
Zint Barcode Generator and Zint Barcode
Studio User Manual

This version of the manual relates to Zint version 2.4.2.

1. Introduction
The Zint project aims to provide a complete cross-platform open source barcode generating
solution. The package currently consists of a Qt based GUI, a command line executable and a
library with an API to allow developers access to the capabilities of Zint. It is hoped that Zint
provides a solution which is flexible enough for professional users while at the same time takes care
of as much of the processing as possible to allow easy translation from input data to barcode image.

The library which forms the main component of the Zint project is currently able to encode data in
over 50 barcode symbologies (types of barcode), for each of which it is possible to translate that
data from either Unicode (UTF-8) or a raw 8-bit data stream. The image can be rendered as either a
Portable Network Graphic (PNG) image, as Encapsulated Post Script (EPS) or as a Scalable Vector
Graphic (SVG). Many options are available for setting the characteristics of the output image
including the size and colour of the image, the amount of error correction used in the symbol and, in
the case of PNG images, the orientation of the image.

If you find this project useful then please consider making a donation. Your support will ensure that
we are able to continue to purchase and implement new barcode standards as they become available
from various standards organisations. To make a donation go to:

http://sourceforge.net/project/project_donations.php?group_id=199350

Getting Help

The pages on this site should help you to get the most out of Zint. If, however, you have specific
requirements or questions or wish to report a bug then either join the mailing list at

https://lists.sourceforge.net/lists/listinfo/zint-barcode

or send an e-mail to

zint-barcode@lists.sourceforge.net

Before posting to this list please note the following points...

• You do not need to join the list to post messages, although joining the list will usually mean
your request is answered more promptly.

• Zint is primarily developed for Linux. If you are using another platform then we will be less

1/61

This document is a backup of the user manual information which was formerly held at the website http://www.zint.org.uk.
You are free to distribute this document, copy it or any part of it and reproduce it by any means or in any medium as you see

fit as long as you also acknowledge the fact that it is covered by the following copyright:

© Robin Stuart 2006 – 2011

(In other words I'm happy for you to treat it as a public domain document as long as you don't take credit for it!)

http://www.zint.org.uk/
mailto:zint-barcode@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/zint-barcode
http://sourceforge.net/project/project_donations.php?group_id=199350

able to help you, although we will do so if we can. We cannot provide support for
commercial packages such as MS Office or Crystal Reports.

• Always ensure you are using the latest version of Zint before posting bug reports - the bug
you are reporting may have been fixed already.

• Please remember to state what operating system you are using and include enough
information to allow us to reproduce the error - including input data if appropriate.

• Please DO NOT post messages asking for us to change the license arrangements. You will
be ignored. If you want a barcode encoder with a different license then please look
elsewhere (see below).

• Please remember that Zint is developed by volunteers - don't be surprised if we are unable to
help you or if it takes a long time to answer your questions.

What's In a Name?

In best GNU fashion the name "Zint" is a recursive acronym for "Zint is not Tec-It". Tec-It is an
Austrian ISV who specialise in AIDC technologies and in particular their commercial products
"Barcode Studio" and "TBarcode/X" perform very similar functions to Zint. In fact the design of
Zint is heavily influenced by these products with the hope that it can provide a close to 'drop-in
replacement' capability.

Please note, however, that Zint is released under the GNU General Public License. This means that,
for developers, it is only suitable for use with other open source packages. Zint cannot be released
under any other license. If you see a copy of Zint released under any other license then please report
it. If you require commercially licensed software to create barcodes then please contact Tec-It.

2. Installing Zint
2.1 Linux

The easiest way to configure compilation is to take advantage of the CMake utilities. You will need
to install CMake and libpng first. Note that you will need both libpng and libpng-devel packages. If
you want to take advantage of Zint Barcode Studio you will also need the Qt libraries pre-installed.

Once you have fulfilled these requirements unzip the source code tarball and follow these steps in
the top directory:
mkdir build
cd build
cmake ..
make
make install

The command line program can be accessed by typing
zint {options} -d {data}

Notice that the data needs to be entered after all other options. Any options given after the data will
be ignored. The GUI can be accessed by typing
zint-qt

2/61

http://www.tec-it.com/
http://en.wikipedia.org/wiki/GNU_GPL
http://www.tec-it.com/

To test that the installation has been sucessful a shell script is included in the /frontend folder. To
run the test type
./test.sh

This should create numerous files showing the many modes of operation which are available from
Zint.

2.2 Microsoft Windows

To run Zint Barcode Studio on Windows simply download and run the installation executable and
follow the instructions on-screen.

2.3 Apple Mac OSX

Zint can be compiled on OSX from the command line using the same steps as shown for Linux
above. Currently the Zint Barcode Studio GUI is not known to work on OSX.

3. Using Zint Barcode Studio
Below is a brief guide to Zint Barcode Studio which is the graphical user interface for the Zint
package.

This is the main window of Zint
Barcode Studio. The top of the
window shows a preview of the
barcode which the current settings
would create. These settings can be
changed using the controls below.
The top most text box on this first
tab allows you to enter the data to
be encoded. When you are happy
with your settings you can use the
Save button to save the resulting
image to file as a PNG, EPS or
SVG image. The two sliders next to
the preview allow you to change
the orientation and scale of the
preview image but do not affect the
saved image.

3/61

The Symbology drop-down box
gives access to all of the
symbologies supported by Zint
shown in alphabetical order.

At the bottom of the screen is an
area for creating composite
symbologies which appears when
the currently selected symbology is
supported by the composite
symbology standard. GS1 data can
then be entered with square
brackets used to separate AI
information from data as shown
here.

4/61

With some symbologies extra
options area available to fine-tune
the appearance or the content of the
symbol generated. These are given
in a second tab. Here the method is
shown for adjusting the size of an
Aztec Code symbol.

The appearance tab can be used to
adjust the dimensions and other
properties of the symbol. The
height value affects the height of 1-
dimensional symbologies.
Boundary bars can be added and
adjusted and the size of the saved
image can be determined.

5/61

A colour dialog is used to adjust the
colour of the foreground and
background of the generated image.
Click on “Foreground Colour” or
“Background Colour” respectively.

Clicking on the ellipsis next to the
"Data to Encode" text box opens a
larger window which can be used
to enter longer strings of text. You
can also use this window to get
data from file.

6/61

Clicking on the sequence button
(labelled "123..") opens the
Sequence Dialog. This allows you
to create multiple barcode images
by entering a sequence of data
inputs in the right hand panel.
Sequences can also be
automatically generated by entering
parameters on the left hand side or
by importing the data from file.
Zint will generate a separate
barcode image for each line of text
in the right hand panel. The format
field determines the format of the
automatically generated sequence
where characters have the
meanings as given below:

Character Effect

Insert leading
spaces

$ Insert leading
zeroes

* Insert leading
asterisks

Any other
character

Interpreted
literally.

The Export Dialog sets the
parameters for exporting a
sequence of barcode images. Here
you can set the file name and the
output image format. Note that the
symbology, colour and other
formatting information is taken
from the main window.

7/61

4. Using the Command Line
This page describes how to encode data using the command line front end program.

4.1 Inputting data

The data to encode can be entered at the command line using the -d option, for example
zint -d 'This Text'

This will encode the text This Text. Zint will use the default symbology, Code 128, and output to the
default file out.png in the current directory. The -d switch and the input data should always be the
last entry on the command line input. Any options given after -d will be ignored.

The data input to Zint is assumed to be encoded in Unicode (UTF-8) format. If you are encoding
characters beyond the 7-bit ASCII set on a platform which does not use Unicode by default then
some corruption of the data may occur.

Non-printing characters can be entered on the command line using the backslash (\) as an escape
character. Permissable characters are shown in the table below. Note that only applies on the
command line.

Escape
Character

ASCII
Equivalent

Interpretation

\0 0x00 Null

\E 0x04
End of
Transmission

\a 0x07 Bell

\b 0x08 Backspace

\t 0x09 Horizontal Tab

\n 0x0a Line Feed

\v 0x0b Vertical Tab

\f 0x0c Form Feed

\r 0x0d Carriage Return

\e 0x1b Escape

\G 0x1d Group Selector

\R 0x1e Record Selector

Input data can be read directly from file using the -i switch as shown below. The input file is
assumed to be Unicode (UTF-8) formatted unless an alternative mode is selected.
zint -i ./somefile.txt

8/61

4.2 Directing Output

Output can be directed to a file other than the default using the -o switch. For example:
zint -o here.png -d 'This Text'

draws a Code 128 barcode in the file here.png. If an encapsulated Post Script file is needed simply
append the file name with .eps:
zint -o there.eps -d 'This Text'

Scalable Vector Graphics representations of symbols can be generated with the suffix ".svg". Output
can also be directed to stdout using the --directeps, --directpng and --directsvg
switches for EPS, PNG and SVG output respectively.

