in Str.

This routine is defined in the OnGuard unit.

UnlockNetAccessFile function

function UnlockNetAccessFile(
var NetAccess : TNetAccess) : Boolean;

TNetAccess = packed record
Fh : Integer;
Key : TKey;
CheckValue : Word;
Index : Word;

end;

UnlockNetAccessFile unlocks an access slot in the network access file specified by FileName 
and returns False if an error occurs.

This routine is defined in the OgNetWrk unit.
4     Chapter 3: Low-Level Routines



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Chapter 3: Low-Level Routines     55

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
6     Chapter 3: Low-Level Routines



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 4: Keys and Release Codes

OnGuard provides two components that automate the tasks of making keys and generating 
release codes.

The TOgMakeKeys component is used to create keys. Keys are used to encode and decode 
release codes. A key is 16 bytes long and is often embedded in the application for use when 
the release code must be decoded.

To make the key more secure, a modifier can be applied to it to make it unique to the current 
date, a specific machine, or a string that you specify (this is called signing the key). If you 
cannot protect your key from unauthorized use, use a modifier to sign it because an 
unsigned key can easily be used to decode the release code.

The TOgMakeCodes component is used to generate release codes. The release code is an 8 
byte value that is encoded using a key and is only decoded internally as needed. This allows 
you to store the release code in the system registry or an INI file and not worry about its 
security. Later, when you test to see if the application has been released, you can read the 
release code from the registry or INI file and use the key in the application to decode the 
release code and determine if it is valid. Once the release code is validated, it can be used for 
additional tests. The type of test depends on what type release code it is.

Release codes can be unique to a particular user name, machine specific ID, or almost any 
static information (this is called signing the release code). By using release codes that have 
signatures embedded in them, you can restrict their widespread use.
     57

1

1



5

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TOgMakeKeys Component
TOgMakeKeys provides methods and properties to create and maintain keys. Keys are used 
to encode and decode the release codes that the other OnGuard components use.

Keys are normally embedded into your application as constants and then supplied to the 
OnGuard routines on demand. Keys should not be stored so they could appear in the 
form”s resource file because that drastically reduces the security of the key.

TOgMakeKeys allows you to make three different types of keys: Random, Standard Text, and 
Case-Sensitive Text. The Standard Text and Case-Sensitive Text methods create a key based 
on text that you supply. This means someone else could reproduce that same key if they 
know the text used to create it. Unless you need to regenerate a key later, you should use a 
Random key. Randomly generated keys are less likely to be reproduced and therefore offer 
better protection.
8     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Creating and Maintaining Keys
TOgMakeKeys provides a series of dialogs with built-in methods for managing keys and 
their related applications. The Key Maintenance dialog box, shown in Figure 4.1, allows you 
to create a key, associate it with an application, and store that information in a file for later 
access.

“File name” is the name of the INI file where the key information is stored. Use the speed 
button to the right of the edit field to display the Select Key Maintenance File dialog box, 
which allows you to search for the file. When the file is open, items already within the file are 
displayed in the “Applications” list box.

“Applications” contains a list of the applications for which keys are currently stored in the 
file specified in “File name”. If no file name is specified, or the specified file does not exist, or 
the specified file does not contain any keys, the list is empty.

 Figure 4.1: The Key Maintenance dialog box.
TOgMakeKeys Component     59

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The Add button displays the Description and Key dialog box (described below). The Edit 
button displays the Description and Key dialog box for the item currently selected in the 
“Applications” list box. The Delete button deletes the item currently selected in the 
“Applications” list box.

The “Key” group contains two edit fields with hexadecimal representations of the key. The 
second is in a form suitable for copying to the clipboard and pasting directly into a constant 
expression in your application. The two speed buttons directly to the right of each edit field 
provide clipboard copy and paste functions for the corresponding field.

The OK button closes the dialog box and makes the selected key information available via 
the appropriate component properties. The Cancel button closes the dialog box, however, 
changes made to the file are not reversed.

If you choose to add or edit an item in the “Applications” list, the Description and Key dialog 
box is displayed as shown in Figure 4.2.

“Description” is the name of (or some text describing) the application.

If a key was already generated for this application, “Key” displays the hexadecimal 
representation of the key. The first speed button to the right of the “Key” edit field can be 
used to paste a key string into the edit field. The second speed button is used to generate a 
key.

The OK button closes the dialog box, saving any changes that were made. The Cancel button 
closes the dialog box, discarding all changes.

 Figure 4.2: The Description and Key dialog box.
0     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
If you click on the speed button to generate a key, the Key Generation dialog box is displayed 
as shown in Figure 4.3.

The “Key Type” combo box allows you to select the method used for key generation. The 
possible choices are Random, Standard Text, or Case-Sensitive Text. The Random method 
produces a key using the VCL”s random number generator. The two text methods create a 
key based on the text supplied in the “Key Phrase” edit control.

The Generate key button creates the key based on the “Key Type” and the “Key Phrase”.

The “Key Phrase” memo field allows you to enter a text phrase that is used to generate the 
key if “Key Type” is Standard Text or Case-Sensitive Text. If “Key Type” is Random, this field 
is disabled.

The “Key” group contains two edit fields with hexadecimal representations of the key. The 
second is in a form suitable for copying to the clipboard and pasting directly into a constant 
expression in your application. The speed buttons directly to the right of each edit field 
provide clipboard copy functions for the corresponding field.

The OK button closes the dialog box and makes the selected key information available via 
the appropriate component properties. The Cancel button closes the dialog box and 
discards the generated key.

 Figure 4.3: The Key Generation dialog box
TOgMakeKeys Component     61

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TComponent (VCL)

TOgMakeKeys (OnGuard)

Properties
About

KeyFileName

KeyType

ShowHints

Methods
ApplyModifierToKey

Execute

GenerateDateModifier

GenerateMachineModifier

GenerateMDKey

GenerateRandomKey

GenerateStringModifier

GenerateUniqueModifier

GetKey
2     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

Reference Section

About property

property About : string

Shows the current version of OnGuard.

About is provided in order that the version of OnGuard can easily be identified should 
technical support be needed. In the Object Inspector, display the OnGuard about box by 
double-clicking this property or selecting the dialog box button to the right of the property 
value.

ApplyModifierToKey method

procedure ApplyModifierToKey (
Modifier : LongInt; var Key; KeySize : Cardinal);

ApplyModifierToKey alters the specified key. 

If Modifier is not zero, this routine alters (signs) the key specified by Key. KeySize is the size, 
in bytes, of Key.

This routine is used automatically by the components that generate a release code when a 
non-zero value is specified for the Modifier property.

See also: GenerateDateModifier, GenerateMachineModifier, GenerateStringModifier, 
GenerateUniqueModifier, Key

Execute method

function Execute: Boolean;

Execute displays the Key Maintenance dialog box. 

Use this method to display the Key Maintenance dialog box so that a key can be generated. 
The dialog box is described in “Creating and Maintaining Keys” on page 59.

If Execute returns True, the KeyFileName and KeyType properties contain valid values, and 
the key can be obtained via the GetKey method. Otherwise, the contents of these properties 
is unknown.

See also: Key, KeyFileName, KeyType
TOgMakeKeys Component     63

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

"

!

GenerateDateModifier method

function GenerateDateModifier: LongInt;

GenerateDateModifier creates a key modifier based on the current date. 

This routine is also available as a function (GenerateDateModifierPrim) for use in 
applications that need to generate modifiers dynamically.

See also: ApplyModifierToKey, GenerateMachineModifier, GenerateStringModifier, 
GenerateUniqueModifier

GenerateMachineModifier method

function GenerateMachineModifier: LongInt;

GenerateMachineModifier creates a key modifier based on the hardware information for the 
current machine. 

GenerateMachineModifier uses hard disk volume sizes, volume serial numbers, registration 
name and company as reported by Windows, and the network card ID (if available) to 
produce a modifier specific to a single machine.

Use this modifier to sign the key used to encode and decode release codes if you want the 
release code to restrict usage to a single machine. 

Caution: If hardware is changed on the machine, the modifier changes, rendering the release 
code, and consequently the application, unusable.

This routine is also available as a function (GenerateMachineModifierPrim) for use in 
applications that need to generate modifiers dynamically.

See also: ApplyModifierToKey, GenerateDateModifier, GenerateStringModifier, 
GenerateUniqueModifier

GenerateMDKey method

procedure GenerateMDKey (
var Key; KeySize : Cardinal; const Str : string);

GenerateMDKey produces a key based on a supplied text string. 

To produce keys that are not case dependent, convert the text to upper case prior to calling 
GenerateMDKey.

See also: ApplyModifierToKey, GenerateRandomKey, GetKey
4     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

!

GenerateRandomKey method

procedure GenerateRandomKey(var Key; KeySize : Cardinal);

GenerateRandomKey produces a key based on the VCL’s internal random number 
generator. 

See also: ApplyModifierToKey, GenerateKey

GenerateStringModifier method

function GenerateStringModifier (const S : string) : LongInt;

GenerateStringModifier creates a key modifier based on the supplied string. 

This routine is also available as a function (GenerateStringModifierPrim) for use in 
applications that need to generate modifiers dynamically.

See also: ApplyModifierToKey, GenerateDateModifier, GenerateMachineModifier, 
GenerateUniqueModifier

GenerateUniqueModifier method

function GenerateUniqueModifier: LongInt;

GenerateUniqueModifier creates a unique key modifier. 

This routine is also available as a function (GenerateUniqueModifierPrim) for use in 
applications that need to generate modifiers dynamically.

See also: ApplyModifierToKey, GenerateDateModifier, GenerateMachineModifier, 
GenerateStringModifier

GetKey method

procedure GetKey (var Value : TKey);

TKey = array[0..15] of Byte;

GetKey returns the key generated when Execute was called.

Aftera successful call to Execute, use GetKey to return the selected key value.

The key used to encode release codes should be protected from unauthorized use because a 
release code that was encoded without a modifiercan easily be decoded using the key. The 
key should be embedded into the application rather than stored in a file or resource.

See also: Execute
TOgMakeKeys Component     65

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

KeyFileName property

property KeyFileName : string

KeyFileName is the name of the INI file used to store application names and their associated 
keys. 

If a valid file name is assigned to this property, its contents are displayed when the Key 
Maintenance dialog box is displayed.

KeyType property

property KeyType : TKeyType

TKeyType = (ktRandom, ktMessageDigest, ktMessageDigestCS);

Default: ktMessageDigest

KeyType determines the type of key to generate. 

After a successful call to Execute, KeyType contains one of these key types:

If a value is assigned to this property, it is used to determine the type of key to generate when 
the Key Maintenance dialog box is displayed.

See also: Execute

ShowHints property

property ShowHints : Boolean

Default: False

ShowHints determines whether hints are shown for the TOgMakeKeys dialog boxes. 

Type Description

ktRandom The key is generated using the
VCL’s random number generator.

ktMessageDigest (Standard Text) The key is generated by using the
supplied text. Text case is
ignored.

ktMessageDigestCS (Case-Sensitive
Text)

The key is generated by using the
supplied text. Text case is
considered.
6     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
TOgMakeCodes Component
TOgMakeCodes is a non-visual component that displays a dialog box when its Execute 
method is called. The dialog box allows you to create several types of release codes. Each 
release code consists of 8 bytes and is viewed and entered as 16 hexadecimal digits. 

Release codes are encoded using a key to prevent unauthorized access and tampering. If the 
Key property is not initialized to a valid value prior to calling Execute, the Key  Maintenance 
dialog box (see page Creating and Maintaining Keys) is displayed so that one can be selected 
or created. Release codes cannot be created without a key to encode them.
TOgMakeCodes Component     67

1

1



6

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Generating Release Codes
The Execute method displays the Code Generation dialog box as shown in Figure 4.4.

The first item in the Code Generation dialog box is a notebook with a page for each possible 
type of release code. Select the page for the type of release code you want to generate.

Use the Date notebook page to generate a Start/End Date release code as shown in Figure 
4.4. An attempt to use a release code with a date prior to the start date or after the end date 
results in an invalid code error.

 Figure 4.4: The Code Generation dialog box generating a Star Date or End Date release code.
8     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
See the “TOgDateCode Component” on page 88 for information about Start/End Date 
release codes.

Use the Days notebook page to generate a Number of Days Used release code as shown in 
Figure 4.5. This release code limits the number of days an application can be run, not the 
number of times. For example, if the day count is 3, the application can be run on Monday of 
one week, then Tuesday and Wednesday of the next. On each of these days, the application 
can be run as many times as desired. An attempt to run the application on a fourth day will 
result in an invalid release code error.

 Figure 4.5: The Code Generation dialog box enerating a Number of Days Used release code.
Generating Release Codes     69

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Enter the number of days in the “Day count” edit field. A value of 0 is interpreted as an 
expired release code. Use the “Expires” edit field to specify a date that the release code will 
expire. The default value is 31 December 9999.

See the “TOgDaysCode Component” on page 90 for more information about Number of 
Days Used release codes.

Use the Reg notebook page to generate a Simple Registration release code as shown in 
Figure 4.6. The text entered in “String” is used to create the release code. The button at the 
right of the field can be used to paste the contents of the clipboard into the field.

 Figure 4.6: The Code Generation dialog box generating a Simple Registration release code.
0     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
You should store the text in a file or in the registry. It can be displayed at run time as a 
deterrent to unauthorized users of the application. A Simple Registration release code can be 
verified by creating a temporary code using the stored text and expiration date. If the 
temporary code and the stored code do not match, chances are that either the code was 
altered or the stored text was altered.

The Random Number button generates a random string of hexadecimal digits and puts 
them in the “String” field.

Use the “Expires” edit field to specify a date that the release code will expire. The default 
value is 31 December 9999.

See the “TOgRegistrationCode Component” on page 98 for more information about Simple 
Registration release codes.
Generating Release Codes     71

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Use the S/N notebook page to generate a Serial Number release code. The number entered 
in “Serial Number” is used to create the release code as shown in Figure 4.7.

You should store the serial number in a file or in the registry so that it can be read and 
displayed if desired. A Serial Number release code can be verified by creating a temporary 
code using the stored serial number and expiration date. If the temporary code and the 
stored code do not match, chances are that either the code was altered or the stored text was 
altered.

Use the “Expires” edit field to specify a date that the release code will expire. The default 
value is 31 December 9999.

 Figure 4.7: The Code Generation dialog box generating a Serial Number release code.
2     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
The Random Number button generates a random number to be used as the product serial 
number.

See the “TOgSerialNumberCode Component” on page 101 for more information about 
Serial Number release codes.

Use the Usage notebook page to generate a Usage Count release code as shown in Figure 4.8. 
This release code limits the number of times an application can be run. Each time the 
application is run, the embedded count value is decremented. When the count reaches zero, 
the code is expired.

Enter the number of uses in the “Usage count” edit field. Use the “Expires” edit field to 
specify a date that the release code will expire. The default value is 31 December 9999.

 Figure 4.8: The Code Generation dialog box generating a Usage Count release code.
Generating Release Codes     73

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
See the “TOgUsageCode Component” on page 105 for more information about Usage 
Count release codes.

Use the Network notebook page to generate a Network Metering release code as shown in 
Figure 4.9. This release code, along with methods of the TOgNetCode component, are used 
to create and maintain a Network Access File. The Network Access File is used to limit the 
number of users that can run the application concurrently.

Enter the maximum number of network users in the “Access Slots” edit field.

See the “TOgNetCode Component” on page 94 for more information about Network 
Metering release codes.

 Figure 4.9: The Code Generation dialog box generating a Network Metering release code.
4     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
Use the Special notebook page to generate a Special release code as shown in Figure 4.10. A 
Special release code is very similar to a Serial Number release code, except that you 
determine the meaning of the special data. OnGuard does nothing with the embedded 
value.

Enter any value in the “Special data” edit field. Use the “Expires” edit field to specify a date 
that the release code will expire. The default value is 31 December 9999.

See the “TOgSpecialCode Component” on page 103 for more information about Special 
release codes.

 Figure 4.10: The Code Generation dialog box generating a Special release code.
Generating Release Codes     75

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
The “Key used to encode” group in the Code Generation dialog box contains information 
about the key used to encode the release code. The “Key” edit field contains the key that will 
be used to encode the release code. If you need to change the key, use the button to the right 
of the edit field to display the Key Maintenance dialog box.

The modifier check boxes, shown in Figure 4.11, determine whether a modifier is used to 
sign the key used to encode the release code. A modifier is used to make the key unique. 
This can increase security, depending on the type of modifier used. Use of a modifier is not 
required. If a modifier is used, the “Modifier” edit field is filled with the generated modifier.

 Figure 4.11: The Code Generation dialog box displaying the modifier check boxes.
6     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16
If the “Machine modifier” box is checked, a modifier is created using machine-specific 
information. Using this type of modifier restricts use of the application to a specific 
computer.

If the “Date modifier” box is checked, a modifier is created using a date. Use this type of 
modifier if you require the entry of the date before decoding the release code. You could read 
the date from a file, the registry, or require the end-user to enter it. The date used to sign the 
key used to decode the release code must be the same one used to sign the key used to 
encode the release code.

If the “Unique modifier” box is checked, a modifier is randomly generated. Use this type of 
modifier to create a unique key. The modifier should be stored in a file or the registry 
because it is not possible to generate the same modifier again.

If the “String modifier” box is checked, a modifier is created using the text contained in the 
“String modifier” edit field. Use this type of modifier if you require the entry of text before 
decoding the release code.

If none of the boxes are checked, an arbitrary 32-bit value can be entered in the “Modifier” 
edit field.

The third group in the Code Generation dialog box contains the Generate button. After you 
have supplied all the necessary information (the information you entered in the notebook 
page for the appropriate type of release code, the key, and the modifier, if applicable), use the 
Generate button to generate the release code. The read-only edit field to the right of the 
Generate button is filled with the generated release code. The button to the right of the edit 
field can be used to copy the contents of the edit field to the clipboard.

The OK button closes the dialog box and indicates that the entered data and the generated 
code are valid. The Cancel button closes the dialog box and indicates that the entered data 
and generated code should not be used.

Hierarchy
TComponent (VCL)

TOgMakeCodes (OnGuard)

Properties
About

CodeType

KeyFileName

ShowHints

Methods
Execute GetCode GetKey
Generating Release Codes     77

1

1



7

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference Section

About property

property About : string

Shows the current version of OnGuard.

About is provided in order that the version of OnGuard can easily be identified should 
technical support be needed. In the Object Inspector, display the OnGuard about box by 
double-clicking this property or selecting the dialog box button to the right of the property 
value.

CodeType property

property CodeType : TCodeType

TCodeType = (ctDate, ctDays, ctRegistration, ctSerialNumber,
ctUsage, ctNetwork, ctSpecial, ctUnknown);

Default: ctDate

CodeType is the type of release code. 

If you assign a value to CodeType prior to calling Execute, the corresponding notebook page 
is displayed in the Code Generation dialog box (see page Generating Release Codes). After a 
successful call to Execute, CodeType contains the type of code that was generated. The 
ctUnknown code type is only used internally.

See also: Execute

Execute method

function Execute : Boolean;

Execute displays the Code Generation dialog box. 

Use this method to display the Code Generation dialog box so that a release code can be 
generated. The dialog box is described on page Generating Release Codes.

If Execute returns True, the Code and CodeType properties contain valid values. Otherwise, 
the contents of these properties is unknown.

See also: Code, CodeType
8     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

!

GetCode method

procedure GetCode(var Value : TCode);

TCode = packed record
CheckValue : Word; {magic value}
Expiration : Word; {expiration date or 0, if none}
case Byte of

0 : (FirstDate : Word; {for date code}
EndDate : Word);

1 : (Days : Word; {for days code}
LastAccess : Word);

2 : (RegString : LongInt); {for reg code}
3 : (SerialNumber : LongInt); {for serial number code}
4 : (UsageCount : Word; {for usage count code}

LastChange : Word);
5 : (Value : LongInt); {for specail codes}
6 : (NetIndex : LongInt); {for net codes}

end;

GetCode returns the release code generated by the Execute method.

After a successful call to Execute, use GetCode to return to return the selected release code 
value.

The code can represent any one of several release code types.  Use the CodeType property to 
determine which code type was generated.

See also: CodeType, Execute

KeyFileName property

property KeyFileName : string

KeyFileName is the name of the INI file used to store application names and their associated 
keys. 

If a valid file name is assigned to this property, its contents are displayed when the Key 
Maintenance dialog box is displayed.

ShowHints property

property ShowHints : Boolean

Default: False

ShowHints determines whether hints are shown for the TOgMakeCodes dialog boxes. 
Generating Release Codes     79

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
0     Chapter 4: Keys and Release Codes



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 5:  Release Code Components

This chapter discusses the components that implement the different types of release codes. 
OnGuard provides the following types of release codes:

• Start and End Date

• Number of Days Used

• Network Metering

• Simple Registration

• Serial Number Registration

• Special Registration

• Usage Count
     81

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TOgCodeBase Class
The TOgCodeBase class is the ancestor class for the other components described in this 
chapter. It implements several properties and methods that are common for all of its 
descendants.

Hierarchy
TComponent (VCL)

TOgCodeBase (OnGuard)

Properties
About

AutoCheck

Code

Modifier

StoreCode

StoreModifier

Methods
CheckCode IsCodeValid

Events
OnChecked

OnGetKey

OnGetCode

OnGetModifier
2     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

!

Reference Section

About property

property About : string

Shows the current version of OnGuard.

About is provided in order that the version of OnGuard can easily be identified should 
technical support be needed. In the Object Inspector, display the OnGuard about box by 
double-clicking this property or selecting the dialog button to the right of the property 
value.

AutoCheck property

property AutoCheck : Boolean

Default: True

AutoCheck determines whether CheckCode is called automatically. 

If AutoCheck is True, CheckCode is automatically called after the form containing this 
component is loaded. If AutoCheck is False, you are responsible for calling CheckCode to 
determine the component status.

See also: CheckCode

CheckCode virtual abstract method

function CheckCode(
Report : Boolean) : TCodeStatus; virtual; abstract;

TCodeStatus = (ogValidCode, ogInvalidCode, ogPastEndDate,
ogDayCountUsed, ogRunCountUsed, ogNetCountUsed, ogCodeExpired);

CheckCode checks for a valid release code. 

CheckCode is defined as virtual and abstract, which means that each descendant 
component overrides it to provide the necessary code to validate and test the release code 
obtained through the Code property. If Report is True, the result of the test is reported by 
triggering the OnChecked event. If Report is False, you must check the function result. 
TOgCodeBase Class     83

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
CheckCode requires several pieces of information, which it obtains by triggering event 
handlers that you define. The normal sequence of events performed by CheckCode is as 
follows:

1.  Trigger the OnGetKey event to get the key used to encode and decode the release code. 
The key should always be embedded in the application as a constant.

2.  Trigger the OnGetCode event to get the release code. The release code is normally 
stored in the registry or an INI file.

3.  Trigger the OnGetModifier event to get the key modifier. The modifier can be stored as 
a constant in the application, stored in the registry or INI file, or generated when it is 
needed.

4.  Apply the modifier to the key.

5.  Test the release code to see if it is valid.

6.  Test the release code to see if it has expired. The details of this test depend on the type 
of release code.

The result of calling CheckCode is one of the following values:

See also: AutoCheck, OnChecked, OnGetCode, OnGetKey, OnGetModifier

Value Description

ogValidCode The release code is valid.

ogInvalidCode The release code is invalid (the internal
integrity check failed).

ogPastEndDate The ending date has past.

ogDayCountUsed The authorized days have been used.

ogRunCountUsed The authorized runs have been used.

ogNetCountUsed The number of authorized users has been
exceeded.

ogCodeExpired The expiration date has been reached.
4     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

!

Code property

property Code : string

Code is the release code. 

Code is normally generated by another program, encoded using the application’s key, and 
given to the user to enter into the application where it is decoded and validated. The 
behavior of the application when a code is entered is entirely up to you, the designer, and is 
also determined to some extent by the type of code being used.

Code is published as needed by descendent components.

See also: OnGetCode, StoreCode

IsCodeValid method

function IsCodeValid : Boolean;

IsCodeValid tests to see if the release code is valid. 

IsCodeValid calls the CheckCode method and tests its result to see if the release code is 
valid. It returns True if the code is valid and False if the code is not valid. Descendent 
components decode the release code and test to see if the signature value (the magic value as 
defined in the TCode record) is still valid.

You might need to perform additional tests to ensure that the data used to create the release 
code was not altered. For example, you could test whether the text string used to create a 
Simple Registration release code was altered. Since the string is not part of the release code 
(only a number derived from the string is embedded into the code), you cannot compare it 
to what is stored in the release code. You must create a temporary release code using the text 
string and the same expiration date and then compare the temporary release code to the 
stored one. If they don’t match, someone has altered the text string.

See also: CheckCode

Modifier property

property Modifier : LongInt

Modifier is used to sign the key. 

If Modifier is equal to 0, the key is not altered. If Modifier is not equal to 0, it is used to sign 
the key. Modifier is normally generated as needed, but can be stored on the stream with the 
form if the StoreModifier property is True.

See also: OnGetModifier, StoreModifier
TOgCodeBase Class     85

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

OnChecked event

property OnChecked : TCheckedCodeEvent

TCheckedCodeEvent = procedure(
Sender : TObject; Status : TCodeStatus) of object;

OnChecked defines an event handler that is called after the release code is checked. 

Sender is the instance of the release code component. Status is the value returned by a call to 
CheckCode.

See also: CheckCode

OnGetCode event

property OnGetCode : TGetCodeEvent

TGetCodeEvent = procedure(
Sender : TObject; var Code : TCode) of object;

OnGetCode defines an event handler that is called to get the release code. 

Sender is the instance of the release code component. Code is the TCode value associated 
with this component. Release codes are normally stored in a file or the registry. In some 
cases, the release code can be stored in the resource. To do this, set the StoreCode property 
to True.

An example of when you might want to have the code generated and stored with the 
application prior to deployment is for an evaluation version of your application that should 
operate only for a short period of time. In such a case, you could use an Start/End Date 
release code.

See also: Code, StoreCode

OnGetKey event

property OnGetKey : TGetKeyEvent

TGetKeyEvent = procedure(
Sender : TObject; var Key : TKey) of object;

OnChecked defines an event handler that is called to get the key. 

Sender is the instance of the release code component.

The key should always be stored as a constant in the application and never stored in the 
form, a file, or the registry. Putting the key anywhere except in the application increases the 
chances that someone will find and be able to use it to decode the release code.
6     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

!

OnGetModifier event

property OnGetModifier : TGetModifierEvent

TGetModifierEvent = procedure(
Sender : TObject; var Value : LongInt) of object;

OnGetModifier defines an event handler that is called to get the modifier. 

Sender is the instance of the release code component. Value is the modifier that is used to 
sign the key. Modifier is normally generated as needed, but can be stored on the stream with 
the form if the StoreModifier property is True.

See also: Modifier, StoreModifier

StoreCode property

property StoreCode : Boolean

Default: False

StoreCode determines whether the release code is stored in the resource file. 

StoreCode is published as needed by descendants.

See also: Code, OnGetCode

StoreModifier property

property StoreModifier : Boolean

Default: False

StoreModifier determines whether the modifier is stored in the resource file. 

See also: Modifier, OnGetModifier
TOgCodeBase Class     87

1

1



8

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TOgDateCode Component
TOgDateCode implements a Start/End Date release code. Use this release code when you 
need to limit the amount of time that an application (or specific features of an application) 
can be used. Both a start date and an end date are encoded into this release code. This allows 
you to detect a change to the computer’s clock that results in a date outside of the date range 
or an attempt to alter the registry or INI file entry. If this release code is tested on a date that 
is within the range, it is considered valid. Otherwise it is expired.

OnGuard implements a date as the number of days past a base-line date (stored internally as 
a small integer). End dates must be after January 1, 1997 because that is the default base-line 
date.

The EXDTREG project is an example that uses the TOgDateCode component. The example 
project represents a demo form of an application that can be used during a specific period of 
time only. A new Start/End Date release code can be entered by using the Enter Code 
button. The capability to enter a new end date need not be provided if you do not want to be 
able to extend the usable time dynamically. If this is the case, the code can be stored in the 
application’s resource rather than in a file or the registry.

A separate program, CODEGEN, is provided to generate the release code for this and other 
example projects.

Hierarchy
TComponent (VCL)

!TOgCodeBase (OnGuard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

TOgDateCode (OnGuard)

Properties
! About

! AutoCheck

! Code

! Modifier

! StoreCode

! StoreModifier

Methods
! CheckCode GetValue ! IsCodeValid

Events
! OnChecked

! OnGetKey

! OnGetCode

! OnGetModifier
8     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

Reference Section

GetValue method

function GetValue : TDateTime;

GetValue returns the end date embedded in the release code.

The returned value is a VCL TDateTime value.
TOgDateCode Component     89

1

1



9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TOgDaysCode Component
TOgDaysCode implements a Number of Days Used release code. This release code limits the 
number of days that an application (or specific features in an application) can be used. The 
application can be run an unlimited number of times each day.

The days do not need to be consecutive. For example, if an application is limited to 2 days, it 
can be run as many times as required on a given day, not used again for a month, and then 
run several more times on another day. If the user attempts to run the application on a third 
day, the release code is reported as invalid. Your application can then refuse to run, or take 
any other appropriate action.

A Number of Days Used release code must be stored in a file or the registry because it must 
be updated each day the application is run. See the Decrease method (on page 107) and the 
AutoDecrease property (on page 92) for a description of the process used to update the 
release code.

TOgDaysCode allows you to specify an expiration date in addition to the number of days. If 
the release code is tested after the expiration date, it is reported as invalid. The default value 
for the expiration date is 31 December 9999, which essentially means that the code will 
never expire.