4.3 Selecting barcode type

Selecting which type of barcode you wish to produce (i.e. which symbology to use) can be done at
the command line using the -b or --barcode= switch followed by the appropriate integer value in the
following table.

Numeri
c Value

Barcode Name

1 Code 11

2 Standard Code 2 of 5

3 Interleaved 2 of 5

4 Code 2 of 5 IATA

6 Code 2 of 5 Data Logic

7 Code 2 of 5 Industrial

8 Code 3 of 9 (Code 39)

9 Extended Code 3 of 9 (Code 39+)

13 EAN

16 GS1-128 (UCC.EAN-128)

18 Codabar

20 Code 128 (automatic subset switching)

21 Deutshe Post Leitcode

22 Deutshe Post Identcode

23 Code 16K

24 Code 49

25 Code 93

9/61

28 Flattermarken

29 GS1 DataBar-14

30 GS1 DataBar Limited

31 GS1 DataBar Extended

32 Telepen Alpha

34 UPC A

37 UPC E

40 PostNet

47 MSI Plessey

49 FIM

50 LOGMARS

51 Pharmacode One-Track

52 PZN

53 Pharmacode Two-Track

55 PDF417

56 PDF417 Truncated

57 Maxicode

58 QR Code

60 Code 128 (Subset B)

63 Australia Post Standard Customer

66 Australia Post Reply Paid

67 Australia Post Routing

68 Australia Post Redirection

69 ISBN (EAN-13 with verification stage)

70 Royal Mail 4 State (RM4SCC)

71 Data Matrix

72 EAN-14

75 NVE-18

76 Japanese Postal Code

10/61

77 Korea Post

79 GS1 DataBar-14 Stacked

80 GS1 DataBar-14 Stacked Omnidirectional

81 GS1 DataBar Expanded Stacked

82 PLANET

84 MicroPDF417

85 USPS OneCode

86 Plessey Code

87 Telepen Numeric

89 ITF-14

90 Dutch Post KIX Code

92 Aztec Code

93 DAFT Code

97 Micro QR Code

98 HIBC Code 128

99 HIBC Code 39

102 HIBC Data Matrix

104 HIBC QR Code

106 HIBC PDF417

108 HIBC MicroPDF417

112 HIBC Aztec Code

128 Aztec Runes

129 Code 32

130
Composite Symbol with EAN linear
component

131
Composite Symbol with GS1-128 linear
component

132
Composite Symbol with GS1 DataBar-14
linear component

11/61

133
Composite Symbol with GS1 DataBar Limited
component

134
Composite Symbol with GS1 DataBar
Extended component

135
Composite Symbol with UPC A linear
component

136
Composite Symbol with UPC E linear
component

137
Composite Symbol with GS1 DataBar-14
Stacked component

138
Composite Symbol with GS1 DataBar-14
Stacked Omnidirectional component

139
Composite Symbol with GS1 DataBar
Expanded Stacked component

140 Channel Code

141 Code One

142 Grid Matrix

This table is also accessible from the command line by issuing zint -t

4.4 Adjusting height

The height of a 1d symbol can be adjusted using the --height switch. For example:
zint --height=100 -d 'This Text'

specifies a symbol height of 100 times the x-resolution of the symbol.

4.5 Adjusting whitespace

The amount of whitespace to the left and right of the generated barcode can be altered using the -w
switch. For example:
zint -w 10 -d 'This Text'

specifies a whitespace width of 10 times the x-resolution of the symbol.

4.6 Adding boundary bars and boxes

Zint allows the symbol to be bound with 'boundary bars' using the option --bind. These bars help to
prevent misreading of the symbol by corrupting a scan if the scanning beam strays off the top or
bottom of the symbol. Zint can also put a border right around the symbol and its whitespace with
the --box option. This option is automatically selected for ITF-14 symbols.

The width of the boundary or box can be specified using the --border switch. For example:
zint --box --border=10 -d 'This'

12/61

gives a box with a width 10 times the x-resolution of the symbol.

4.7 Using colour

The default colours of a symbol are a black symbol on a white background. Zint allows you to
change this. The -r switch allows the default colours to be inverted so that a white symbol is shown
on a black background. For example the command
zint -r -d 'This'

gives an inverted Code 128 symbol. This is not practical for most symbologies but white-on-black
is allowed by the Data Matrix and Aztec Code symbology specifications.

For more specific needs the foreground and background colours can be specified using the --fg=
and --bg= options followed by a number in RGB hexadecimal notation (the same system used in
HTML). For example the command
zint --fg=004700 -d 'This'

alters the symbol to a dark green as shown below.

4.8 Rotating the Symbol

The symbol can be rotated through four orientations using the --rotate= option followed by the
angle of rotation as shown below. This option is only available with PNG output.

--rotate=0 (default) --rotate=180

--rotate=270
--rotate=90

4.9 Adjusting image size

The scale of the image can be altered using the --scale= option followed by a multiple of the
default x-dimension. For example for PNG images a scale of 5 will increase the x-dimension to 10
pixels.

13/61

4.10 Input modes

GS1 data can be encoded in a number of symbologies. Application identifiers are enclosed in
[square brackets] followed by the data to be encoded (see 5.1.12.3). To encode GS1 data use
--gs1. GS1 mode is assumed (and doesn't need to be set) for EAN-128, DataBar and Composite
symbologies but is also available for Code 16k, Data Matrix (ECC 200 only), Aztec Code and QR
Code.

QR Code, Micro QR Code and Grid Matrix standards can encode Kanji characters. These can be
given in Unicode (UTF-8) format as part of the input data string. Conversion from Unicode to Shift-
JIS or GB 2312 as appropriate is handled by Zint.

If the input data is not Unicode encoded or should be interpreted as an 8-bit data stream then the
--binary option can be used to achieve this.

4.11 Batch processing

Data can be batch processed by reading from a text file and producing a separate barcode image for
each line of text in that file. To do this use the batch switch. To select the input file from which
to read data use the i option. Zint will automatically detect the end of a line of text (in either Unix
or Windows formatted text files) and produce a symbol each time it finds this. Input files should end
with a return character – if this is not present then Zint will not encode the last line of text, and will
warn you that there is a problem.

By default Zint will output numbered filenames starting with 00001.png, 00002.png etc. To
change this behaviour use the o option in combination with batch using special characters in
the output file name as shown in the table below:

Input Character Interpretation

~ Insert a number or '0'

Insert a number or space

@ Insert a number or '*'

Any other Insert literally

The following table shows some examples to clarify this method:

Input Filenames Generated

o file~~~.svg file001.svg, file002.svg, file003.svg

o @@@@bar.png ***1.png, ***2.png, ***3.png

o my~~~bar.eps my001.bar.eps, my002.bar.eps, my003bar.eps

o t@es~t~.png t*es0t1.png, t*es0t2.png, t*es0t3.png

14/61

4.12 Other options

For linear barcodes the text present in the output image can be removed by using the --notext
option.

Additional options are available which are specific to certain symbologies. These may, for example,
control the quantity of error correction data or the size of the symbol. These options are discussed in
section 5 of this guide.

15/61

5. Using the API
Zint has been written using the C language and currently only has an API for use with C language
programs. A wrapper is available for Pascal/Delphi developers thanks to theunknownones.

The libzint API has been designed to be very similar to that used by the GNU Barcode package.
This allows easy migration from GNU Barcode to Zint. Zint, however, uses none of the same
function names or option names as GNU Barcode. This allows you to use both packages in your
application without conflict if you wish.

5.1 Creating and Deleting Symbols

The symbols manipulated by Zint are held in a zint_symbol structure defined in zint.h.
These symbols are created with the ZBarcode_Create() function and deleted using the
ZBarcode_Delete() function. For example the following code creates and then deletes a
symbol:
#include <stdio.h>
#include <zint.h>
int main()
{
 struct zint_symbol *my_symbol;my_symbol = ZBarcode_Create();

 if(my_symbol != NULL)
 {
 printf("Symbol successfully created!\n");
 }
 ZBarcode_Delete(my_symbol);
 return 0;
}

When compiling this code it will need to be linked with the libzint library using the -lzint option:
gcc -o simple simple.c -lzint

5.2 Encoding and Saving to File

To encode data in a barcode use the ZBarcode_Encode() function. To write the symbol to a file
use the ZBarcode_Print() function. For example the following code takes a string from the
command line and outputs a Code 128 symbol in a PNG file named out.png in the current working
directory:
#include <stdio.h>
#include <zint.h>
int main(int argc, char **argv)
{
 struct zint_symbol *my_symbol;
 my_symbol = ZBarcode_Create();
 ZBarcode_Encode(my_symbol, argv[1], 0);
 ZBarcode_Print(my_symbol, 0);
 ZBarcode_Delete(my_symbol);
 return 0;
}

This can also be done in one stage using the ZBarcode_Encode_and_Print() function as
shown in the next example:
#include <stdio.h>

16/61

http://www.gnu.org/software/barcode/barcode.html
http://theunknownones.googlecode.com/svn/trunk/Components/ZintBarcode/

#include <zint.h>
int main(int argc, char **argv)
{
 struct zint_symbol *my_symbol;
 my_symbol = ZBarcode_Create();
 ZBarcode_Encode_and_Print(my_symbol, argv[1], 0, 0);
 ZBarcode_Delete(my_symbol);
 return 0;
}

Input strings should be Unicode formatted.