See the EXDYREG project for an example application that uses a Number of Days Used 
release code. A separate program, CODEGEN, is provided to generate the release code for 
this and other example projects.
0     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

!TOgCodeBase (OnGuard)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

TOgDaysCode (OnGuard)

Properties
! About

! AutoCheck

AutoDecrease

! Code

! Modifier

! StoreCode

! StoreModifier

Methods
! CheckCode

Decrease

GetValue

! IsCodeValid

Events
OnChangeCode

! OnChecked

! OnGetKey

! OnGetCode

! OnGetModifier
TOgDaysCode Component     91

1

1



9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

Reference Section

AutoDecrease property

property AutoDecrease : Boolean

Default: True

AutoDecrease determines whether the day count value is automatically decreased each day 
the application is run. 

If AutoDecrease is True, the day count embedded in the release code is automatically 
decreased by one each day the application is run. This is accomplished by calling the 
Decrease method. If AutoDecrease is False, you must call the Decrease method manually 
whenever necessary.

See also: Decrease

Decrease method

procedure Decrease;

Decrease reduces the day count value stored in the release code. 

Performing this action requires several vital pieces of information, which are normally 
obtained by triggering several event handlers that you define. The normal sequence of 
events performed by Decrease is as follows:

1.  Trigger the OnGetKey event to get the key used to encode and decode the release code. 
The key should always be embedded in the application as a constant.

2.  Trigger the OnGetCode event to get the release code. The release code is normally 
stored in the registry or an INI file.

3.  Trigger the OnGetModifier event to get the key modifier. The modifier can be stored as 
a constant in the application, stored in the registry or INI file, or generated when it is 
needed.

4.  Apply the modifier to the key.

5.  Test the code to see if it is valid.

6.  Decrease the day count by one if it has not already been decreased today.

7.  Trigger the OnChangeCode event to store the changed release code.

See also: OnChangeCode, OnGetCode, OnGetKey, OnGetModifier
2     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

GetValue method

function GetValue : LongInt;

GetValue returns the day count embedded in the release code. 

The value returned is the number of days remaining.

OnChangeCode event

property OnChangeCode : TChangeCodeEvent

TChangeCodeEvent = procedure(
Sender : TObject; Code : TCode) of object;

OnChangeCode defines an event handler that is called when a release code changes. 

This event is fired after the release code is changed via a call to Decrease, either directly or 
automatically (if the AutoDecrease property is True).

Sender is the instance of the release code component. Code is the new release code value.

The release code should be saved in a file or the registry.

See also: AutoDecrease, Decrease
TOgDaysCode Component     93

1

1



9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TOgNetCode Component
TOgNetCode implements a Network Metering release code. This release code limits the 
number of concurrent instances of an application that are allowed to run on a network. It 
does this through the use of a network release code and a Network Access File. The use of a 
network release code is no different than other release codes, but there are additional 
maintenance issues related to the network file that your application must handle.

The Network Access File contains access slots for each authorized use of the application. 
Each access slot (much like the network release code itself) contains encoded information 
that makes it virtually impossible to alter successfully.

When you call the CheckCode method, the Network Access File is checked to ensure that 
there is room for an additional user. If there is an available slot, a special code (encoded 
using the same key that was used to encode the code) is written to the access file for that 
access slot and then that record is locked. Utility routines are provided to correct or recreate 
the network access file in case it becomes damaged.

Your application can create or recreate the Network Access File automatically or require that 
it be managed using an external maintenance program. Since some users will turn off or 
reboot their computers before exiting a program, access slots can become invalid and 
require correction. OnGuard provides routines to detect and correct this, as well as routines 
to detect the number of active users, the number of authorized access slots, and the number 
of invalid access slots.

See the EXNET project for an example that uses a Network Metering release code. A 
separate program, CODEGEN, is provided to generate the release code for this and other 
example projects.
4     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

!TOgCodeBase (OnGuard)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

TOgNetCode (OgNetWrk)

Properties
! About

ActiveUsers

! AutoCheck

! Code

FileName

InvalidUsers

MaxUsers

! Modifier

! StoreCode

! StoreModifier

Methods
! CheckCode

IsRemoteDrive

! IsCodeValid

ResetAccessFile

Events
! OnChecked

! OnGetKey

! OnGetCode

! OnGetModifier
TOgNetCode Component     95

1

1



9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

!

Reference Section

ActiveUsers read-only property

property ActiveUsers : LongInt

ActiveUsers is the current number of users running the application. 

FileName property

property FileName : string

FileName is the name of the Network Access File. 

The Network Access File is used to determine if another instance of the application is 
authorized. If the file specified in FileName does not exist, it is created and initialized during 
the call to CheckCode.

InvalidUsers read-only property

property InvalidUsers : LongInt

InvalidUsers is the number of invalid user access slots in the Network Access File. 

Invalid slots are created when the user does not exit the application normally. Use 
ResetAccessFile to fix these invalid slots.

See also: ResetAccessFile

IsRemoteDrive method

function IsRemoteDrive(const ExePath : string) : Boolean;

IsRemoteDrive determines whether ExePath resides on a remote disk drive. 

You can use IsRemoteDrive to determine if your application is being run from a remote disk 
drive. Only the drive information passed in ExePath is used.
6     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

MaxUsers read-only property

property MaxUsers : LongInt

MaxUsers is the maximum number of concurrent users of the application. 

ResetAccessFile method

function ResetAccessFile : Boolean;

ResetAccessFile resets the invalid slots in the Network Access File. 

If the operation is successful, the return value is True. If the file could not be opened for 
write access, the return value is False.

Calling ResetAccessFile does not effect active users. Since their access slots are in use, they 
are assumed to be valid and are not reset.
TOgNetCode Component     97

1

1



9

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TOgRegistrationCode Component
TOgRegistrationCode implements a Simple Registration release code. This release code ties 
the user’s name, company name, or some other textual data to the registration code. A 
scenario for using a Simple Registration release code would be one where the user contacts 
you to register their copy of the application and supplies their name. You could provide a 
registration dialog that prompts the user for their name and then displays a special number 
that the user reads to you. You use that number to sign the key used to encode the release 
code and then give the release code to the user. The user enters the release code into the 
dialog to complete the process.

TOgRegistrationCode doesn’t perform any special tests like most of the other release code 
components. It is used primarily to indicate that the application has been registered.

The textual data and the registration code can be stored in the registry or an INI file so that 
they can be verified each time that the program is started. Displaying the registration 
information in some prominent location in the application is sometimes sufficient to deter 
unauthorized users.

TOgRegistrationCode allows you to specify an expiration date in addition to the registration 
value. If the release code is tested after the expiration date, it is reported as invalid. The 
default value for the expiration date is 31 December 9999, which essentially means that the 
code will never expire.

See the EXRGREG project for an example application that uses a Simple Registration release 
code. A separate program, CODEGEN, is provided to generate the release code for this and 
other example projects.
8     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Hierarchy
TComponent (VCL)

!TOgCodeBase (OnGuard)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

TOgRegistrationCode (OnGuard)

Properties
! About

! AutoCheck

! Code

! Modifier

RegString

! StoreCode

! StoreModifier

StoreRegString

Methods
! CheckCode ! IsCodeValid

Events
! OnChecked

! OnGetKey

! OnGetCode

! OnGetModifier

OnGetRegString
TOgRegistrationCode Component     99

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

Reference Section

OnGetRegString event

property OnGetRegString : TGetRegStringEvent

TGetRegStringEvent = procedure(
Sender : TObject; var Value : string) of object;

OnGetRegString defines an event handler that is called to get the registration string. 

Sender is the instance of the release code component. Value is the registration string used to 
create the release code.

RegString property

property RegString : string

RegString is the registration string used to create the release code. 

See also: OnGetRegString

StoreRegString property

property StoreRegString : Boolean

Default: True

StoreRegString determines whether the registration string value is stored as a resource at 
design time. 

If StoreRegString is True, the value of RegString is stored in the resource file along with the 
form. If StoreRegString is False, RegString is not stored and you must supply an 
OnGetRegString event handler so that the registration string can be retrieved when 
required.

See also: OnGetRegString, RegString
00     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
TOgSerialNumberCode Component
TOgSerialNumberCode implements a Serial Number Registration release code. This release 
code ties a serial number to the release code. This release code is very similar to the Simple 
Registration release code. The only difference is in the data that is used as part of the code 
generation process. The Serial Number Registration release code uses a number instead of a 
text string.

TOgSerialNumberCode doesn’t perform any special tests like most of the other release code 
components. It is used primarily to indicate that the application has been registered.

TOgSerialNumberCode allows you to specify an expiration date in addition to the serial 
number. If the release code is tested after the expiration date, it is reported as invalid. The 
default value for the expiration date is 31 December 9999, which essentially means that the 
code will never expire.

See the EXSNREG project for an example application that uses a Serial Number Registration 
release code. A separate program, CODEGEN, is provided to generate the release code for 
this and other example projects.

Hierarchy
TComponent (VCL)

!TOgCodeBase (OnGuard)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

TOgSerialNumberCode (OnGuard)

Properties
! About

! AutoCheck

! Code

! Modifier

! StoreCode

! StoreModifier

Methods
! CheckCode GetValue ! IsCodeValid

Events
! OnChecked

! OnGetKey

! OnGetCode

! OnGetModifier
TOgSerialNumberCode Component     101

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Reference Section

GetValue method

function GetValue : LongInt;

GetValue returns the serial number embedded in the release code.

The value returned is the serial number that was used when the release code was created.
02     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
TOgSpecialCode Component
TOgSpecialCode implements a Special Registration release code. This release code is based 
on a special value (a long integer) that can be used to indicate anything you like. One 
possible use is to treat the LongInt value as a bit mask, each bit representing one feature in 
the application. If a bit is set, that feature is enabled; otherwise it is disabled.

TOgSpecialCode doesn’t perform any special tests like most of the other release code 
components. Its use is entirely determined by you.

TOgSpecialCode allows you to specify an expiration date in addition to the special 
information. If the release code is tested after the expiration date, it is reported as invalid. 
The default value for the expiration date is 31 December 9999, which essentially means that 
the code will never expire.

See the EXSPREG project for an example application that uses a Special Registration release 
code. A separate program, CODEGEN, is provided to generate the release code for this and 
other example projects.

Hierarchy
TComponent (VCL)

!TOgCodeBase (OnGuard)   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

TOgSpecialCode (OnGuard)

Properties
! About

! AutoCheck

! Code

! Modifier

! StoreCode

! StoreModifier

Methods
! CheckCode GetValue ! IsCodeValid

Events
! OnChecked

! OnGetKey

! OnGetCode

! OnGetModifier
TOgSpecialCode Component     103

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

Reference Section

GetValue method

function GetValue : LongInt;

GetValue returns the special information embedded in the release code.

The returned value is a LongInt. The interpretation of the returned value is determined 
entirely by you.
04     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
TOgUsageCode Component
TOgUsageCode implements a Usage Count release code. This release code limits the 
number of times an application can be executed.

A Usage Count release code must be stored in the INI file or the registry because it must be 
updated each time the application is run. Your application is responsible for storing the 
changed value. See the Decrease method (see page 107) and the AutoDecrease property (on 
page 92) for a description of the process used to update the release code.

Unfortunately, it is easy for a user to reset a usage counter by simply reinstalling the 
application or restoring the registry or INI file. It is recommended to use an expiration date 
in conjunction with a usage count to increase the security of your application. You can foil 
attempts to reset the usage counter by selecting an expiration date that allows sufficient time 
to use all of the available runs. For example, if the usage count is set to 30 and you expect at 
least one use per day, use an internal expiration date code that expires 45 or 60 days after the 
application is built. This prevents the user from repeatedly reinstalling to reset the usage 
counter.

TOgUsageCode allows you to specify an expiration date in addition to the usage count. If the 
release code is tested after the expiration date, it is reported as invalid. The default value for 
the expiration date is 31 December 9999, which essentially means that the code will never 
expire.

See the EXUSREG for an example application that uses a Usage Count release code. A 
separate program, CODEGEN, is provided to generate the release code for this and other 
example projects.
TOgUsageCode Component     105

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
Hierarchy
TComponent (VCL)

!TOgCodeBase (OnGuard). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

TOgUsageCode (OnGuard)

Properties
! About

! AutoCheck

AutoDecrease

! Code

! Modifier

! StoreCode

! StoreModifier

Methods
! CheckCode

Decrease

GetValue

! IsCodeValid

Events
OnChangeCode

! OnChecked

! OnGetKey

! OnGetCode

! OnGetModifier
06     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16

!

!

Reference Section

AutoDecrease property

property AutoDecrease : Boolean

Default: True

AutoDecrease determines whether the usage count value is automatically decreased each 
time the application is run. 

If AutoDecrease is True, the usage count value embedded in the release code is automatically 
decreased by one each time the application is run. When the usage count is reduced to zero, 
the release code is expired. If AutoDecrease is False, you must call the Decrease method 
manually whenever necessary.

See also: Decrease

Decrease method

procedure Decrease;

Decrease reduces the usage count value stored in the release code. 

Performing this action requires several vital pieces of information, which are normally 
obtained by triggering several event handlers that you define. The normal sequence of 
events performed by Decrease is:

1.  Trigger the OnGetKey event to get the key used to encode and decode the release code. 
The key should always be embedded in the application as a constant.

2.  Trigger the OnGetCode event to get the release code. The code is normally stored in 
the registry or an INI file.

3.  Trigger the OnGetModifier event to get the key modifier. The key modifier can be 
stored as a constant in the application, stored in the registry or INI file, or generated 
when it is needed.

4.  Apply the modifier to the key.

5.  Test the release code to see if it is valid.

6.  Decrease the usage count by one.

7.  Trigger the OnChangeCode event to store the changed release code.

See also: OnChangeCode, OnGetCode, OnGetKey, OnGetModifier,
TOgUsageCode Component     107

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

GetValue method

function GetValue : LongInt;

GetValue returns the usage count embedded in the release code.

The value returned is the number of runs remaining.

OnChangeCode event

property OnChangeCode : TChangeCodeEvent

TChangeCodeEvent = procedure(
Sender : TObject; Code : TCode) of object;

OnChangeCode defines an event handler that is called when a release code changes. 

This event is fired after the release code is changed via a call to Decrease, either directly or 
automatically (if the AutoDecrease property is True).

Sender is the instance of the release code component. Code is the new release code value.

The release code should be saved in the INI file or the registry.

See also: AutoDecrease, Decrease
08     Chapter 5: Release Code Components



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 6:  Detecting Changes to an EXE

Misuse of your application can occur not only  when an unauthorized user attempts to run 
it, but also when someone attempts to change your application. This could be an attempt to 
change the title of a form, the label on a button, or even changes made by some type of virus. 
OnGuard provides the capability for you to protect your application against these types of 
piracy.

The program file integrity envelope is a mechanism that allows your application to detect 
changes to the EXE file. This mechanism is implemented in the TOgProtectExe component. 
It does this by storing the size of and a special CRC value for the executable file within the 
executable file itself. Each time the application is run, these values are recomputed and 
compared to the stored values. A mismatch indicates that the EXE file has been altered.
     109

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
TOgProtectExe Component
The TOgProtectExe component allows you to detect changes to your EXE file. The size of 
the EXE file and a 32-bit CRC (Cyclical Redundancy Check) value are recorded in the EXE 
file and checked each time the application is run.