5.3 Encoding and Printing Functions in Depth

The functions for encoding and printing barcodes are defined as:
int ZBarcode_Encode(struct zint_symbol *symbol, unsigned char *input, int
length);
int ZBarcode_Encode_File(struct zint_symbol *symbol, char *filename);
int ZBarcode_Print(struct zint_symbol *symbol, int rotate_angle);
int ZBarcode_Encode_and_Print(struct zint_symbol *symbol, unsigned char *input,
int length, int rotate_angle);
int ZBarcode_Encode_File_and_Print(struct zint_symbol *symbol, char *filename,
int rotate_angle);

In these definitions "length" can be used to set the length of the input string. This allows the
encoding of NULL (ASCII 0) characters in those symbologies which allow this. A value of 0 will
disable this function and Zint will encode data up to the first NULL character in the input string.

The "rotate_angle" value can be used to rotate the image when outputting as a PNG image. Valid
values are 0, 90, 180 and 270.

The ZBarcode_Encode_File() and ZBarcode_Encode_File_and_Print() functions can be used to
encode data read directly from a file where the filename is given in the "filename" string.

5.4 Buffering Symbols in Memory

In addition to saving barcode images to file Zint allows you to access a representation of the
resulting bitmap image in memory. The following functions allow you to do this:
int ZBarcode_Buffer(struct zint_symbol *symbol, int rotate_angle);
int ZBarcide_Encode_and_Buffer(struct zint_symbol *symbol, unsigned char *input,
int length, int rotate_angle);
int ZBarcode_Encode_File_and_Buffer(struct zint_symbol *symbol, char *filename,
int rotate_angle);

The arguments here are the same as above. The difference is that instead of saving the image to file
it is placed in a character array. The "bitmap" pointer (see below) is set to the first memory location
in the array and the values "barcode_width" and "barcode_height" indicate the size of the resulting
image in pixels. Rotation and colour options can be used at the same time as using the buffer
functions in the same way as when saving to a PNG image. The bitmap data can be extracted from
the character array by the method shown in the example below where render_pixel() is assumed to
be a function for drawing a pixel on the screen implimented by the external application:
int row, col, i = 0;
int red, blue, green;

for(row = 0; row < my_symbol->bitmap_height; row++) {
 for(column = 0; column < my_symbol->bitmap_width; column++) {
 red = my_symbol->bitmap[i];

17/61

 green = my_symbol->bitmap[i + 1];
 blue = my_symbol->bitmap[i + 2];
 render_pixel(row, column, red, green, blue);
 i += 3;
 }
}

5.5 Setting Options

So far our application is not very useful unless we plan to only make Code 128 barcodes and we
don't mind that they only save to out.png. As with the front end program, of course, these options
can be altered. The way this is done is by altering the contents of the zint_symbol structure
between the creation and encoding stages. The zint_symbol structure consists of the following
variables:

Variable Name Type Meaning Default Value

symbology integer Symbology to use (see section 5.7). BARCODE_CODE128

height integer Symbol height. [1] 50

whitespace_width integer Whitespace width. 0

boder_width integer Border width. 0

output_options integer
Binding or box parameters (see
section 5.8). [2]

(none)

fgcolour character
string

Foreground (ink) colour as RGB
hexadecimal string. Must be 6
characters followed by terminating \
0 character.

"000000"

bgcolour character
string

Background (paper) colour as RGB
hexadecimal string. Must be 6
characters followed by terminating \
0 character.

"ffffff"

outfile character
string

Contains the name of the file to
output a resulting barcode symbol
to. Must end in .png, .eps or .svg

"out.png"

option_1 integer Symbology specific options. (automatic)

option_2 integer Symbology specific options. (automatic)

option_3 integer Symbology specific options. (automatic)

scale float
Scale factor for adjusting size of
image.

1.0

input_mode integer
Set encoding of input data (see
section 5.9)

BINARY_MODE

18/61

primary character
string

Primary message data for more
complex symbols.

NULL

text
unsigned
character
string

Human readable text, which usually
consists of the input data plus one or
more check digits. Uses UTF-8
formatting.

NULL

rows integer
Number of rows used by the symbol
or, if using barcode stacking, the row
to be used by the next symbol.

(output only)

width integer Width of the generated symbol. (output only)

encoding_data
array of
character
strings

Representation of the encoded data. (output only)

row_height array of
integers

Representation of the height of a
row.

(output only)

errtxt character
string

Error message in the event that an
error occurred.

(output only)

bitmap
pointer to
character
array

Pointer to stored bitmap image. (output only)

bitmap_width integer
Width of stored bitmap image (in
pixels).

(output only)

bitmap_height integer
Height of stored bitmap image (in
pixels).

(output only)

To alter these values use the syntax shown in the example below. This code has the same result as
the previous example except the output is now taller and plotted in green.
#include <stdio.h>
#include <zint.h>
#include <string.h>
int main(int argc, char **argv)
{
 struct zint_symbol *my_symbol;my_symbol = ZBarcode_Create();
 strcpy(my_symbol->fgcolour, "00ff00");
 my_symbol->height = 400;
 ZBarcode_Encode_and_Print(my_symbol, argv[1], 0, 0);
 ZBarcode_Delete(my_symbol);
 return 0;
}

5.6 Handling Errors

If errors occur during encoding an integer value is passed back to the calling application. In addition
the errtxt value is used to give a message detailing the nature of the error. The errors generated
by Zint are given in the table below:

19/61

Return Value Meaning

WARN_INVALID_OPTION
One of the values in zint_struct was set incorrectly but
Zint has made a guess at what it should have been and
generated a barcode accordingly.

ERROR_TOO_LONG The input data is too long or too short for the selected
symbology. No symbol has been generated.

ERROR_INVALID_DATA
The data to be encoded includes characters which are not
permitted by the selected symbology (e.g. alphabetic
characters in an EAN symbol). No symbol has been generated.

ERROR_INVALID_CHECK An ISBN with an incorrect check digit has been entered. No
symbol has been generated.

ERROR_INVALID_OPTION
One of the values in zint_struct was set incorrectly and
Zint was unable to guess what it should have been. No symbol
has been generated.

ERROR_ENCODING_PROBLEM
A problem has occurred during encoding of the data. This
should never happen. Please contact the developer if you
encounter this error.

ERROR_FILE_ACCESS Zint was unable to open the requested output file. This is
usually a file permissions problem.

ERROR_MEMORY Zint ran out of memory. This should only be a problem with
legacy systems.

To catch errors use an integer variable as shown in the code below:
#include <stdio.h>
#include <zint.h>
#include <string.h>
int main(int argc, char **argv)
{
 struct zint_symbol *my_symbol;
 int error = 0;
 my_symbol = ZBarcode_Create();
 strcpy(my_symbol->fgcolour, "nonsense");
 error = ZBarcode_Encode_and_Print(my_symbol, argv[1], 0, 0);
 if(error != 0)
 {
 /* some error occurred */
 printf("%s\n", my_symbol->errtxt);
 }
 if(error > WARN_INVALID_OPTION)
 {
 /* stop now */
 ZBarcode_Delete(my_symbol);
 return 1;
 }
 /* otherwise carry on with the rest of the application */
 ZBarcode_Delete(my_symbol);
 return 0;
}

20/61

This code will exit with the appropriate message:
error: malformed foreground colour target

5.7 Specifying a Symbology

Symbologies can be specified by number or by name as shown in the following table. For example
symbol->symbology= BARCODE_LOGMARS;

means the same as
symbol->symbology = 50;