See the EXPROT and STAMPEXE projects for examples that use this technique.

Hierarchy
TComponent (VCL)

TOgProtectExe (OgProExe)

Properties
About AutoCheck CheckSize

Methods
CheckExe StampExe UnStampExe

Events
OnChecked
10     Chapter 6: Detecting Changes to an EXE



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

About property

property About : string

Shows the current version of OnGuard.

About is provided in order that the version of OnGuard can easily be identified should 
technical support be needed. In the Object Inspector, display the ONGuard about box by 
double-clicking this property or selecting the dialog button to the right of the property 
value.

AutoCheck property

property AutoCheck : Boolean

Default: False

AutoCheck determines whether CheckExe is called automatically. 

If AutoCheck is True, CheckExe is called after the form containing this component is loaded. 
If AutoCheck is False, you are responsible for calling CheckExe to determine the status of the 
executable file.

See also: CheckExe
TOgProtectExe Component     111

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16

!

!

!

CheckExe method

function CheckExe(Report : Boolean) : TExeStatus;

TExeStatus = (
exeSuccess, exeSizeError, exeIntegrityError, exeNotStamped);

CheckExe tests to see if the executable file was altered. 

If Report is True, the result of the test is reported by triggering the OnChecked event. If 
Report is False, you must check the function result.

The result of calling CheckExe is one of the following values:

See also: OnChecked

CheckSize property

property CheckSize : Boolean

Default: True

CheckSize determines whether the size of the executable is tested. 

If CheckSize is True, the size and the CRC of the executable file are tested. If CheckSize is 
False, only the CRC of the executable file is tested.

OnChecked event

property OnChecked : TCheckedExeEvent

TCheckedExeEvent = procedure(
Sender : TObject; Status : TExeStatus) of object;

OnChecked defines an event handler that is called after the executable is checked. 

Sender is the instance of the release code component. Status is the value returned by a call to 
CheckExe.

See also: CheckExe

Value Description

exeSuccess The executable file has not changed.

exeSizeError The size of the executable file changed.

exeIntegrityError One or more bytes in the executable changed.

exeNotStamped The executable is not stamped with the CRC and size
information.
12     Chapter 6: Detecting Changes to an EXE



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

StampExe method

function StampExe (
const FileName : string ; EraseMarker : Boolean) : Boolean;

StampExe marks the executable program with its size and a CRC value. 

StampExe searches for a special marker that is used to mark the record where the size and 
CRC value are stored, calculates the executable’s size and CRC, and writes that information 
back to the record. If EraseMarker is True, the special marker used to locate the record is 
erased.

This method is not used by the TOgProtectExe component. It is provided so that you can 
use it to stamp the application you want to protect. You can write a simple application that 
uses StampExe to stamp the application you want to protect. Or you can use the STAMPEXE 
example project (which uses the StampExe method) to stamp the application you want to 
protect.

See also: UnStampExe

UnStampExe method

function UnStampExe (const FileName : string) : Boolean;

UnStampExe reverses the effect of a call to StampExe. 

UnStampExe can only be used if the special marker used to locate the CRC record was not 
erased by StampExe.

This method is not used by the TOgProtectExe component. It is provided so that you can 
use it unstamp an application.

See also: StampExe
TOgProtectExe Component     113

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
14     Chapter 6: Detecting Changes to an EXE



13

11

10

12

1

9

3

2

8

4

5

7

6

15

14

17

16
Chapter 7:  Single Instance Applications

A single instance application is one that refuses to allow a second or subsequent instance of 
itself to be run. This can be done by simply ignoring the request, but is normally followed by 
making the first instance of the application the active application. The two routines in the 
OgFirst unit provide these capabilities for both 16-bit and 32-bit applications.
     115

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
OgFirst Unit
The OgFirst unit provides routines that allow you to detect when a second instance of an 
application is being executed and to force the previous instance of the application to become 
the active application.

IsFirstInstance determines if the application is being run the first time. If a previous instance 
of the application exists, IsFirstInstance returns False. Then you can use 
ActivateFirstInstance to locate the application’s main window and make it the active 
window.

Use IsFirstInstance in the main body of the project file (prior to doing anything else), to 
detect a previous instance of the application. If there is a previous instance, you can switch 
to it by using ActivateFirstInstance.

Here is an example from the EXINST project:

begin
if IsFirstInstance then begin

Application.CreateForm(TMyForm, MyForm);
Application.CreateForm(TForm2, Form2);
Application.Run;

end else begin
{$IFDEF Win32}
ActivateFirstInstance;
{$ELSE}
ActivateFirstInstance('Test', 'TMyForm');
{$ENDIF}

end;
end.

After calling ActivateFirstInstance, the application should exit. Do not create any forms or 
call Application.Run.

See the EXINST project for an example that implements a single instance application.

Procedures
ActivateFirstInstance IsFirstInstance
16     Chapter 7: Single Instance Applications



13

11

10

12

1

9

3

2

8

4

7

6

15

14

17

16

!

!

Reference Section

ActivateFirstInstance procedure

procedure ActivateFirstInstance; {32-bit version}

procedure ActivateFirstInstance(const MainWindowCaption,
MainWindowClass : string); {16-bit version}

ActivateFirstInstance locates an application’s main window and then makes it the active 
window. 

ActivateFirstInstance forces the window with the specified caption and class to the top of the 
Z-order and gives it the focus. This method is normally called after detecting that a second 
instance of the application was executed and subsequently halted. Calling 
ActivateFirstInstance gives the appearance that running the application a second time 
succeeded.

The 32-bit version of ActivateFirstInstance does not take any parameters and automatically 
locates the application’s main window. The 16-bit version of this routine requires that the 
class name and caption of the main form be passed as arguments.

IsFirstInstance function

function IsFirstInstance : Boolean;

IsFirstInstance determines whether this is the first instance of a program. 

This method should be called prior to creating any forms so that the application can be 
terminated if necessary. IsFirstInstance returns True if this is the first instance of the 
application.

If IsFirstInstance returns False, you can call ActivateFirstInstance to activate the prior 
instance of the application.
OgFirst Unit     117

1

1



1

13

11

10

12

1

9

3

2

8

4

5

7

6

1

1

15

14

17

16
18     Chapter 7: Single Instance Applications



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
Subject index

A

ActivateFirstInstance 117
ActiveUsers 96
ApplyModifierToKey 63
AutoCheck (TOgCodeBase) 83
AutoCheck (TOgProtectExe) 111
AutoDecrease (TOgDaysCode) 92
AutoDecrease (TOgUsageCode) 107

C

Case-sensitive text key 58
CheckCode 83
CheckExe 112
CheckSize 112
Code (TOgCodeBase) 85
CodeType 78
CRC 110

D

Decrease (TOgDaysCode) 92
Decrease (TOgUsageCode) 107
Demonstration programs 11

E

End date release code 88
Event handlers

check executable 112
get key 86
get modifier 87
get registration string 100
get release code 86
release code change 93, 108
release code checked 86

Example programs 11
Execute (TOgMakeCodes) 78
Execute (TOgMakeKeys) 63

F

FileName 96

G

GenerateDateModifier 64
GenerateKey 64
GenerateMachineModifier 64
GenerateRandomKey 65
GenerateStringModifier 65
GenerateUniqueModifier 65
GetValue (TOgDateCode) 89
GetValue (TOgDaysCode) 93
GetValue (TOgSerialNumberCode) 102
GetValue (TOgSpecialCode) 104
GetValue (TOgUsageCode) 108

H

Hardware requirements 10
Help

on-line 14
Hints for dialogs 66, 79

I

InvalidUsers 96
IsCodeValid 85
IsFirstInstance 117
IsRemoteDrive 96
     i 1



13

11

10

12

Id
en

ti
fi

er
 In

d
ex

1

1

15

17

16

Su
b

je
ct

 In
d

ex
Su

b
je

ct
 In

d
ex

i

K

Key
apply modifier 63
creating 63, 64
date modifier 64
definition of 57
file name 66, 79
hints for dialogs 66
machine modifier 64
random 65
string modifier 65
type 58, 66
unique modifier 65

KeyFileName (TOgMakeCodes) 79
KeyFileName (TOgMakeKeys) 66
KeyType (TOgMakeKeys) 66

M

MaxUsers 97
Modifier

definition of 57
property 85
store 87

Modifier (TOgCodeBase) 85

N

Nag screen 8
Naming conventions 14
Network Access File 94
Network Metering release code

active users 96
definition of 94
invalid users 96
maximum users 97
Network Access File name 96
remote disk drive 96
reset Network Access File 97

Number of Days Used release code
automatically decrease 92
day count 93
decrease 92

Number of Days used release code
definition of 90

O

OgFirst 116
OnChangeCode (TOgDaysCode) 93
OnChangeCode (TOgUsageCode) 108
OnChecked (TOgCodeBase) 86
OnChecked (TOgProtectExe) 112
OnGetCode 86
OnGetKey 86
OnGetModifier 87
OnGetRegString 100

P

Program file integrity envelope 109
Protect executable

automatically check 111
check for changes 112
check size 112
definition of 109
stamp executable 113
unstamp executable 113

Protection strategies 8

R

Random keys 58
RegString 100
Release code

automatic checking 83
checking 83
definition of 57, 67
end date 88
i     Subject index



13

11

10

12

Id
en

tifier In
d

ex

9

1

15

14

17

16

Su
b

ject In
d

ex
Su

b
ject In

d
ex
Release code (continued)
generating 78
hints for dialogs 79
network metering 94
number of days used 90
property 85
serial number registration 101
simple registration 98
special registration 103
start/end date 88
store 87
type 78
usage count 105
validity 85

Requirements, hardware and software 10
ResetAccessFile 97

S

Serial number registration release code 101
ShowHints (TOgMakeCodes) 79
ShowHints (TOgMakeKeys) 66
Signing the key 57
Signing the release code 57
Simple Registration release code

definition of 98
registration string 100
store registration string 100

Single instance application
activate first instance 117
check for first instance 117
definition of 9, 115

Single machine authorization 8
Software requirements 10
Special registration release code 103
StampExe 113
Standard text key 58
Start/End date release code 88

StoreCode 87
StoreModifier 87
StoreRegString 100

T

TChangeCodeEvent (TOgDaysCode) 93
TChangeCodeEvent (TOgUsageCode) 108
TCheckedCodeEvent 86
TCheckedExeEvent 112
TCodeStatus 83
TCodeType 78
TExeStatus 112
TGetCodeEvent 86
TGetKeyEvent 86
TGetModifierEvent 87
TGetRegStringEvent 100
TKeyType (TOgMakeKeys) 66
TOgCodeBase 82
TOgDateCode 88
TOgDaysCode 90
TOgMakeCodes 67
TOgMakeKeys 58
TOgNetCode 94
TOgProtectExe 110
TOgRegistrationCode 98
TOgSerialNumberCode 101
TOgSpecialCode 103
TOgUsageCode 105

U

UnStampExe 113
Usage Count release code

automatically decrease 107
decrease 107
definition of 105
1Subject index     iii


	OnGuard
	TurboPower Software Company Colorado Springs, CO
	www.turbopower.com
	© 1997-2001 TurboPower Software Company. All rights reserved.
	Table of Contents

	Chapter 1: Introduction
	OnGuard is a library of components, classes, and routines that allow you to protect your applicat...
	By embedding a key in your application and making a few well placed calls to some of the routines...
	Through the use of a release code, you can do things such as unlock a demo version of your applic...
	A release code is a 16 hexadecimal character code that you provide to the end user. The user then...
	Some release codes contain additional information (such as the date that the release expires), wh...
	The OnGuard release codes provide many different protection methods:
	Start/end date check
	The application can’t be run prior to the start date or after the end date.

	Number of days used
	The application can only be used for a specific number of days (the days need not be contiguous).

	Network metering
	The application can be used by only a limited number of simultaneous users on a network.

	Simple registration
	The application is registered using a text string (for example, the user’s name or company name).

	Serial number registration
	The application is registered using a product serial number.

	Special registration
	The application is registered using special data that you define.

	Usage count limit
	The application can be run only a limited number of times.
	You can combine most of OnGuard’s protection methods to achieve a greater level of protection. Fo...
	OnGuard also provides a component that allows you to detect changes to your EXE file. It does thi...
	OnGuard makes it easy for you to control use of your application by making it a single instance a...
	OnGuard is based on code written by Robert Salesas of Eschalon Development, Inc. and now licensed...

	Using OnGuard
	OnGuard provides an assortment of components that allow you to protect the applications you write...
	Since there are an almost infinite number of ways to incorporate OnGuard into your application, d...
	Codes, keys, and modifiers
	An OnGuard code is nothing more than a record consisting of two long integers (8 bytes). The firs...
	An OnGuard key is used to encode (or mask) the contents of the code. A key is much like a passwor...
	The key is what gives all of the OnGuard components the ability to decode the code to see if it i...
	Modifiers can be considered as part of a key. They are used to change a key based on some reprodu...
	Other modifiers can “tie” a code to a user name, a product serial number, or even a specific date...

	Anatomy of a “code” component
	A “code” component is any of the OnGuard components that requires a release (or unlocking) code. ...
	1. The OnGetKey event is fired to obtain the key that was used to encode the release code. The ke...
	2. The OnGetCode event is fired to obtain the release code. The release code is normally stored o...
	3. The OnGetModifier event is fired to obtain the key modifier. A modifier should almost always b...
	4. The modifier is applied to the key to generate the key that was used to encode the release code.
	5. The release code is inspected to insure that it is a valid release code.
	6. The component-specific portion of the code is tested. The specific test depends on the type of...
	7. The OnChecked event is fired to report the results of the previous two steps.
	Two of the code components (the usage-count and days-count components) must have the ability to s...
	You may have noticed that the OnGuard components depend on you to do the work of providing and so...


	Release code components
	The OnGuard code components provide differing levels of protection., from a simple registration c...
	There are ways to circumvent any protection scheme and OnGuard ’s are no exception. Where appropr...
	TOgDateCode
	The date code component provides support for a code that is valid within a specific date range. T...
	The protection offered by this component can be circumvented by changing the system date so that ...

	TOgDaysCode
	The days code component implements a code that acts as a day counter. Each day that the code is u...
	To bypass this protection technique, a user would need to be able to save and restore the state o...

	TOgUsageCode
	The usage code component is very similar to the days code component, except that it limits the ac...

	TOgRegistrationCode
	The registration code component allows you to use a string (a user name or company name, for exam...
	Both the code and the registration string are usually stored external to the code component and t...

	TOgSerialNumberCode
	Like the registration code component, the serial number component provides minimal protection aga...

	TOgSpecialCode
	The special code component stores a long integer value as part of the code, but places no meaning...

	TOgNetCode
	Although not a release code component in the same sense as the components just described, TOgNetC...


	Other components and features
	Besides release code components, OnGuard also provides several other components, as well as a var...
	TOgProtectExe
	This component allows you to detect changes to your EXE file, to protect it against unauthorized ...
	This component is intended primaritly to be used in conjunction with the release code components,...