Numeric
Value

Name Symbology

1 BARCODE_CODE11 Code 11

2 BARCODE_C25MATRIX Standard Code 2 of 5

3 BARCODE_C25INTER Interleaved 2 of 5

4 BARCODE_C25IATA Code 2 of 5 IATA

6 BARCODE_C25LOGIC Code 2 of 5 Data Logic

7 BARCODE_C25IND Code 2 of 5 Industrial

8 BARCODE_CODE39 Code 3 of 9 (Code 39)

9 BARCODE_EXCODE39 Extended Code 3 of 9 (Code 39+)

13 BARCODE_EANX EAN

16 BARCODE_EAN128 GS1-128

18 BARCODE_CODABAR Codabar

20 BARCODE_CODE128 Code 128 (automatic subset switching)

21 BARCODE_DPLEIT Deutshe Post Leitcode

22 BARCODE_DPIDENT Deutshe Post Identcode

23 BARCODE_CODE16K Code 16K

24 BARCODE_CODE49 Code 49

25 BARCODE_CODE93 Code 93

28 BARCODE_FLAT Flattermarken

29 BARCODE_RSS14 GS1 DataBar-14

30 BARCODE_RSS_LTD GS1 DataBar Limited

31 BARCODE_RSS_EXP GS1 DataBar Expanded

21/61

32 BARCODE_TELEPEN Telepen Alpha

34 BARCODE_UPCA UPC A

37 BARCODE_UPCE UPC E

40 BARCODE_POSTNET PostNet

47 BARCODE_MSI_PLESSEY MSI Plessey

49 BARCODE_FIM FIM

50 BARCODE_LOGMARS LOGMARS

51 BARCODE_PHARMA Pharmacode One-Track

52 BARCODE_PZN PZN

53 BARCODE_PHARMA_TWO Pharmacode Two-Track

55 BARCODE_PDF417 PDF417

56 BARCODE_PDF417TRUNC PDF417 Truncated

57 BARCODE_MAXICODE Maxicode

58 BARCODE_QRCODE QR Code

60 BARCODE_CODE128B Code 128 (Subset B)

63 BARCODE_AUSPOST Australia Post Standard Customer

66 BARCODE_AUSREPLY Australia Post Reply Paid

67 BARCODE_AUSROUTE Australia Post Routing

68 BARCODE_AUSREDIRECT Australia Post Redirection

69 BARCODE_ISBNX ISBN (EAN-13 with verification stage)

70 BARCODE_RM4SCC Royal Mail 4 State (RM4SCC)

71 BARCODE_DATAMATRIX Data Matrix

72 BARCODE_EAN14 EAN-14

75 BARCODE_NVE18 NVE-18

76 BARCODE_JAPANPOST Japanese Post

77 BARCODE_KOREAPOST Korea Post

79 BARCODE_RSS14STACK GS1 DataBar-14 Stacked

80 BARCODE_RSS14STACK_OMNI GS1 DataBar-14 Stacked Omnidirectional

81 BARCODE_RSS_EXPSTACK GS1 DataBar Expanded Stacked

22/61

82 BARCODE_PLANET PLANET

84 BARCODE_MICROPDF417 MicroPDF417

85 BARCODE_ONECODE USPS OneCode

86 BARCODE_PLESSEY Plessey Code

87 BARCODE_TELEPEN_NUM Telepen Numeric

89 BARCODE_ITF14 ITF-14

90 BARCODE_KIX Dutch Post KIX Code

92 BARCODE_AZTEC Aztec Code

93 BARCODE_DAFT DAFT Code

97 BARCODE_MICROQR Micro QR Code

98 BARCODE_HIBC_128 HIBC Code 128

99 BARCODE_HIBC_39 HIBC Code 39

102 BARCODE_HIBC_DM HIBC Data Matrix

104 BARCODE_HIBC_QR HIBC QR Code

106 BARCODE_HIBC_PDF HIBC PDF417

108 BARCODE_HIBC_MICPDF HIBC MicroPDF417

112 BARCODE_HIBC_AZTEC HIBC Aztec Code

128 BARCODE_AZRUNE Aztec Runes

129 BARCODE_CODE32 Code 32

130 BARCODE_EANX_CC Composite Symbol with EAN linear
component

131 BARCODE_EAN128_CC Composite Symbol with GS1-128 linear
component

132 BARCODE_RSS14_CC Composite Symbol with GS1 DataBar-14
linear component

133 BARCODE_RSS_LTD_CC Composite Symbol with GS1 DataBar
Limited component

134 BARCODE_RSS_EXP_CC Composite Symbol with GS1 DataBar
Extended component

135 BARCODE_UPCA_CC Composite Symbol with UPC A linear
component

23/61

136 BARCODE_UPCE_CC Composite Symbol with UPC E linear
component

137 BARCODE_RSS14STACK_CC Composite Symbol with GS1 DataBar-14
Stacked component

138 BARCODE_RSS14_OMNI_CC Composite Symbol with GS1 DataBar-14
Stacked Omnidirectional component

139 BARCODE_RSS_EXPSTACK_CC Composite Symbol with GS1 DataBar
Expanded Stacked component

140 BARCODE_CHANNEL Channel Code

141 BARCODE_CODEONE Code One

142 BARCODE_GRIDMATRIX Grid Matrix

5.8 Adding Boxes and Boundary Bars

Boxes and boundary bars are handled using the output_options variable in the
zint_symbol structure. To use this option simply assign a value to the output_options
variable from the following table [2].

Value Effect

0 No box or boundary bars.

BARCODE_BIND Boundary bars above and below the symbol and between
rows if stacking multiple symbols.

BARCODE_BOX Add a box surrounding the symbol and whitespace.

5.9 Setting the Input Mode

The way in which the input data is encoded can be set using the input_mode property. Valid
values are shown in the table below.

Value Effect

DATA_MODE Uses full ASCII range interpreted as Latin-1 or binary
data.

UNICODE_MODE Uses pre-formatted UTF-8 input.

GS1_MODE Encodes GS1 data using FNC1 characters.

24/61

5.10 Verifying Symbology Availability

An additional function available in the API is defined as:
int ZBarcode_ValidID(int symbol_id);

This function allows you to check whether a given symbology is available. A non-zero return value
indicates that the given symbology is available. For example:
if(ZBarcode_ValidID(BARCODE_PDF417) != 0) { printf("PDF417 available"); } else {
printf("PDF417 not available"); }

[1] This value is ignored for Australia Post 4-State Barcodes, PostNet, PLANET, USPS OneCode,
RM4SCC, PDF417, Data Matrix, Maxicode, QR Code, GS1 DataBar-14 Stacked, PDF417 and
MicroPDF417 - all of which have a fixed height.

[2] This value is ignored for Code 16k and ITF-14 symbols.

25/61

6 Types of Symbology

6.1 One-Dimensional Symbols
One-Dimensional Symbols are what most people associate with the term barcode. They consist of a
number of bars and a number of spaces of differing widths.

6.1.1 Code 11

Developed by Intermec in 1977, Code 11 is similar to Code 2 of
5 Matrix and is primarily used in telecommunications. The
symbol can encode any length string consisting of the digits 0-9
and the dash character (-). One modulo-11 check digit is
calculated.

6.1.2 Code 2 of 5

Code 2 of 5 is a family of one-
dimensional symbols, 8 of which are
supported by Zint. Note that the names
given to these standards alters from one
source to another so you should take
care to ensure that you have the right
barcode type before using these
standards.

6.1.2.1 Standard Code 2 of 5

Also known as Code 2 of 5 Matrix is a self-checking code used in industrial applications and photo
development. Standard Code 2 of 5 will encode any length numeric input (digits 0-9).

6.1.2.2 IATA Code 2 of 5

Used for baggage handling in the air-transport industry by the International Air Transport Agency,
this self-checking code will encode any length numeric input (digits 0-9) and does not include a
check digit.

6.1.2.3 Industrial Code 2 of 5

Industrial Code 2 of 5 can encode any length numeric input (digits 0-9) and does not include a
check digit.

6.1.2.4 Interleaved Code 2 of 5

This self-checking symbology encodes pairs of numbers, and so can only encode an even number of
digits (0-9). If an odd number of digits is entered a leading zero is added by Zint. No check digit is
added.

26/61

6.1.2.5 Code 2 of 5 Data Logic

Data Logic does not include a check digit and can encode any length numeric input (digits 0-9).

6.1.2.6 ITF-14

ITF-14, also known as UPC Shipping Container Symbol or Case Code is based on Interleaved Code
2 of 5 and requires a 13 digit numeric input (digits 0-9). One modulo-10 check digit is calculated.

6.1.2.7 Deutsche Post Leitcode

Leitcode is based on Interleaved Code 2 of 5 and is used by Deutsche Post for mailing purposes.
Leitcode requires a 13-digit numerical input and includes a check digit.

6.1.2.8 Deutsche Post Identcode

Identcode is based on Interleaved Code 2 of 5 and is used by Deutsche Post for mailing purposes.
Identcode requires an 11-digit numerical input and includes a check digit.