	TOgMakeKeys
	This non-visual component provides methods and propertiesfor creating and maintaining keys. It is...

	TOgMakeCodes
	This non-visual component displays the Code Generation dialog when its Execute method is called. ...

	OgFirstUnit
	This unit provides a pair of routines that allow you to detect when a second instance of your app...
	You might want to use these routines in conjunction with the TOgUsageCode component, for example,...

	OgUtil, OnGuard, OgNetWrk
	These three units interface a variety of potentially useful low-level routines. For descriptions ...



	Protection Strategies
	OnGuard provides many different protection methods so that you can select those necessary to crea...
	Demo version application with single machine authorization
	This protection strategy combines the advantages of the “Demo version application” and the “Singl...
	To prevent unauthorized copies of your application, design it so that it is initially a demo vers...
	Using this approach means that even fully functional “released” applications revert to their demo...

	Single machine authorization
	You can use the single machine authorization strategy with any type of release code to limit use ...
	The release code is encoded and decoded using a key derived from machine-specific information. Th...
	The EXMSELECT project demonstrates this approach.

	Single instance applications
	A single instance application is one that refuses to allow a second or subsequent instance of its...
	See “Chapter 7: Single Instance Applications” on page�115 for more information.

	Demo version application
	Another approach for protecting your application is to design it so that it is fully functional a...


	System Requirements
	To use OnGuard, you must have the following hardware and software:
	1. A computer capable of running Windows 3.1, 9x, NT, 2000, or ME.
	2. Delphi or C++Builder.
	3. A hard disk with at least 10MB of free space is strongly recommended. To install all OnGuard f...

	Installation
	Install OnGuard directly from the TurboPower Product Suite CD. Insert the CD into your CD-ROM dri...
	Demonstration and Example Programs
	The following demonstration and example programs are installed in the Examples folder:
	Table 1.1: Demonstrtation and example programs
	The example programs are provided so you can see how to use the various OnGuard components. Each ...



	Organization of this Manual
	Each chapter starts with an overview of the classes and components discussed in that chapter. The...
	Overview
	A description of the class or component.

	Hierarchy
	Shows the ancestors of the class being described, generally stopping at a VCL class. The hierarch...

	Properties
	Lists all the properties in the class. Some properties may be identified with a number in a bulle...

	Methods
	Lists all the methods in the class. Some methods may be identified with a number in a bullet: u. ...

	Events
	Lists all the events in the unit. Some events may be identified with a number in a bullet: u. The...

	Reference Section
	Details the properties, methods, and events of the class or component. These descriptions are in ...
	Declaration of the property, method, or event.
	Default value for properties, if appropriate.
	A short, one-sentence purpose. The ƒsymbol is used to mark the purpose to make it easy to skim th...
	Description of the property, method, or event. Parameters are also described here.
	Examples are provided in many cases.
	The “See also” section lists other properties, methods, or events that are pertinent to this item.

	Throughout the manual, the Msymbol is used to mark a warning or caution. Please pay special atten...

	Naming Conventions
	To avoid class name conflicts with VCL components and classes or from other third party suppliers...

	On-Line Help
	Although this manual provides a complete discussion of each component, keep in mind that there is...


	Technical Support
	The best way to get an answer to your technical support question is to post it in the OnGuard new...
	To get the most from the newsgroups, we recommend you use dedicated newsreader software.
	Newsgroups are public, so please do not post your product serial number, product unlocking code, ...
	TurboPower’s KnowledgeBase is another excellent support option. It has hundreds of articles about...
	In addition to the newsgroups, TurboPower Software Company offers a variety of technical support ...


	Chapter 2: Tutorials
	This tutorial section provides three simple, step-by-step examples that illustrate some of the mo...
	Example 1: Adding a Program Expiration Date
	In this example, we limit the range of dates for program execution. Although this protection stra...
	1. Create a new project.
	2. From the OnGuard tab, add a TOgDateCode component to the project’s main form.
	3. Click the right mouse button on the TOgDateCode component to invoke the local menu and then se...
	Figure 2.1: The Key Maintenance dialog box.
	The “File name” field is used to specify the INI file that holds the generated keys for all your ...

	4. Click the Add button to display the Description and Key dialog box as shown in Figure 2.2.
	Figure 2.2: The Description and Key dialog box.

	5. Enter the name of your application in the “Description” edit control. For this example, enter ...
	Figure 2.3: The Key Generation dialog box.

	6. Be sure that “Random” is selected as the key type and click “Generate Key”. Two hexadecimal re...
	Figure 2.4: The Key Maintenance dialog box with keys generated.

	7. Select your application (MyTest) in the “Applications” list box and the generated key is displ...
	8. Add the following to the implementation section of the unit:
	const
	CKey : TKey =
	($18,$C1,$99,$64,$3F,$FC,$DA,$6C,$38,$BC,$DF,$CB,$B8,$BE,$DF,$21);
	(The underlined portion of this statement was copied from the clipboard)
	Caution: Don’t store the key in the registry or an INI file. Doing so drastically reduces the sec...
	9. With the TOgDateCode component selected, double-click the OnGetKey event in the Events tab of ...
	Key := CKey;
	This event is fired by the TOgDateCode component to get the key to encode or decode the release c...

	10. With the TOgDateCode component selected, double-click the Code property in the Properties tab...
	Figure 2.5: The Code Generation dialog box.
	Be sure that the Date tab is selected. The “Start date” is automatically set to today's date. Ent...
	For this example, the release code will be stored with the application, so set the Store Code pro...
	This completes the portion of this example that concerns the TOgDateCode directly. However, there...

	11. With the TOgDateCode component selected, double-click the OnChecked event in the Events tab o...

	procedure TForm1.OgDateCode1Checked( Sender: TObject; Status:TCodeStatus);
	begin
	case Status of
	ogValidCode : ShowMessage('Valid code');
	ogPastEndDate : ShowMessage('Date has expired');
	ogInvalidCode : ShowMessage('Invalid release code');
	end;

	if Status <> ogValidCode then
	Application.Terminate;
	end;
	12. Compile and run the application You should see the “Valid code” message. If you run the appli...


	Example 2: Limiting Simultaneous Network Users
	In this example, we build a network application that limits the number of concurrent users to two...
	1. Create a new project.
	2. From the OnGuard tab, add a TOgNetCode component to the projects main form.
	3. Right click on the TOgNetCode component and select “Generate Key” to display the Key Maintenan...
	Figure 2.6: The Key Maintenance dialog box.
	The “File name” field is used to specify the INI file that holds the generated keys for all your ...

	4. Click the Add button to display the Description and Key dialog box. In the Description field, ...
	Figure 2.7: The Description and Key dialog box with the Description field filled in.

	5. Click on the far right speed button (with the picture of a key) to generate the key for this a...
	Figure 2.8: The Key Generation dialog box.

	6. Be sure “Random” is selected in the “Key Type” and press the Generate Key button. Two hexadeci...
	7. In the “Applications” list box, select NetPrj1. The generated key, in both forms, is displayed...
	Figure 2.9: The Key Maintenance dialog box.

	8. Click the Copy button immediately to the right of the lower of the two edit controls. This cop...
	Caution: Do not store the key in an INI file or the Registry. Doing so makes it available to user...

	9. Click once on the TOgNetCode component. On the Events tab of the Object Inspector, double clic...
	procedure TForm1.OgNetCode1GetKey(
	Sender: TObject; var Key: TKey)
	const
	CKey : TKey = ($44,$OE,$E2,$DO,$O8,$F6,$5C,$F7,$92,$2B,$DC,$6C,$AC,$5B,$39,$4E);
	begin
	Key := CKey;
	end;
	The underlined code was pasted from the clipboard into the editor and is the string that was copi...
	10. With the TOgNetCode component selected, double-click the Code property in the Properties tab ...
	Figure 2.10: The Code Generation dialog box with the Access Slots field filled.

	11. Click on the Net tab of the notebook. Note that the key for the program has been automaticall...
	12. Click the Generate button. This creates a unique code based on the number of slots and, if an...
	13. Click the OK button on the dialog box. The generated code is seen in the Code property of the...
	14. Click on the StoreCode property. Click once on the down arrow and select True. This stores th...
	15. Click on the FileName property. Enter “NETPRJ1.NAF”. This provides the name of the Network Ac...
	16. Click on the Events tab of the Object Inspector. Double click on the OnChecked event. In the ...

	procedure TForm1.OgNetCode1Checked(
	Sender: TObject; Status: TCodeStatus);
	begin
	case Status of
	ogInvalidCode :
	begin
	ShowMessage('Invalid Code');
	Application.Terminate;
	end;
	ogNetCountUsed :
	begin
	ShowMessage('No more users allowed');
	Application.Terminate;
	end;
	end;
	end;
	17. Select File|Save File As from the main menu. Enter “NETPRJ1U” in the File Save dialog box and...
	18. Compile and run the application, and leave it running.
	19. From either a DOS box or using Start|Run from the task bar, start another copy of the applica...
	20. Try to run a third instance of the application. You should see the “No more users allowed” me...


	Example 3: Limiting Program Executions
	In this example, we show how to use OnGuard to limit the number of times a program can be run. As...
	1. Create a New Project.
	2. From the OnGuard tab, add a TOgUsageCode component to the form.
	3. Right click the TOgUsageCode component. and select “Generate Key” to display the Key Maintenan...
	Figure 2.11: The Key Maintenance dialog box.
	The “File name” field is used to specify the INI file that holds the generated keys for all your ...

	4. Click the Add button to display the Description and Key dialog box as shown in Figure 2.12.
	Figure 2.12: The Description and Key dialog box with the Description field filled.

	5. In the Description field, enter “UsgPrj1” as shown in Figure 2.12. Click on the far right spee...
	Figure 2.13: The Key Generation dilog showing genreated keys.

	6. Be sure “Random” is selected in the “Key Type” edit control and press the Generate Key button....
	7. In the “Applications” list box, select UsgPrj1. The generated key, in both forms, is displayed...
	Figure 2.14: The Key Maintenance dialog box with the keys displayed.

	8. Click the Copy button immediately to the right of the lower of the two edit controls. This cop...
	Caution: Do not store the key in an INI file or the Registry. Doing so makes it available to user...

	9. Click once on the TOgUsageCode component. On the Events tab of the Object Inspector, double cl...
	procedure TForm1.OgUsageCode1GetKey(
	Sender: TObject; var Key: TKey);
	const
	CKey : TKey = ($BD,$42,$EF,$13,$E7,$40,$6E,$13,$77,$08,$B1,$6E,$21,$B5,$C7,$FE); begin
	Key := CKey;
	end;
	The OnGetKey event automatically retrieves the key every time the program starts. Without this ev...
	10. Right click on the TOgUsageCode component and select “Generate Code” from the context menu. T...
	11. Click on the Usage tab of the notebook. Note that the key for the program has been automatica...
	Figure 2.15: The Code Generation dialog box with the Usage count and Expires fields filled.

	12. In the Usage Count edit control, enter the number 1 to limit the program to only one run as s...
	13. Click on the Expires edit control and enter an expiration date in the format you’ve set up fo...
	14. The TOgUsageCode component provides a second level of protection by allowing you to enter an ...
	15. Click the Generate button. This creates a unique code based on the number of allowed uses and...
	16. Write down this code. You will need it later. Click the OK button on the dialog box.
	17. Add OgUtil and IniFiles to the uses clause of the unit. OgUtil contains routines used to conv...

	unit unit1;
	interface
	uses
	WinTypes, WinProcs, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, OnGuard, Ini...
	Note that the uses clause was generated by Delphi 1, i.e., it has WinTypes and WinProcs. Had the ...
	18. Click once on the TOgUsageCode component. Double click the OnGetCode event on the Events tab ...

	procedure TForm1.OgUsageCode1GetCode(
	Sender: TObject; var Code: TCode);
	var
	IniFile : TIniFile;
	S : string;
	begin
	IniFile := TIniFile.Create('usgprj1.ini');
	try
	S := IniFile.ReadString('Codes', 'UsageCode', '');
	HexToBuffer(S, Code, SizeOf(Code));
	finally
	IniFile.Free;
	end;
	end;
	The OnGetCode event is responsible for retrieving the release code when the program runs.
	19. Double click the OnChecked event in the Object Inspector. In the source editor, modify the ge...

	procedure TForm1.OgUsageCode1Checked(
	Sender: TObject; Status: TCodeStatus);
	var
	Code : TCode;
	IniFile : TIniFile;
	S : string;
	begin
	case Status of
	ogInvalidCode :
	begin
	if InputQuery('Useage Test Program', 'Code', S) then begin
	if (HexToBuffer(S, Code, SizeOf(Code))) then begin
	IniFile.WriteString('Codes', 'UsageCode', S);
	OgUsageCode1.CheckCode(True);
	Exit;
	end;
	end;
	end;
	ogCodeExpired : ShowMessage('Code Expired');
	ogRunCountUsed : ShowMessage('Run Count exceeded');
	end;
	if Status <> ogValidCode then
	Application.Terminate;
	end;
	The OnChecked event of the TOgUsageCode component is fired as a result of the release code being ...
	If the code is invalid, the cutoff date has been exceeded, or the number of permitted uses has be...
	20. Double click the OnChangeCode event in the Object Inspector. In the source editor, change the...

	procedure TForm1.OgUsageCode1ChangeCode(
	Sender: TObject; Code: TCode);
	var
	IniFile : TIniFile;
	S : string;
	begin
	IniFile := TIniFile.Create('usgprj1.ini');
	try
	S := BufferToHex(Code, SizeOf(Code));
	IniFile.WriteString('Codes', 'UsageCode', S);
	finally
	IniFile.Free;
	end;
	end;
	The OnChangeCode event is fired when the OgUsageCode component needs to update the information in...
	21. Select File|Save File As from the main menu. Enter “USGPRJ1U” in the File Save dialog box and...
	22. Compile and run the application. When the InputQuery box appears, enter the code you wrote do...
	23. Close the application and try to run the program again. The “Run Count Exceeded” message appe...



	Chapter 3: Low-Level Routines
	If you need more control over how and when release codes are handled, you can move one level lowe...
	The ONGUARD.PAS unit not only implements all of the “Code” components, it provides access to the ...
	For example, the following four routines are used to create and manage usage codes.
	procedure InitUsageCode(const Key : TKey; Count : LongInt; Expires : TDateTime; var Code : TCode);
	function IsUsageCodeValid(const Key : TKey; const Code : TCode) :Boolean;
	procedure DecUsageCode(const Key : TKey; var Code : TCode);
	function GetUsageCodeValue(const Key : TKey; const Code : TCode) : LongInt;
	function IsUsageCodeExpired(const Key : TKey; const Code: TCode) : Boolean;

	The first parameter for each of these routines is the key. The key is used to encode and decode t...
	InitUsageCode takes an already initialized key value, a usage count, an expiration date (Expire),...
	The date, days, registration, serial number, and special codes all have similar, low-level, routi...
	Procedures/Functions
	Refernce Section
	ApplyModifierToKeyPrim procedure
	procedure ApplyModifierToKeyPrim( Modifier : LongInt; var Key; KeySize : Cardinal);

	ApplyModifierToKeyPrim XOR’s the Modifier value with the Key returning the modified key as the Ke...
	Use this routine to sign a key.
	KeySize if the size of the key in bytes
	This routine is defined in the OnGuard unit.

	BufferToHex function
	function BufferToHex(const Buf; BufSize : Cardinal) : string;

	BufferToHex converts one or more bytes to a hexidecimal string.
	Buf contains one or more bytes and BufSize if the number of bytes in Buf. The hexadecimal version...
	This routine is defined in the OgUtil unit.

	BufferToHexBytes function
	function BufferToHexBytes(const Buf; BufSize : Cardinal) : string;

	BufferToHexBytes performs the same operation as the BufferToHex function except that the function...
	Example result: “$02, $67, $FF”
	This routine is defined in the OgUtil unit.

	CheckNetAccessFile function
	function CheckNetAccessFile( const NetAccess : TNetAccess) : Boolean;
	TNetAccess = packed record Fh : Integer; Key : TKey; CheckValue : Word; Index : Word; end;

	CheckNetAccessFile verifies that the net access file referenced by NetAccess has at least one slo...
	If there is at least one open slot in the net access file, CheckNetAccessFile returns True, other...
	This routine is defined in the OgNetWrk unit.

	CreateMachineID function
	function CreateMachineID (
	MachineInfo : TEsMachineInfoSet) : LongInt;
	TEsMachineInfoSet = set of(
	midUser, midSystem, midNetwork, midDrives);

	CreateMachineID produces a key modifier based on specific hardware information.
	This function allows you to choose which factors to use when creating the machine identifier. mid...

	CreateNetAccessFile function
	function CreateNetAccessFile(const FileName : string; const Key : TKey;Count : Word) : Boolean;

	CreateNetAccessFile creates a net access for Count users file using FileName as the name of the f...
	If a file with FileName as its name exists, it is overwritten without warning.
	This routine is defined in the OgNetWrk unit.

	CreateNetAccessFileEx function
	function CreateNetAccessFileEx(const FileName : string; const Key : TKey; const Code : TCode) : B...

	CreateNetAccessFileEx creates a net access file using the access count value from a previously en...
	Key must be the same key that was used to create the code or the code is considered invalid.
	This routine is defined in the OgNetWrk unit.

	DecDaysCode procedure
	procedure DecDaysCode(const Key : TKey; var Code : TCode);

	DecDaysCode reduces the internal days count value by one and returns the modified code as the Cod...
	Key must be the same key that was used to create the code or the code is considered invalid.
	This routine is defined in the OnGuard unit.

	DecodeNAFCountCode function
	function DecodeNAFCountCode( const Key : TKey; const Code : TCode) : LongInt;

	DecodeNAFCountCode uses Key to decode Code and returns the number of authorized users as the func...
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OgNetWrk unit.

	DecUsageCode procedure
	procedure DecUsageCode(const Key : TKey; var Code : TCode);

	DecUsageCode reduces the internal usage count value by one and returns the modified code as the C...
	Key must be the same key that was used to create the code or the code is considered invalid.
	This routine is defined in the OnGuard unit.

	EncodeNAFCountCode procedure
	procedure EncodeNAFCountCode( const Key : TKey; Count : Cardinal; var Code : TCode);

	EncodeNAFCountCode uses Key to create and encode the usage Count value creating a network code.
	The resulting code is returned as the Code parameter.
	This routine is defined in the OgNetWrk unit.

	ExpandDate function
	function ExpandDate(D : Word) : TDateTime;

	ExpandDate translates an OnGuard date offset to an actual date.
	OnGuard uses a date offset to reduce the amount of space necessary to store a date. OnGuard creat...
	Exceptions to the conversion rules are that a value of 0 expands to 1 January 9999 and date offse...
	This routine is defined in the OnGuard unit.

	GenerateDateModifierPrim function
	function GenerateDateModifierPrim(D : TDateTime) : LongInt;

	GenerateDateModifierPrim produces a key modifier based on the date D.
	This routine is defined in the OnGuard unit.

	GenerateMachineModifierPrim function
	function GenerateMachineModifierPrim: LongInt;

	GenerateMachineModifierPrim produces a key modifier based on default hardware information.
	Information about hard disk capacity, network card serial number, and other items specific to a p...
	This routine is defined in the OnGuard unit.

	GenerateMD5KeyPrim procedure
	procedure GenerateMD5KeyPrim(var Key: TKey; const Str : string);

	GenerateMD5KeyPrim produces a Key by applying the MD5 hash to the string passed as Str
	The routine is case sensitive.
	This routine is defined in the OnGuard unit.

	GenerateRandomKeyPrim procedure
	procedure GenerateRandomKeyPrim(var Key; KeySize : Cardinal);

	GenerateRandomKeyPrim produces a Key using a random numbers.
	This routine is defined in the OnGuard unit.

	GenerateStringModifierPrim function
	function GenerateStringModifierPrim(const S : string) : LongInt;

	GenerateStringModifierPrim produces a key modifier by applying a hash algorithm to the string pas...
	This routine is case sensitive.
	This routine is defined in the OnGuard unit.

	GenerateTMDKeyPrim procedure
	procedure GenerateTMDKeyPrim( var Key; KeySize : Cardinal; const Str : string);

	GenerateTMDKeyPrim produces key by applying a hash algorithm to the string passed in Str.
	This routine is defined in the OnGuard unit.

	GenerateUniqueModifierPrim function
	function GenerateUniqueModifierPrim: LongInt;

	GenerateUniqueModifierPrim produces a key modifier using random numbers.
	This routine is defined in the OnGuard unit.

	GetCodeType function
	function GetCodeType( const Key : TKey; const Code : TCode) : TCodeType;
	TCodeType =(ctDate, ctDays, ctRegistration, ctSerialNumber, ctUsage, ctNetwork, ctSpecial, ctUnkn...

	GetCodeType returns the type of code passed as the Code parameter.
	Key must be the same key that was used when the code was created or ctUnknown is returned.
	This routine is defined in the OnGuard unit.

	GetDateCodeValue function
	function GetDateCodeValue( const Key : TKey; const Code : TCode) : TDateTime;

	GetDateCodeValue returns the expiration date stored in the Code.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	GetDaysCodeValue function
	function GetDaysCodeValue( const Key : TKey; const Code : TCode) : LongInt;

	GetDaysCodeValue returns the expiration date stored in the Code.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	GetExpirationDate function
	function GetExpirationDate( const Key : TKey; const Code : TCode) : TDateTime;

	GetExpirationDate returns the date that the code passed as the Code parameter expires.
	If the code has no expiration date or is invalid, 1 January 9999 is returned.Key must be the same...
	This routine is defined in the OnGuard unit.

	GetNetAccessFileInfo function
	function GetNetAccessFileInfo(const FileName : string; const Key : TKey; var NetAccessInfo : TNet...
	TNetAccessInfo = packed record Total : Cardinal; Locked : Cardinal; Invalid : Cardinal; end;

	etNetAccessFileInfo obtains information about the specified network access file.
	FileName is the name of an existing network access file and Key is the key that was used to creat...
	GetNetAccessFileInfo returns False if there was an error, otherwise True.
	This routine is defined in the OgNetWrk unit.

	GetSerialNumberCodeValue function
	function GetSerialNumberCodeValue( const Key : TKey; const Code : TCode) : LongInt;

	GetSerialNumberCodeValue returns the serial number that was used to create the Code.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	GetSpecialCodeValue function
	function GetSpecialCodeValue( const Key : TKey; const Code : TCode) : LongInt;

	GetSpecialCodeValue returns the value that was used to create the Code.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	GetUsageCodeValue function
	function GetUsageCodeValue( const Key : TKey; const Code : TCode) : LongInt;

	GetUsageCodeValue returns the current usage count value store in the Code.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	HexStringIsZero function
	function HexStringIsZero(const Hex : string) : Boolean;

	HexStringIsZero returns True only if the hexadecimal string passed as Hex consists entirely of ze...
	This routine is defined in the OgUtil unit.

	HexToBuffer function
	function HexToBuffer( const Hex : string; var Buf; BufSize : Cardinal) : Boolean;

	HexToBuffer converts the hexadecimal string in Hex to bytes that are stored in Buf.
	Punctuation ($, spaces, commas, parentheses, etc.) is ignored.
	BufSize is the number of bytes to store in Buf and must be the number of hexadecimal bytes in Hex...
	This routine is defined in the OgUtil unit.

	InitDateCode procedure
	procedure InitDateCode(const Key : TKey; StartDate, EndDate : TDateTime; var Code : TCode);

	InitDateCode creates and initializes a date code using Key, StartDate, and EndDate.
	The resulting code is valid for dates between StartDate and EndDate inclusive.
	This routine is defined in the OnGuard unit.

	InitDaysCode procedure
	procedure InitDaysCode(const Key : TKey; Days : Word; Expires : TDateTime; var Code : TCode);

	InitDaysCode creates and initializes a days code using Key, Days, and Expires.
	Days is stored as part of the Code.
	The resulting code is valid for the number of days of use specified in the Days parameter and unt...
	This routine is defined in the OnGuard unit.

	InitRegCode procedure
	procedure InitRegCode(const Key : TKey; const RegStr : string; Expires : TDateTime; var Code : TC...

	InitRegCode creates and initializes a registration code using Key, RegStr, and Expires.
	The code stores a hash value that was derived from RegStr. RegStr cannot be extracted from the code.
	The resulting code is valid until the date stored in Expires is reached.
	This routine is defined in the OnGuard unit.

	InitSerialNumberCode procedure
	procedure InitSerialNumberCode(const Key : TKey; Serial : LongInt; Expires : TDateTime; var Code ...

	InitSerialNumberCode creates and initializes a serial number code using Key, Serial, and Expires.
	Serial is stored as part of the Code.
	The resulting code is valid until the date stored in Expires is reached.
	This routine is defined in the OnGuard unit.

	InitSpecialCode procedure
	procedure InitSpecialCode(const Key : TKey; Value : LongInt; Expires : TDateTime; var Code : TCode);

	InitSpecialCode creates and initializes a special code using Key, Value, and Expires.
	Value is stored as part of the Code.
	The resulting code is valid until the date stored in Expires is reached.
	This routine is defined in the OnGuard unit.

	InitUsageCode procedure
	procedure InitUsageCode(const Key : TKey; Count : Word; Expires : TDateTime; var Code : TCode);

	InitUsageCode creates and initializes a usage code using Key, Count, and Expires.
	Count is stored as part of the Code.
	The resulting code is valid until the internal Count is 0 or the date stored in Expires is reached.
	This routine is defined in the OnGuard unit.

	IsAppOnNetwork function
	function IsAppOnNetwork(const ExePath : string) : Boolean;

	IsAppOnNetwork returns True if the drive specified in ExePath is a remote drive, otherwise False.
	This routine is defined in the OgNetWrk unit.

	IsDateCodeExpired function
	function IsDateCodeExpired( const Key : TKey; const Code : TCode) : Boolean;

	IsDateCodeExpired returns True if the Code has expired, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	IsDateCodeValid function
	function IsDateCodeValid( const Key : TKey; const Code : TCode) : Boolean;

	IsDateCodeValid returns True if Code is a valid date code, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid.
	This routine is defined in the OnGuard unit.

	IsDaysCodeExpired function
	function IsDaysCodeExpired( const Key : TKey; const Code : TCode) : Boolean;

	IsDaysCodeExpired returns True if the Code has expired, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	IsDaysCodeValid function
	function IsDaysCodeValid( const Key : TKey; const Code : TCode) : Boolean;

	IsDaysCodeValid returns True if Code is a valid days code, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid.
	This routine is defined in the OnGuard unit.

	IsRegCodeExpired function
	function IsRegCodeExpired( const Key : TKey; const Code : TCode) : Boolean;

	IsRegCodeExpired returns True if the Code has expired, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	IsRegCodeValid function
	function IsRegCodeValid( const Key : TKey; const Code : TCode) : Boolean;

	IsRegCodeValid returns True if Code is a valid registration code, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid.
	This routine is defined in the OnGuard unit.

	IsSerialNumberCodeExpired function
	function IsSerialNumberCodeExpired( const Key : TKey; const Code : TCode) : Boolean;

	IsSerialNumberCodeExpired returns True if the Code has expired, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	IsSerialNumberCodeValid function
	function IsSerialNumberCodeValid( const Key : TKey; const Code : TCode) : Boolean;

	IsSerialNumberCodeValid returns True if Code is a valid serial number code, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid.
	This routine is defined in the OnGuard unit.

	IsSpecialCodeExpired function
	function IsSpecialCodeExpired( const Key : TKey; const Code : TCode) : Boolean;

	IsSpecialCodeExpired returns True if the Code has expired, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	IsSpecialCodeValid function
	function IsSpecialCodeValid( const Key : TKey; const Code : TCode) : Boolean;

	IsSpecialCodeValid returns True if Code is a valid special code, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid.
	This routine is defined in the OnGuard unit.

	IsUsageCodeExpired function
	function IsUsageCodeExpired( const Key : TKey; const Code: TCode) : Boolean;

	IsUsageCodeExpired returns True if the Code has expired, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid. If t...
	This routine is defined in the OnGuard unit.

	IsUsageCodeValid function
	function IsUsageCodeValid( const Key : TKey; const Code : TCode) : Boolean;

	IsUsageCodeValid returns True if Code is a valid usage code, otherwise False.
	Key must be the same key that was used to create the code or the code is considered invalid.
	This routine is defined in the OnGuard unit.

	LockNetAccessFile function
	function LockNetAccessFile(const FileName : string; const Key : TKey; var NetAccess : TNetAccess)...
	TNetAccess = packed record Fh : Integer; Key : TKey; CheckValue : Word; Index : Word; end;

	LockNetAccessFile locks an access slot in the network access file specified by FileName and retur...
	This routine is defined in the OgNetWrk unit.

	ResetNetAccessFile function
	function ResetNetAccessFile( const FileName : string; const Key : TKey) : Boolean;

	ResetNetAccessFile resets invalid access slots by clearing each slot’s “in-use” status.
	Access slots that are currently in use are skipped.
	This routine is defined in the OgNetWrk unit.

	ShrinkDate function
	function ShrinkDate(D : TDateTime) : Word;

	ShrinkDate translates a date to an OnGuard date offset.
	OnGuard uses a date offset to reduce the amount of space necessary to store a date. OnGuard creat...
	Exceptions to the conversion rules are that a value of 0 expands to 1 January 9999 and date offse...
	This routine is defined in the OnGuard unit.

	StringHashElf function
	function StringHashElf(const Str : string) : LongInt;

	StringHashElf produces a hash value based on the text passed in Str.
	This routine is defined in the OnGuard unit.

	UnlockNetAccessFile function
	function UnlockNetAccessFile( var NetAccess : TNetAccess) : Boolean;
	TNetAccess = packed record Fh : Integer; Key : TKey; CheckValue : Word; Index : Word; end;

	UnlockNetAccessFile unlocks an access slot in the network access file specified by FileName and r...
	This routine is defined in the OgNetWrk unit.