6.1.3 Universal Product Code (EN 797)

6.1.3.1 UPC Version A

UPC-A is used in the United States for retail applications.
The symbol requires an 11 digit article number. The check
digit is calculated by Zint. In addition EAN-2 and EAN-5
add-on symbols can be added using the + character. For
example, to draw a UPC-A symbol with the data
72527270270 with an EAN-5 add-on showing the data
12345 use the command:
 zint --barcode=34 -d 72527270270+12345

or encode a data string with the + character included:
my_symbol->symbology = BARCODE_UPCA;
 error = ZBarcode_Encode_and_Print(my_symbol, "72527270270+12345");

6.1.3.2 UPC Version E

UPC-E is a zero-compressed version of UPC-A developed for smaller packages. The code requires
a 6 digit article number (digits 0-9). The check digit is calculated by Zint. EAN-2 and EAN-5 add-
on symbols can be added using the + character as with UPC-A. In addition Zint also supports
Number System 1 encoding by entering a 7-digit article number stating with the digit 1. For
example:
zint --barcode=37 -d 1123456

or
my_symbol->symbology = BARCODE_UPCE;
 error = ZBarcode_Encode_and_Print(my_symbol, "1123456");

27/61

6.1.4 European Article Number (EN 797)

6.1.4.1 EAN-2, EAN-5, EAN-8 and EAN-13

The EAN system is used in retail across Europe and
includes standards for EAN-2 and EAN-5 add-on codes,
EAN-8 and EAN-13 which encode 2, 5, 7 or 12 digit
numbers respectively. Zint will decide which symbology
to use depending on the length of the input data. In
addition EAN-2 and EAN-5 add-on symbols can be
added using the + symbol as with UPC symbols. For
example
zint --barcode=13 -d 54321

will encode a stand-alone EAN-5, whereas
zint --barcode=13 -d 7432365+54321

will encode an EAN-8 symbol with an EAN-5 add-on. As before these results can be achieved using
the API:
my_symbol->symbology = BARCODE_EANX;
 error = ZBarcode_Encode_and_Print(my_symbol, "54321");
 error = ZBarcode_Encode_and_Print(my_symbol, "7432365+54321");

All of the EAN symbols include check data which is added by Zint.

6.1.4.2 SBN, ISBN and ISBN-13

EAN-13 symbols (also known as Bookland EAN-13) can also be produced from 9-digit SBN, 10-
digit ISBN or 13-digit ISBN-13 data. The relevant check digit needs to be present in the input data
and will be verified before the symbol is generated. In addition EAN-2 and EAN-5 add-on symbols
can be added using the + symbol as with UPC symbols.

6.1.5 Plessey

Also known as Plessey Code, this symbology was developed
by the Plessey Company Ltd. in the UK. The symbol can
encode any length data consisting of digits (0-9) or letters A-
F and includes a CRC check digit.

6.1.6 MSI Plessey

Based on Plessey and developed by MSE Data Corporation, MSI Plessey is available with a range
of check digit options available by setting option_2 or by using the --ver= switch. Any length
numeric (digits 0-9) input can be encoded. The table below shows the options available:

28/61

Value of option_2 Check Digits

0 None

1 Modulo-10

2 Modulo-10 & Modulo-10

3 Modulo-11

4 Modulo-11 & Modulo-10

6.1.7 Telepen

6.1.7.1 Telepen Alpha

Telepen Alpha was developed by SB Electronic Systems
Limited and can encode any length of ASCII text input.
Telepen includes a modulo-127 check digit.

6.1.7.2 Telepen Numeric

Telepen Numeric allows compression of numeric data into
a Telepen symbol. Data can consist of pairs of numbers or
pairs consisting of a numerical digit followed an X character. For example: 466333 and 466X33 are
valid codes whereas 46X333 is not (the digit pair "X3" is not valid). Includes a modulo-127 check
digit.

6.1.8 Code 39

6.1.8.1 Standard Code 39 (ISO 16388)

Standard Code 39 was developed in 1974 by Intermec. Input
data can be of any length and supports the characters 0-9, A-
Z, dash (-), full stop (.), space, asterisk (*), dollar ($), slash
(/), plus (+) and percent (%). The standard does not require a
check digit but a modulo-43 check digit can be added if
required by setting option_2 = 1 or using --ver=1.

6.1.8.2 Extended Code 39

Also known as Code 39e and Code39+, this symbology expands on Standard Code 39 to provide
support to the full ASCII character set. The standard does not require a check digit but a modulo-43
check digit can be added if required by setting option_2 = 1 or using --ver=1.

6.1.8.3 Code 93

A variation of Extended Code 39, Code 93 also supports full ASCII text. Two check digits are added
by Zint.

29/61

6.1.8.4 PZN

PZN is a Code 39 based symbology used by the pharmaceutical industry in Germany. PZN encodes
a 6 digit number and includes a modulo-10 check digit.

6.1.8.5 LOGMARS

LOGMARS (Logistics Applications of Automated Marking and Reading Symbols) is a variation of
the Code 39 symbology used by the US Department of Defence. LOGMARS encodes the same
character set as Standard Code 39 and adds a modulo-43 check digit.

6.1.8.6 Code 32

A variation of Code 39 used by the Italian Ministry of Health ("Ministero della Sanità") for
encoding identifiers on pharmaceutical products. Requires a numeric input up to 8 digits in length.
Check digit is added by Zint.

6.1.8.7 HIBC Code 39

This option adds a leading '+' character and a trailing modulo-49 check digit to a standard Code 39
symbol as required by the Health Industry Barcode standards.

6.1.9 Codabar (EN 798)

Also known as NW-7, Monarch, ABC Codabar, USD-4, Ames
Code and Code 27, this symbology was developed in 1972 by
Monarch Marketing Systems for retail purposes. The American
Blood Commission adopted Codabar in 1977 as the standard
symbology for blood identification. Codabar can encode any length
string starting and ending with the letters A-D and containing
between these letters the numbers 0-9, dash (-), dollar ($), colon (:), slash (/), full stop (.) or plus
(+). No check digit is generated.

6.1.10 Pharmacode

Developed by Laetus, Pharmacode is used for the identification of
pharmaceuticals. The symbology is able to encode whole numbers between
3 and 131070.

6.1.11 Code 128

6.1.11.1 Standard Code 128 (ISO 15417)

One of the most ubiquitous one-dimensional barcode
symbologies, Code 128 was developed in 1981 by
Computer Identics. This symbology supports full
ASCII text and uses a three-mode system to compress
the data into a smaller symbol. Zint automatically
switches between modes and adds a modulo-103 check
digit. Code 128 is the default barcode symbology used
by Zint. In addition Zint supports the encoding of Latin-1 (non-English) characters in Code 128
symbols [1]. The Latin-1 character set is shown in Appendix A.

30/61

6.1.11.2 Code 128 Subset B

It is sometimes advantageous to stop Code 128 from using subset mode C which compresses
numerical data. The BARCODE_CODE128B option (AKA symbology 60) suppresses mode C in
favour of mode B.

6.1.11.3 GS1-128

A variation of Code 128 also known as UCC/EAN-128, this symbology is defined by the GS1
General Specification. Application Identifiers (AIs) should be entered using [square brackets]
notation. These will be converted to (round brackets) for the human readable text. This will allow
round brackets to be used in the data strings to be encoded. Fixed length data should be entered at
the appropriate length for correct encoding (see Appendix C). GS1-128 does not support extended
ASCII characters. Check digits for GTIN data (AI 01) are not generated and need to be included in
input data. The following is an example of a valid GS1-128 input:
zint --barcode=16 -d "[01]98898765432106[3202]012345[15]991231"

6.1.11.4 EAN-14

A shorter version of GS1-128 which encodes GTIN data only. A 13 digit number is required. GTIN
check digit and AI (01) are added by Zint.

6.1.11.5 NVE-18

A variation of Code 128 the Nummber der Versandeinheit standard includes both modulo-10 and
modulo-103 check digits. NVE-18 requires a 17 digit numerical input.

6.1.11.6 HIBC Code 128

This option adds a leading '+' character and a trailing modulo-49 check digit to a standard Code 128
symbol as required by the Health Industry Barcode standards.

6.1.12 GS1 DataBar (ISO 24724)

Also known as RSS (Reduced Spaced Symbology) these
symbols are due to replace GS1-128 symbols starting in 2010
in accordance with the GS1 General Specification. If a GS1
DataBar symbol is to be printed with a 2D component as
specified in ISO 24723 set option_1 = 2 or use the option
--mode=2 at the command prompt. See section 6.3 of this manual to find out how to generate
DataBar symbols with 2D components.

6.1.12.1 DataBar-14 and DataBar-14 Truncated

Also known as RSS-14 this standard encodes a 13 digit item code. A check digit and application
identifier of (01) are added by Zint. Note that for full standard compliance symbol height should be
greater than or equal to 33 modules. For DataBar-14 Truncated set the symbol height to a minimum
of 13.

6.1.12.2 DataBar Limited

Also known as RSS Limited this standard encodes a 13 digit item code and can be used in the same
way as DataBar-14 above. DataBar Limited, however, is limited to data starting with digits 0 and 1

31/61

http://www.gs1uk.org/EANUCC/WORD_Files/word.html

(i.e. numbers in the range 0 to 1999999999999). As with DataBar-14 a check digit and application
identifier of (01) are added by Zint.

6.1.12.3 DataBar Expanded

Also known as RSS Expanded this is a variable length symbology capable of encoding data from a
number of AIs in a single symbol. AIs should be encased in [square brackets] in the input data. This
will be converted to (rounded brackets) before it is included in the human readable text attached to
the symbol. This method allows the inclusion of rounded brackets in the data to be encoded. GTIN
data (AI 01) should also include the check digit data as this is not calculated by Zint when this
symbology is encoded. Fixed length data should be entered at the appropriate length for correct
encoding (see Appendix C). The following is an example of a valid DataBar Expanded input
zint --barcode=31 -d "[01]98898765432106[3202]012345[15]991231"

6.1.13 Korea Post
Barcode

The Korean Postal Barcode is used to
encode a six-digit number and includes
one check digit.

6.1.14 Channel Code

A highly compressed symbol for numeric data. The number of channels in the
symbol can be between 3 and 8 and this can be specified by setting the value of
option_2. It can also be determined by the length of the input data e.g. a three
character input string generates a 4 channel code by default. The maximum values
permitted depend on the number of channels used as shown in the table below:

Channels Minimum Value Maximum Value

3 00 26

4 000 292

5 0000 3493

6 00000 44072

7 000000 576688

8 0000000 7742862

Note that 7 and 8 channel codes require a processor intensive algorithm to generate and so response
times when generating these codes will be relatively slow.

32/61

6.2 Stacked Symbologies
6.2.1 Basic Symbol Stacking

An early innovation to get more information into a symbol, used primarily in the vehicle industry, is
to simply stack one-dimensional codes on top of each other. This can be achieved at the command
prompt by giving more than one set of input data. For example
zint -d 'This' -d 'That'

will draw two Code 128 symbols, one on top of the other. The same result can be achieved using the
API by executing the ZBarcode_Encode() function more than once on a symbol. For
example:
my_symbol->symbology = BARCODE_CODE128;
error = ZBarcode_Encode(my_symbol, "This");
error = ZBarcode_Encode(my_symbol, "That");
error = ZBarcode_Print(my_symbol);

The example below shows 5 EAN-13 symbols stacked in this way.

6.2.2 Code 16k (EN 12323)

A more sophisticated method is to use some type of line indexing
which indicates to the barcode reader which order the symbols
should be read. This is demonstrated by Code 16k which uses a
Code128 based system which can stack up to 16 rows in a block.
This gives a maximum data capacity of 77 characters or 154
numerical digits and includes two modulo-107 check digits. Code
16k also supports extended ASCII character encoding in the same
manner as Code 128.

6.2.3 PDF417 (ISO 15438)

Heavily used in the parcel industry, the PDF417 symbology can encode a vast amount of data into a
small space. Zint supports encoding up to the ISO standard maximum symbol size of 925
codewords which (at error correction level 0) allows a maximum data size of 1850 text characters,
or 2710 digits. The width of the generated PDF417 symbol can be specified at the command line
using the --cols switch followed by a number between 1 and 30, and the amount of check digit
information can be specified by using the --security switch followed by a number between 0 and 8
where the number of codewords used for check information is determined by 2(value + 1). If using the
API these values are assigned to option_2 and
option_1 respectively. The default level of check
information is determined by the amount of data being
encoded. International text support is provided using the
Latin-1 character set as described in Appendix A. A
separate symbology ID can be used to encode Health
Industry Barcode (HIBC) data which adds a leading '+'
character and a modulo-49 check digit to the encoded
data.

33/61

6.2.4 Compact PDF417

Also known as truncated PDF417. Options are as for PDF417 above.

6.2.5 MicroPDF417 (ISO 24728)

A variation of the PDF417 standard, MicroPDF417 is intended for
applications where symbol size needs to be kept to a minimum. 34 pre-
defined symbol sizes are available with 1 - 4 columns and 4 - 44 rows. The
maximum size MicroPDF417 symbol can hold 250 alphanumeric characters
or 366 digits. The amount of error correction used is dependant on symbol
size. The number of columns used can be determined using the --cols
switch or option_2 as with PDF417. A separate symbology ID can be used to encode Health
Industry Barcode (HIBC) data which adds a leading '+' character and a modulo-49 check digit to the
encoded data.

6.2.6 GS1 DataBar-14 Stacked (ISO 24724)

A stacked variation of the GS1 DataBar-14 symbol requiring the same input
(see section 6.1.12.1). The height of this symbol is fixed. The data is encoded
in two rows of bars with a central finder pattern. This symbol can be generated with a two-
dimensional component to make a composite symbol.

6.2.7 GS1 DataBar-14 Stacked Omnidirectional
(ISO 24724)

Another variation of the GS1 DataBar-14 symbol requiring the same input
(see section 6.1.12.1). The data is encoded in two rows of bars with a central
finder pattern. This symbol can be generated with a two-dimensional
component to make a composite symbol.

6.2.8 GS1 DataBar Expanded Stacked (ISO 24724)

A stacked variation of the GS1 DataBar Expanded symbol for
smaller packages. Input is the same as for GS1 DataBar
Expanded (see section 6.1.12.3). In addition the width of the
symbol can be altered using the --cols switch or
option_2. In this case the number of columns relates to the
number of character pairs on each row of the symbol. For
symbols with a 2D component the number of columns must
be at least 2. This symbol can be generated with a two-
dimensional component to make a composite symbol.

6.2.9 Code 49

Developed in 1987 at Intermec, Code 49 is a cross between UPC and
Code 39. It it one of the earliest stacked symbologies and influenced
the design of Code 16K a few years later. It supports full 7-bit ASCII
input up to a maximum of 49 characters or 81 numeric digits. GS1
data encoding is also supported.

34/61

6.3 Composite Symbols (ISO 24723)
Composite symbols employ a mixture of components to give more comprehensive information
about a product. The permissible contents of a composite symbol is determined by the terms of the
GS1 General Specification. Composite symbols consist of a linear component which can be an
EAN, UPC, GS1-128 or GS1 DataBar symbol, a 2D component which is based on PDF417 or
MicroPDF417, and a separator pattern. The type of linear component to be used is determined using
the -b or --barcode= switch or by adjusting symbol->symbology as with other encoding
methods. Valid values are shown below.

Numeric
Value

Name Symbology

130 BARCODE_EANX_CC Composite Symbol with EAN linear
component

131 BARCODE_EAN128_CC Composite Symbol with GS1-128
linear component

132 BARCODE_RSS14_CC Composite Symbol with GS1
DataBar-14 linear component

133 BARCODE_RSS_LTD_CC Composite Symbol with GS1 DataBar
Limited component

134 BARCODE_RSS_EXP_CC Composite Symbol with GS1 DataBar
Extended component

135 BARCODE_UPCA_CC Composite Symbol with UPC A linear
component

136 BARCODE_UPCE_CC Composite Symbol with UPC E linear
component

137 BARCODE_RSS14STACK_CC Composite Symbol with GS1
DataBar-14 Stacked component

138 BARCODE_RSS14_OMNI_CC
Composite Symbol with GS1
DataBar-14 Stacked Omnidirectional
component

139 BARCODE_RSS_EXPSTACK_CC Composite Symbol with GS1 DataBar
Expanded Stacked component

The data to be encoded in the linear component of a composite symbol should be entered into a
primary string with the data for the 2D component being entered in the normal way. To do this at
the command prompt use the --primary= command. For example:

zint -b 130 --mode=1 --primary=331234567890 -d "[99]1234-abcd"

This creates an EAN-13 linear component with the data "331234567890" and a 2D CC-A (see
below) component with the data "(99)1234-abcd". The same results can be achieved using the API
as shown below:
my_symbol->symbology = 130;my_symbol->option_1 = 1;

35/61

strcpy(my_symbol->primary, "331234567890");
ZBarcode_Encode_and_Print(my_symbol, "[99]1234-abcd");

EAN-2 and EAN-5 add-on data can be used with EAN and UPC symbols using the + symbol as
described in section 6.1.3 and 5.1.4.