	Chapter 4: Keys and Release Codes
	OnGuard provides two components that automate the tasks of making keys and generating release codes.
	The TOgMakeKeys component is used to create keys. Keys are used to encode and decode release code...
	To make the key more secure, a modifier can be applied to it to make it unique to the current dat...
	The TOgMakeCodes component is used to generate release codes. The release code is an 8 byte value...
	Release codes can be unique to a particular user name, machine specific ID, or almost any static ...
	TOgMakeKeys Component
	TOgMakeKeys provides methods and properties to create and maintain keys. Keys are used to encode ...
	Keys are normally embedded into your application as constants and then supplied to the OnGuard ro...
	TOgMakeKeys allows you to make three different types of keys: Random, Standard Text, and Case-Sen...
	Creating and Maintaining Keys
	TOgMakeKeys provides a series of dialogs with built-in methods for managing keys and their relate...
	Figure 4.1: The Key Maintenance dialog box.

	“File name” is the name of the INI file where the key information is stored. Use the speed button...
	“Applications” contains a list of the applications for which keys are currently stored in the fil...
	The Add button displays the Description and Key dialog box (described below). The Edit button dis...
	The “Key” group contains two edit fields with hexadecimal representations of the key. The second ...
	The OK button closes the dialog box and makes the selected key information available via the appr...
	If you choose to add or edit an item in the “Applications” list, the Description and Key dialog b...
	Figure 4.2: The Description and Key dialog box.

	“Description” is the name of (or some text describing) the application.
	If a key was already generated for this application, “Key” displays the hexadecimal representatio...
	The OK button closes the dialog box, saving any changes that were made. The Cancel button closes ...
	If you click on the speed button to generate a key, the Key Generation dialog box is displayed as...
	Figure 4.3: The Key Generation dialog box

	The “Key Type” combo box allows you to select the method used for key generation. The possible ch...
	The Generate key button creates the key based on the “Key Type” and the “Key Phrase”.
	The “Key Phrase” memo field allows you to enter a text phrase that is used to generate the key if...
	The “Key” group contains two edit fields with hexadecimal representations of the key. The second ...
	The OK button closes the dialog box and makes the selected key information available via the appr...

	Hierarchy
	TComponent (VCL)
	TOgMakeKeys (OnGuard)


	Properties
	Methods
	Reference Section
	About property
	property About : string

	Shows the current version of OnGuard.
	About is provided in order that the version of OnGuard can easily be identified should technical ...

	ApplyModifierToKey method
	procedure ApplyModifierToKey (
	Modifier : LongInt; var Key; KeySize : Cardinal);

	ApplyModifierToKey alters the specified key.
	If Modifier is not zero, this routine alters (signs) the key specified by Key. KeySize is the siz...
	This routine is used automatically by the components that generate a release code when a non-zero...
	See also: GenerateDateModifier, GenerateMachineModifier, GenerateStringModifier, GenerateUniqueMo...


	Execute method
	function Execute: Boolean;

	Execute displays the Key Maintenance dialog box.
	Use this method to display the Key Maintenance dialog box so that a key can be generated. The dia...
	If Execute returns True, the KeyFileName and KeyType properties contain valid values, and the key...
	See also: Key, KeyFileName, KeyType


	GenerateDateModifier method
	function GenerateDateModifier: LongInt;

	GenerateDateModifier creates a key modifier based on the current date.
	This routine is also available as a function (GenerateDateModifierPrim) for use in applications t...
	See also: ApplyModifierToKey, GenerateMachineModifier, GenerateStringModifier, GenerateUniqueModi...


	GenerateMachineModifier method
	function GenerateMachineModifier: LongInt;

	GenerateMachineModifier creates a key modifier based on the hardware information for the current ...
	GenerateMachineModifier uses hard disk volume sizes, volume serial numbers, registration name and...
	Use this modifier to sign the key used to encode and decode release codes if you want the release...
	Caution: If hardware is changed on the machine, the modifier changes, rendering the release code,...
	This routine is also available as a function (GenerateMachineModifierPrim) for use in application...
	See also: ApplyModifierToKey, GenerateDateModifier, GenerateStringModifier, GenerateUniqueModifier


	GenerateMDKey method
	procedure GenerateMDKey ( var Key; KeySize : Cardinal; const Str : string);

	GenerateMDKey produces a key based on a supplied text string.
	To produce keys that are not case dependent, convert the text to upper case prior to calling Gene...
	See also: ApplyModifierToKey, GenerateRandomKey, GetKey


	GenerateRandomKey method
	procedure GenerateRandomKey(var Key; KeySize : Cardinal);

	GenerateRandomKey produces a key based on the VCL’s internal random number generator.
	See also: ApplyModifierToKey, GenerateKey

	GenerateStringModifier method
	function GenerateStringModifier (const S : string) : LongInt;

	GenerateStringModifier creates a key modifier based on the supplied string.
	This routine is also available as a function (GenerateStringModifierPrim) for use in applications...
	See also: ApplyModifierToKey, GenerateDateModifier, GenerateMachineModifier, GenerateUniqueModifier


	GenerateUniqueModifier method
	function GenerateUniqueModifier: LongInt;

	GenerateUniqueModifier creates a unique key modifier.
	This routine is also available as a function (GenerateUniqueModifierPrim) for use in applications...
	See also: ApplyModifierToKey, GenerateDateModifier, GenerateMachineModifier, GenerateStringModifier


	GetKey method
	procedure GetKey (var Value : TKey);
	TKey = array[0..15] of Byte;

	GetKey returns the key generated when Execute was called.
	Aftera successful call to Execute, use GetKey to return the selected key value.
	The key used to encode release codes should be protected from unauthorized use because a release ...
	See also: Execute


	KeyFileName property
	property KeyFileName : string

	KeyFileName is the name of the INI file used to store application names and their associated keys.
	If a valid file name is assigned to this property, its contents are displayed when the Key Mainte...

	KeyType property
	property KeyType : TKeyType
	TKeyType = (ktRandom, ktMessageDigest, ktMessageDigestCS);

	Default: ktMessageDigest
	KeyType determines the type of key to generate.
	After a successful call to Execute, KeyType contains one of these key types:
	If a value is assigned to this property, it is used to determine the type of key to generate when...
	See also: Execute


	ShowHints property
	property ShowHints : Boolean

	Default: False
	ShowHints determines whether hints are shown for the TOgMakeKeys dialog boxes.


	TOgMakeCodes Component
	TOgMakeCodes is a non-visual component that displays a dialog box when its Execute method is call...
	Release codes are encoded using a key to prevent unauthorized access and tampering. If the Key pr...

	Generating Release Codes
	The Execute method displays the Code Generation dialog box as shown in Figure 4.4.
	Figure 4.4: The Code Generation dialog box generating a Star Date or End Date release code.

	The first item in the Code Generation dialog box is a notebook with a page for each possible type...
	Use the Date notebook page to generate a Start/End Date release code as shown in Figure 4.4. An a...
	See the “TOgDateCode Component” on page 88 for information about Start/End Date release codes.
	Use the Days notebook page to generate a Number of Days Used release code as shown in Figure 4.5....
	Figure 4.5: The Code Generation dialog box enerating a Number of Days Used release code.

	Enter the number of days in the “Day count” edit field. A value of 0 is interpreted as an expired...
	See the “TOgDaysCode Component” on page 90 for more information about Number of Days Used release...
	Use the Reg notebook page to generate a Simple Registration release code as shown in Figure 4.6. ...
	Figure 4.6: The Code Generation dialog box generating a Simple Registration release code.

	You should store the text in a file or in the registry. It can be displayed at run time as a dete...
	The Random Number button generates a random string of hexadecimal digits and puts them in the “St...
	Use the “Expires” edit field to specify a date that the release code will expire. The default val...
	See the “TOgRegistrationCode Component” on page 98 for more information about Simple Registration...
	Use the S/N notebook page to generate a Serial Number release code. The number entered in “Serial...
	Figure 4.7: The Code Generation dialog box generating a Serial Number release code.

	You should store the serial number in a file or in the registry so that it can be read and displa...
	Use the “Expires” edit field to specify a date that the release code will expire. The default val...
	The Random Number button generates a random number to be used as the product serial number.
	See the “TOgSerialNumberCode Component” on page 101 for more information about Serial Number rele...
	Use the Usage notebook page to generate a Usage Count release code as shown in Figure 4.8. This r...
	Figure 4.8: The Code Generation dialog box generating a Usage Count release code.

	Enter the number of uses in the “Usage count” edit field. Use the “Expires” edit field to specify...
	See the “TOgUsageCode Component” on page 105 for more information about Usage Count release codes.
	Use the Network notebook page to generate a Network Metering release code as shown in Figure 4.9....
	Figure 4.9: The Code Generation dialog box generating a Network Metering release code.

	Enter the maximum number of network users in the “Access Slots” edit field.
	See the “TOgNetCode Component” on page 94 for more information about Network Metering release codes.
	Use the Special notebook page to generate a Special release code as shown in Figure 4.10. A Speci...
	Figure 4.10: The Code Generation dialog box generating a Special release code.

	Enter any value in the “Special data” edit field. Use the “Expires” edit field to specify a date ...
	See the “TOgSpecialCode Component” on page 103 for more information about Special release codes.
	The “Key used to encode” group in the Code Generation dialog box contains information about the k...
	The modifier check boxes, shown in Figure 4.11, determine whether a modifier is used to sign the ...
	Figure 4.11: The Code Generation dialog box displaying the modifier check boxes.

	If the “Machine modifier” box is checked, a modifier is created using machine-specific informatio...
	If the “Date modifier” box is checked, a modifier is created using a date. Use this type of modif...
	If the “Unique modifier” box is checked, a modifier is randomly generated. Use this type of modif...
	If the “String modifier” box is checked, a modifier is created using the text contained in the “S...
	If none of the boxes are checked, an arbitrary 32-bit value can be entered in the “Modifier” edit...
	The third group in the Code Generation dialog box contains the Generate button. After you have su...
	The OK button closes the dialog box and indicates that the entered data and the generated code ar...
	Hierarchy
	TComponent (VCL)
	TOgMakeCodes (OnGuard)


	Properties
	Methods
	Reference Section
	About property
	property About : string

	Shows the current version of OnGuard.
	About is provided in order that the version of OnGuard can easily be identified should technical ...

	CodeType property
	property CodeType : TCodeType
	TCodeType = (ctDate, ctDays, ctRegistration, ctSerialNumber,
	ctUsage, ctNetwork, ctSpecial, ctUnknown);

	Default: ctDate
	CodeType is the type of release code.
	If you assign a value to CodeType prior to calling Execute, the corresponding notebook page is di...
	See also: Execute


	Execute method
	function Execute : Boolean;

	Execute displays the Code Generation dialog box.
	Use this method to display the Code Generation dialog box so that a release code can be generated...
	If Execute returns True, the Code and CodeType properties contain valid values. Otherwise, the co...
	See also: Code, CodeType


	GetCode method
	procedure GetCode(var Value : TCode);
	TCode = packed record
	CheckValue : Word; {magic value}
	Expiration : Word; {expiration date or 0, if none}
	case Byte of
	0 : (FirstDate : Word; {for date code}
	EndDate : Word);
	1 : (Days : Word; {for days code}
	LastAccess : Word);
	2 : (RegString : LongInt); {for reg code}
	3 : (SerialNumber : LongInt); {for serial number code}
	4 : (UsageCount : Word; {for usage count code}
	LastChange : Word);
	5 : (Value : LongInt); {for specail codes}
	6 : (NetIndex : LongInt); {for net codes}
	end;

	GetCode returns the release code generated by the Execute method.
	After a successful call to Execute, use GetCode to return to return the selected release code value.
	The code can represent any one of several release code types. Use the CodeType property to determ...
	See also: CodeType, Execute


	KeyFileName property
	property KeyFileName : string

	KeyFileName is the name of the INI file used to store application names and their associated keys.
	If a valid file name is assigned to this property, its contents are displayed when the Key Mainte...

	ShowHints property
	property ShowHints : Boolean

	Default: False
	ShowHints determines whether hints are shown for the TOgMakeCodes dialog boxes.



	Chapter 5: Release Code Components
	This chapter discusses the components that implement the different types of release codes. OnGuar...
	Start and End Date
	Number of Days Used
	Network Metering
	Simple Registration
	Serial Number Registration
	Special Registration
	Usage Count
	TOgCodeBase Class
	The TOgCodeBase class is the ancestor class for the other components described in this chapter. I...
	Hierarchy
	TComponent (VCL)
	TOgCodeBase (OnGuard)


	Properties
	Methods
	Events
	Reference Section
	About property
	property About : string

	Shows the current version of OnGuard.
	About is provided in order that the version of OnGuard can easily be identified should technical ...

	AutoCheck property
	property AutoCheck : Boolean

	Default: True
	AutoCheck determines whether CheckCode is called automatically.
	If AutoCheck is True, CheckCode is automatically called after the form containing this component ...
	See also: CheckCode


	CheckCode virtual abstract method
	function CheckCode( Report : Boolean) : TCodeStatus; virtual; abstract;
	TCodeStatus = (ogValidCode, ogInvalidCode, ogPastEndDate,
	ogDayCountUsed, ogRunCountUsed, ogNetCountUsed, ogCodeExpired);

	CheckCode checks for a valid release code.
	CheckCode is defined as virtual and abstract, which means that each descendant component override...
	CheckCode requires several pieces of information, which it obtains by triggering event handlers t...
	1. Trigger the OnGetKey event to get the key used to encode and decode the release code. The key ...
	2. Trigger the OnGetCode event to get the release code. The release code is normally stored in th...
	3. Trigger the OnGetModifier event to get the key modifier. The modifier can be stored as a const...
	4. Apply the modifier to the key.
	5. Test the release code to see if it is valid.
	6. Test the release code to see if it has expired. The details of this test depend on the type of...
	The result of calling CheckCode is one of the following values:
	See also: AutoCheck, OnChecked, OnGetCode, OnGetKey, OnGetModifier



	Code property
	property Code : string

	Code is the release code.
	Code is normally generated by another program, encoded using the application’s key, and given to ...
	Code is published as needed by descendent components.
	See also: OnGetCode, StoreCode


	IsCodeValid method
	function IsCodeValid : Boolean;

	IsCodeValid tests to see if the release code is valid.
	IsCodeValid calls the CheckCode method and tests its result to see if the release code is valid. ...
	You might need to perform additional tests to ensure that the data used to create the release cod...
	See also: CheckCode


	Modifier property
	property Modifier : LongInt

	Modifier is used to sign the key.
	If Modifier is equal to 0, the key is not altered. If Modifier is not equal to 0, it is used to s...
	See also: OnGetModifier, StoreModifier


	OnChecked event
	property OnChecked : TCheckedCodeEvent
	TCheckedCodeEvent = procedure( Sender : TObject; Status : TCodeStatus) of object;

	OnChecked defines an event handler that is called after the release code is checked.
	Sender is the instance of the release code component. Status is the value returned by a call to C...
	See also: CheckCode


	OnGetCode event
	property OnGetCode : TGetCodeEvent
	TGetCodeEvent = procedure( Sender : TObject; var Code : TCode) of object;

	OnGetCode defines an event handler that is called to get the release code.
	Sender is the instance of the release code component. Code is the TCode value associated with thi...
	An example of when you might want to have the code generated and stored with the application prio...
	See also: Code, StoreCode


	OnGetKey event
	property OnGetKey : TGetKeyEvent
	TGetKeyEvent = procedure( Sender : TObject; var Key : TKey) of object;

	OnChecked defines an event handler that is called to get the key.
	Sender is the instance of the release code component.
	The key should always be stored as a constant in the application and never stored in the form, a ...