The 2D component of a composite symbol can use one of three systems: CC-A, CC-B and CC-C as
described below. The 2D component type can be selected automatically by Zint dependant on the
length of the input string. Alternatively the three methods can be accessed using the --mode=
prompt followed by 1, 2 or 3 for CC-A, CC-B or CC-C respectively, or by using the option_1
variable as shown above.

6.3.1 CC-A

This system uses a variation of MicroPDF417 which optimised to
fit into a small space. The size of the 2D component and the amount
of error correction is determined by the amount of data to be
encoded and the type of linear component which is being used. CC-
A can encode up to 56 numeric digits or an alphanumeric string of
shorter length. To select CC-A use --mode=1.

6.3.2 CC-B

This system uses MicroPDF417 to encode the 2D component. The
size of the 2D component and the amount of error correction is
determined by the amount of data to be encoded and the type of
linear component which is being
used. CC-B can encode up to 338
numeric digits or an alphanumeric
string of shorter length. To select CC-
B use --mode=2.

6.3.3 CC-C

This system uses PDF417 and can
only be used in conjunction with a
GS1-128 linear component. CC-C
can encode up to 2361 numeric digits
or an alphanumeric string of shorter
length. To select CC-C use
--mode=3.

6.4 Two-Track Symbols
6.4.1 Two-Track Pharmacode

Developed by Laetus, Pharmacode Two-Track is an alternative system to
Pharmacode One-Track used for the identification of pharmaceuticals. The
symbology is able to encode whole numbers between 4 and 64570080.

36/61

6.4.2 PostNet

Used by the United States Postal Service until 2009, the
PostNet barcode was used for encoding zip-codes on mail
items. PostNet uses numerical input data and includes a modulo-10 check digit. While Zint will
encode PostNet symbols of any length, standard lengths as used by USPS were PostNet6 (5 digits
ZIP input), PostNet10 (5 digit ZIP + 4 digit user data) and PostNet12 (5 digit ZIP + 6 digit user
data).

6.4.3 PLANET

Used by the United States Postal
Service until 2009, the PLANET
(Postal Alpha Numeric Encoding Technique) barcode was used for encoding routing data on mail
items. Planet uses numerical input data and includes a modulo-10 check digit. While Zint will
encode PLANET symbols of any length, standard lengths used by USPS were Planet12 (11 digit
input) and Planet14 (13 digit input).

6.5 4-State Postal Codes
6.5.1 Australia Post 4-State Symbols

6.5.1.1 Customer Barcodes

Australia Post Standard Customer Barcode, Customer Barcode 2 and Customer Barcode 3 are 37-
bar, 52-bar and 67-bar specifications respectively, developed by Australia Post for printing Delivery
Point ID (DPID) and customer information on mail items. Valid data characters are 0-9, A-Z, a-z,
space and hash (#). A Format Control Code (FCC) is added by Zint and should not be included in
the input data. Reed-Solomon error correction data is generated by Zint. Encoding behaviour is
determined by the length of the input data according to the formula shown in the following table:

Input Length Required Input Format
Symbol
Length

FCC
Encoding

Table

8 99999999 37-bar 11 None

13 99999999AAAAA 52-bar 59 C

16 9999999999999999 52-bar 59 N

18 99999999AAAAAAAAAA 67-bar 62 C

23 99999999999999999999999 67-bar 62 N

6.5.1.2 Reply Paid Barcode

A Reply Paid version of the Australia Post 4-State Barcode (FCC 45) which requires an 8-digit
DPID input.

37/61

6.5.1.3 Routing Barcode

A Routing version of the Australia Post 4-State Barcode (FCC 87) which requires an 8-digit DPID
input.

6.5.1.4 Redirect Barcode

A Redirection version of the Australia Post 4-State Barcode (FCC 92) which requires an 8-digit
DPID input.

6.5.2 Dutch Post KIX Code

This Symbology is used by Royal Dutch TPG Post (Netherlands)
for Postal code and automatic mail sorting. Data input can consist
of numbers 0-9 and letters A-Z and needs to be 11 characters in length. No check digit is included.

6.5.3 Royal Mail 4-State Country Code
(RM4SCC)

The RM4SCC standard is used by the Royal Mail in the UK to encode postcode and customer data
on mail items. Data input can consist of numbers 0-9 and letters A-Z and usually includes delivery
postcode followed by house number. For example "W1J0TR01" for 1 Picadilly Circus in London.
Check digit data is generated by Zint.

6.5.4 USPS OneCode

Also known as the Intelligent Mail Barcode and used
in the US by the United States Postal Service
(USPS), the OneCode system replaced the PostNet and PLANET symbologies in 2009. OneCode is
a fixed length (65-bar) symbol which combines routing and customer information in a single
symbol. Input data consists of a 20 digit tracking code, followed by a dash (-), followed by a
delivery point zip-code which can be 0, 5, 9 or 11 digits in length. For example all of the following
inputs are valid data entries:
"01234567094987654321"
"01234567094987654321-01234"
"01234567094987654321-012345678"
"01234567094987654321-01234567891"

6.5.5 Japanese Postal Code

Used for address data on mail items for Japan Post.
Accepted values are 0-9, A-Z and Dash (-). A
modulo 19 check digit is added.

38/61

6.6 Two-Dimensional Symbols
6.6.1 Data Matrix (ISO 16022)

Also known as Semacode this symbology was developed in 1989 by Acuity CiMatrix
in partnership with the US DoD and NASA. The symbol can encode a large amount
of data in a small area. Data Matrix can encode any characters in the Latin-1 set and
can also encode GS1 data. The size of the generated symbol can also be adjusted using the
--vers= option or by setting option_2 as shown in the table below. A separate symbology ID
can be used to encode Health Industry Barcode (HIBC) data which adds a leading '+' character and
a modulo-49 check digit to the encoded data. Note that only ECC200 encoding is supported, the
older standards have now been removed from Zint.

Input Symbol Size Input Symbol Size

1 10 x 10 16 64 x 64

2 12 x 12 17 72 x 72

3 14 x 14 18 80 x 80

4 16 x 16 19 88 x 88

5 18 x 18 20 96 x 96

6 20 x 20 21 104 x 104

7 22 x 22 22 120 x 120

8 24 x 24 23 132 x 132

9 26 x 26 24 144 x 144

10 32 x 32 25 8 x 18

11 36 x 36 26 8 x 32

12 40 x 40 27 12 x 26

13 44 x 44 28 12 x 36

14 48 x 48 29 16 x 36

15 52 x 52 30 16 x 48

An extra feature is available for Data Matrix symbols which allows Zint to automatically resize the
symbol as required but also prevents Zint from using rectangular symbols. To set this mode at the
command line use the option --square and when using the API set the value option_3 =
DM_SQUARE.

39/61

6.6.2 QR Code (ISO 18004)

Also known as Quick Response Code this symbology was developed by Denso.
Four levels of error correction are available using the security= option or setting
option_1 as shown in the following table.

Input ECC Level Error Correction Capacity Recovery Capacity

1 L (default) Approx 20% of symbol Approx 7%

2 M Approx 37% of symbol Approx 15%

3 Q Approx 55% of symbol Approx 25%

4 H Approx 65% of symbol Approx 30%

The size of the symbol can be set by using the vers= option or setting option_2 to the QR Code
version required (1-40). The size of symbol generated is shown in the table below.

Input Symbol Size Input Symbol Size

1 21 x 21 21 101 x 101

2 25 x 25 22 105 x 105

3 29 x 29 23 109 x 109

4 33 x 33 24 113 x 113

5 37 x 37 25 117 x 117

6 41 x 41 26 121 x 121

7 45 x 45 27 125 x 125

8 49 x 49 28 129 x 129

9 53 x 53 29 133 x 133

10 57 x 57 30 137 x 137

11 61 x 61 31 141 x 141

12 65 x 65 32 145 x 145

13 69 x 69 33 149 x 149

14 73 x 73 34 153 x 153

15 77 x 77 35 157 x 157

16 81 x 81 36 161 x 161

17 85 x 85 37 165 x 165

18 89 x 89 38 169 x 169

40/61

19 93 x 93 39 173 x 173

20 97 x 97 40 177 x 177

The maximum capacity of a (version 40) QR Code symbol is 7089 numeric digits, 4296
alphanumeric characters or 2953 bytes of data. QR Code symbols can also be used to encode GS1
data. QR Code symbols can encode characters in the Latin-1 set and Kanji characters which are
members of the Shift-JIS encoding scheme. Input should be entered as a UTF-8 stream with
conversion to Shift-JIS being carried out automatically by Zint. A separate symbology ID can be
used to encode Health Industry Barcode (HIBC) data which adds a leading '+' character and a
modulo-49 check digit to the encoded data.