	OnGetModifier event
	property OnGetModifier : TGetModifierEvent
	TGetModifierEvent = procedure( Sender : TObject; var Value : LongInt) of object;

	OnGetModifier defines an event handler that is called to get the modifier.
	Sender is the instance of the release code component. Value is the modifier that is used to sign ...
	See also: Modifier, StoreModifier


	StoreCode property
	property StoreCode : Boolean

	Default: False
	StoreCode determines whether the release code is stored in the resource file.
	StoreCode is published as needed by descendants.
	See also: Code, OnGetCode


	StoreModifier property
	property StoreModifier : Boolean

	Default: False
	StoreModifier determines whether the modifier is stored in the resource file.
	See also: Modifier, OnGetModifier



	TOgDateCode Component
	TOgDateCode implements a Start/End Date release code. Use this release code when you need to limi...
	OnGuard implements a date as the number of days past a base-line date (stored internally as a sma...
	The EXDTREG project is an example that uses the TOgDateCode component. The example project repres...
	A separate program, CODEGEN, is provided to generate the release code for this and other example ...
	Hierarchy
	TComponent (VCL)
	uTOgCodeBase (OnGuard) 82
	TOgDateCode (OnGuard)


	Properties
	Methods
	Events
	Reference Section
	GetValue method
	function GetValue : TDateTime;

	GetValue returns the end date embedded in the release code.
	The returned value is a VCL TDateTime value.



	TOgDaysCode Component
	TOgDaysCode implements a Number of Days Used release code. This release code limits the number of...
	The days do not need to be consecutive. For example, if an application is limited to 2 days, it c...
	A Number of Days Used release code must be stored in a file or the registry because it must be up...
	TOgDaysCode allows you to specify an expiration date in addition to the number of days. If the re...
	See the EXDYREG project for an example application that uses a Number of Days Used release code. ...
	Hierarchy
	TComponent (VCL)
	uTOgCodeBase (OnGuard) 82
	TOgDaysCode (OnGuard)

	Properties
	Methods
	Events
	Reference Section
	AutoDecrease property
	property AutoDecrease : Boolean

	Default: True
	AutoDecrease determines whether the day count value is automatically decreased each day the appli...
	If AutoDecrease is True, the day count embedded in the release code is automatically decreased by...
	See also: Decrease


	Decrease method
	procedure Decrease;

	Decrease reduces the day count value stored in the release code.
	Performing this action requires several vital pieces of information, which are normally obtained ...
	1. Trigger the OnGetKey event to get the key used to encode and decode the release code. The key ...
	2. Trigger the OnGetCode event to get the release code. The release code is normally stored in th...
	3. Trigger the OnGetModifier event to get the key modifier. The modifier can be stored as a const...
	4. Apply the modifier to the key.
	5. Test the code to see if it is valid.
	6. Decrease the day count by one if it has not already been decreased today.
	7. Trigger the OnChangeCode event to store the changed release code.
	See also: OnChangeCode, OnGetCode, OnGetKey, OnGetModifier


	GetValue method
	function GetValue : LongInt;

	GetValue returns the day count embedded in the release code.
	The value returned is the number of days remaining.

	OnChangeCode event
	property OnChangeCode : TChangeCodeEvent
	TChangeCodeEvent = procedure( Sender : TObject; Code : TCode) of object;

	OnChangeCode defines an event handler that is called when a release code changes.
	This event is fired after the release code is changed via a call to Decrease, either directly or ...
	Sender is the instance of the release code component. Code is the new release code value.
	The release code should be saved in a file or the registry.
	See also: AutoDecrease, Decrease




	TOgNetCode Component
	TOgNetCode implements a Network Metering release code. This release code limits the number of con...
	The Network Access File contains access slots for each authorized use of the application. Each ac...
	When you call the CheckCode method, the Network Access File is checked to ensure that there is ro...
	Your application can create or recreate the Network Access File automatically or require that it ...
	See the EXNET project for an example that uses a Network Metering release code. A separate progra...
	Hierarchy
	TComponent (VCL)
	uTOgCodeBase (OnGuard) 82
	TOgNetCode (OgNetWrk)


	Properties
	Methods
	Events
	Reference Section
	ActiveUsers read-only property
	property ActiveUsers : LongInt

	ActiveUsers is the current number of users running the application.
	FileName property
	property FileName : string

	FileName is the name of the Network Access File.
	The Network Access File is used to determine if another instance of the application is authorized...

	InvalidUsers read-only property
	property InvalidUsers : LongInt

	InvalidUsers is the number of invalid user access slots in the Network Access File.
	Invalid slots are created when the user does not exit the application normally. Use ResetAccessFi...
	See also: ResetAccessFile


	IsRemoteDrive method
	function IsRemoteDrive(const ExePath : string) : Boolean;

	IsRemoteDrive determines whether ExePath resides on a remote disk drive.
	You can use IsRemoteDrive to determine if your application is being run from a remote disk drive....

	MaxUsers read-only property
	property MaxUsers : LongInt

	MaxUsers is the maximum number of concurrent users of the application.
	ResetAccessFile method
	function ResetAccessFile : Boolean;

	ResetAccessFile resets the invalid slots in the Network Access File.
	If the operation is successful, the return value is True. If the file could not be opened for wri...
	Calling ResetAccessFile does not effect active users. Since their access slots are in use, they a...



	TOgRegistrationCode Component
	TOgRegistrationCode implements a Simple Registration release code. This release code ties the use...
	TOgRegistrationCode doesn’t perform any special tests like most of the other release code compone...
	The textual data and the registration code can be stored in the registry or an INI file so that t...
	TOgRegistrationCode allows you to specify an expiration date in addition to the registration valu...
	See the EXRGREG project for an example application that uses a Simple Registration release code. ...
	Hierarchy
	TComponent (VCL)
	uTOgCodeBase (OnGuard) 82
	TOgRegistrationCode (OnGuard)

	Properties
	Methods
	Events
	Reference Section
	OnGetRegString event
	property OnGetRegString : TGetRegStringEvent
	TGetRegStringEvent = procedure( Sender : TObject; var Value : string) of object;

	OnGetRegString defines an event handler that is called to get the registration string.
	Sender is the instance of the release code component. Value is the registration string used to cr...

	RegString property
	property RegString : string

	RegString is the registration string used to create the release code.
	See also: OnGetRegString

	StoreRegString property
	property StoreRegString : Boolean

	Default: True
	StoreRegString determines whether the registration string value is stored as a resource at design...
	If StoreRegString is True, the value of RegString is stored in the resource file along with the f...
	See also: OnGetRegString, RegString




	TOgSerialNumberCode Component
	TOgSerialNumberCode implements a Serial Number Registration release code. This release code ties ...
	TOgSerialNumberCode doesn’t perform any special tests like most of the other release code compone...
	TOgSerialNumberCode allows you to specify an expiration date in addition to the serial number. If...
	See the EXSNREG project for an example application that uses a Serial Number Registration release...
	Hierarchy
	TComponent (VCL)
	uTOgCodeBase (OnGuard) 82
	TOgSerialNumberCode (OnGuard)

	Properties
	Methods
	Events
	Reference Section
	GetValue method
	function GetValue : LongInt;

	GetValue returns the serial number embedded in the release code.
	The value returned is the serial number that was used when the release code was created.



	TOgSpecialCode Component
	TOgSpecialCode implements a Special Registration release code. This release code is based on a sp...
	TOgSpecialCode doesn’t perform any special tests like most of the other release code components. ...
	TOgSpecialCode allows you to specify an expiration date in addition to the special information. I...
	See the EXSPREG project for an example application that uses a Special Registration release code....
	Hierarchy
	TComponent (VCL)
	uTOgCodeBase (OnGuard) 82
	TOgSpecialCode (OnGuard)

	Properties
	Methods
	Events
	Reference Section
	GetValue method
	function GetValue : LongInt;

	GetValue returns the special information embedded in the release code.
	The returned value is a LongInt. The interpretation of the returned value is determined entirely ...



	TOgUsageCode Component
	TOgUsageCode implements a Usage Count release code. This release code limits the number of times ...
	A Usage Count release code must be stored in the INI file or the registry because it must be upda...
	Unfortunately, it is easy for a user to reset a usage counter by simply reinstalling the applicat...
	TOgUsageCode allows you to specify an expiration date in addition to the usage count. If the rele...
	See the EXUSREG for an example application that uses a Usage Count release code. A separate progr...
	Hierarchy
	TComponent (VCL)
	uTOgCodeBase (OnGuard) 82
	TOgUsageCode (OnGuard)

	Properties
	Methods
	Events
	Reference Section
	AutoDecrease property
	property AutoDecrease : Boolean

	Default: True
	AutoDecrease determines whether the usage count value is automatically decreased each time the ap...
	If AutoDecrease is True, the usage count value embedded in the release code is automatically decr...
	See also: Decrease


	Decrease method
	procedure Decrease;

	Decrease reduces the usage count value stored in the release code.
	Performing this action requires several vital pieces of information, which are normally obtained ...
	1. Trigger the OnGetKey event to get the key used to encode and decode the release code. The key ...
	2. Trigger the OnGetCode event to get the release code. The code is normally stored in the regist...
	3. Trigger the OnGetModifier event to get the key modifier. The key modifier can be stored as a c...
	4. Apply the modifier to the key.
	5. Test the release code to see if it is valid.
	6. Decrease the usage count by one.
	7. Trigger the OnChangeCode event to store the changed release code.
	See also: OnChangeCode, OnGetCode, OnGetKey, OnGetModifier,


	GetValue method
	function GetValue : LongInt;

	GetValue returns the usage count embedded in the release code.
	The value returned is the number of runs remaining.

	OnChangeCode event
	property OnChangeCode : TChangeCodeEvent
	TChangeCodeEvent = procedure( Sender : TObject; Code : TCode) of object;

	OnChangeCode defines an event handler that is called when a release code changes.
	This event is fired after the release code is changed via a call to Decrease, either directly or ...
	Sender is the instance of the release code component. Code is the new release code value.
	The release code should be saved in the INI file or the registry.
	See also: AutoDecrease, Decrease





	Chapter 6: Detecting Changes to an EXE
	Misuse of your application can occur not only when an unauthorized user attempts to run it, but a...
	The program file integrity envelope is a mechanism that allows your application to detect changes...
	TOgProtectExe Component
	The TOgProtectExe component allows you to detect changes to your EXE file. The size of the EXE fi...
	See the EXPROT and STAMPEXE projects for examples that use this technique.
	Hierarchy
	TComponent (VCL)
	TOgProtectExe (OgProExe)


	Properties
	Methods
	Events
	Reference Section
	About property
	property About : string

	Shows the current version of OnGuard.
	About is provided in order that the version of OnGuard can easily be identified should technical ...

	AutoCheck property
	property AutoCheck : Boolean

	Default: False
	AutoCheck determines whether CheckExe is called automatically.
	If AutoCheck is True, CheckExe is called after the form containing this component is loaded. If A...
	See also: CheckExe


	CheckExe method
	function CheckExe(Report : Boolean) : TExeStatus;
	TExeStatus = ( exeSuccess, exeSizeError, exeIntegrityError, exeNotStamped);

	CheckExe tests to see if the executable file was altered.
	If Report is True, the result of the test is reported by triggering the OnChecked event. If Repor...
	The result of calling CheckExe is one of the following values:
	See also: OnChecked


	CheckSize property
	property CheckSize : Boolean

	Default: True
	CheckSize determines whether the size of the executable is tested.
	If CheckSize is True, the size and the CRC of the executable file are tested. If CheckSize is Fal...

	OnChecked event
	property OnChecked : TCheckedExeEvent
	TCheckedExeEvent = procedure( Sender : TObject; Status : TExeStatus) of object;

	OnChecked defines an event handler that is called after the executable is checked.
	Sender is the instance of the release code component. Status is the value returned by a call to C...
	See also: CheckExe


	StampExe method
	function StampExe ( const FileName : string ; EraseMarker : Boolean) : Boolean;

	StampExe marks the executable program with its size and a CRC value.
	StampExe searches for a special marker that is used to mark the record where the size and CRC val...
	This method is not used by the TOgProtectExe component. It is provided so that you can use it to ...
	See also: UnStampExe


	UnStampExe method
	function UnStampExe (const FileName : string) : Boolean;

	UnStampExe reverses the effect of a call to StampExe.
	UnStampExe can only be used if the special marker used to locate the CRC record was not erased by...
	This method is not used by the TOgProtectExe component. It is provided so that you can use it uns...
	See also: StampExe





	Chapter 7: Single Instance Applications
	A single instance application is one that refuses to allow a second or subsequent instance of its...
	OgFirst Unit
	The OgFirst unit provides routines that allow you to detect when a second instance of an applicat...
	IsFirstInstance determines if the application is being run the first time. If a previous instance...
	Use IsFirstInstance in the main body of the project file (prior to doing anything else), to detec...
	Here is an example from the EXINST project:
	begin
	if IsFirstInstance then begin
	Application.CreateForm(TMyForm, MyForm);
	Application.CreateForm(TForm2, Form2);
	Application.Run;
	end else begin
	{$IFDEF Win32}
	ActivateFirstInstance;
	{$ELSE}
	ActivateFirstInstance('Test', 'TMyForm');
	{$ENDIF}
	end;
	end.
	After calling ActivateFirstInstance, the application should exit. Do not create any forms or call...
	See the EXINST project for an example that implements a single instance application.

	Procedures
	Reference Section
	ActivateFirstInstance procedure
	procedure ActivateFirstInstance; {32-bit version}
	procedure ActivateFirstInstance(const MainWindowCaption,
	MainWindowClass : string); {16-bit version}

	ActivateFirstInstance locates an application’s main window and then makes it the active window.
	ActivateFirstInstance forces the window with the specified caption and class to the top of the Z-...
	The 32-bit version of ActivateFirstInstance does not take any parameters and automatically locate...

	IsFirstInstance function
	function IsFirstInstance : Boolean;

	IsFirstInstance determines whether this is the first instance of a program.
	This method should be called prior to creating any forms so that the application can be terminate...
	If IsFirstInstance returns False, you can call ActivateFirstInstance to activate the prior instan...




	Subject index
	A
	C
	D
	E
	F
	G
	H
	I
	K
	M
	N
	O
	P
	R
	S
	T
	U