6.6.3 Micro QR Code (ISO 18004)

A miniature version of the QR Code symbol for short messages. ECC levels can be
selected as for QR Code (above). QR Code symbols can encode characters in the Latin-
1 set and Kanji characters which are members of the Shift-JIS encoding scheme. Input should be
entered as a UTF-8 stream with conversion to Shift-JIS beingcarried out automatically by Zint. A
preferred symbol size can be selected by using the vers= option or by setting option_2 although
the actual version used by Zint may be different if required by the input data. The table below
shows the possible sizes:

Input Version Symbol Size

1 M1 11 x 11

2 M2 13 x 13

3 M3 15 x 15

4 M4 17 x 17

6.6.4 Maxicode (ISO 16023)

Developed by UPS the Maxicode symbology
employs a grid of hexagons surrounding a
'bulls-eye' finder pattern. This symbology is
designed for the identification of parcels.
Maxicode symbols can be encoded in one of
five modes.

In modes 2 and 3 Maxicode symbols are
composed of two parts named the primary and
secondary messages. The primary message
consists of a structured data field which
includes various data about the package being
sent and the secondary message usually
consists of address data in a data structure. The
format of the primary message required by
Zint is given in the following table:

41/61

Characters Meaning

1-9

Postcode data which can consist of up to 9 digits (for mode
2) or up to 6 alphanumeric characters (for mode 3).
Remaining unused characters should be filled with the
SPACE character (ASCII 32).

10-12
Three digit country code according to ISO 3166 (see

Appendix B).

13-15
Three digit service code. This depends on your parcel

courier.

The primary message can be designated at the command prompt using the --primary= switch.
The secondary message uses the normal data entry method. For example:
zint -o test.eps -b 57 --primary='999999999840012' -d 'Secondary Message Here'

When using the API the primary message must be placed in the symbol->primary string. The
secondary is entered in the same way as described in section 5.2. When either of these modes is
selected Zint will analyse the primary message and select either mode 2 or mode 3 as appropriate.

Modes 4 to 6 can be accessed using the --mode= switch or by setting option_1. Modes 4 to 6
do not require a primary message. For example:
zint -o test.eps -b 57 --mode=4 -d 'A MaxiCode Message in Mode 4'

Mode 6 is reserved for the maintenance of scanner hardware and should not be used to encode user
data.

All modes support extended ASCII characters and number compression. The maximum length of
text which can be placed in a Maxicode symbol depends on the type of characters used in the text.
Example maximum data lengths are given in the table below:

Mode
Maximum Data

Length for
Capital Letters

Maximum Data
Length for

Numeric Digits

Number of
Error

Correction
Codewords

2 (secondary only) 84 126 50

3 (secondary only) 84 126 50

4 93 135 50

5 77 110 66

6 93 135 50

42/61

6.6.5 Aztec Code (ISO 24778)

Invented by Andrew Longacre at Welch Allyn Inc in 1995 the Aztec Code symbol is a
matrix symbol with a distinctive bulls-eye finder pattern. Zint can generate Compact
Aztec Code (sometimes called Small Aztec Code) as well as "full-range" Aztec Code
symbols and by default will automatically select symbol type and size dependent on
the length of the data to be encoded. Error correction codewords will normally be generated to fill at
least 23% of the symbol. Two options are available to change this behaviour:

The size of the symbol can be specified using the --ver= option or setting option_2 to a value
between 1 and 36 according to the following table. The symbols marked with an asterisk (*) in the
table below are "compact" symbols, meaning they have a smaller bulls-eye pattern at the centre of
the symbol.

Input Symbol Size Input Symbol Size

1 15 x 15* 19 79 x 79

2 19 x 19* 20 83 x 83

3 23 x 23* 21 87 x 87

4 27 x 27* 22 91 x 91

5 19 x 19 23 95 x 95

6 23 x 23 24 101 x 101

7 27 x 27 25 105 x 105

8 31 x 31 26 109 x 109

9 37 x 37 27 113 x 113

10 41 x 41 28 117 x 117

11 45 x 45 29 121 x 121

12 49 x 49 30 125 x 125

13 53 x 53 31 131 x 131

14 57 x 57 32 135 x 135

15 61 x 61 33 139 x 139

16 67 x 67 34 143 x 143

17 71 x 71 35 147 x 147

18 75 x 75 36 151 x 151

Note that in symbols which have a specified size the amount of error correction is dependent on the
length of the data input and Zint will allow error correction capacities as low as 3 codewords.

Alternatively the amount of error correction data can be specified by use of the --mode= option or

43/61

by setting option_1 to a value from the following table:

Mode Error Correction Capacity

1 >10% + 3 codewords

2 >23% + 3 codewords

3 >36% + 3 codewords

4 >50% + 3 codewords

It is not possible to select both symbol size and error correction capacity for the same symbol. If
both options are selected then the error correction capacity selection will be ignored.

Aztec Code is able to encode any extended ASCII character data up to a maximum length of
approximately 3823 numeric or 3067 alphabetic characters or 1914 bytes of data. A separate
symbology ID can be used to encode Health Industry Barcode (HIBC) data which adds a leading '+'
character and a modulo-49 check digit to the encoded data.

6.6.6 Aztec Runes

A truncated version of compact Aztec Code for encoding whole integers between 0 and
255. Includes Reed-Solomon error correction. As defined in ISO/IEC 24778 Annex A.

6.6.7 Code One

A matrix symbology developed by Ted Williams in 1992 which encodes data in a
way similar to Data Matrix. Code One is able to encode the Latin-1 character set or
GS1 data. There are two types of Code One symbol - variable height symbols
which are roughly square (versions A thought to H) and fixed-height versions
(version S and T). These can be selected by using --vers= or setting option_2
as shown in the table below:

Input Version Size
Numeric Data

Capacity
Alphanumeric
Data Capacity

1 A 16 x 18 22 13

2 B 22 x 22 44 27

3 C 28 x 32 104 64

4 D 40 x 42 217 135

5 E 52 x 54 435 271

6 F 70 x 76 886 553

7 G 104 x 98 1755 1096

8 H 148 x 134 3550 2218

9 S 8X height 18 n/a

44/61

10 T 16X height 90 55

Version S symbols can only encode numeric data. The width of version S and version T symbols is
determined by the length of the input data.

6.6.8 Grid Matrix

The most recently developed encoding standard to be supported by Zint, Grid
Matrix became an AIM standard in December 2008. The encoding allows Latin-
1 and Chinese characters within the GB 2312 standard set to be encoded in a
checkerboard pattern. Input should be entered as a UTF-8 stream with
conversion to GB 2312 being carried out automatically by Zint. The size of the
symbol and the error correction capacity can be specified. If you specify both of these values then
Zint will make a 'best-fit' attempt to satisfy both conditions. The symbol size can be specified using
the ver= option or by setting option_2, and the error correction capacity can be specified by using
the security= option or by setting option_1 according to the following tables:

Input Size

1 18 x 18

2 30 x 30

3 42 x 42

4 54 x 54

5 66 x 66

6 78 x 78

7 90x 90

8 102 x 102

9 114 x 114

10 126 x 126

11 138 x 138

12 150 x 150

13 162 x 162

45/61

Mode Error Correction Capacity

1 Approximately 10%

2 Approximately 20%

3 Approximately 30%

4 Approximately 40%

5 Approximately 50%

6.7 Other Barcode-Like Markings
6.7.1. Facing Identification Mark (FIM)

Used by the United States Postal Service (USPS), the FIM symbology is used to assist
automated mail processing. There are only 4 valid symbols which can be generated
using the characters A-D as shown in the table below.

Code
Letter

Usage

A
Used for courtesy reply mail and metered reply mail with a pre-
printed PostNet symbol.

B Used for business reply mail without a pre-printed zip code.

C Used for business reply mail with a pre-printed zip code.

D Used for Information Based Indicia (IBI) postage.

6.7.2 Flattermarken

Used for the recognition of page sequences in print-shops, the
Flattermarken is not a true barcode symbol and requires precise
knowledge of the position of the mark on the page. The Flattermarken
system can encode any length numeric data and does not include a
check digit.

6.7.3 DAFT Code

This is a method for creating 4-state codes where the data encoding is
provided by an external program. Input data should consist of the
letters 'D', 'A', 'F' and 'T' where these refer to descender, ascender, full (ascender and descender) and
tracker (neither ascender nor descender) respectively. All other characters are ignored.

46/61

7. Legal and Version Information
7.1 License

Zint, libzint and Zint Barcode Studio are Copyright © 2011 Robin Stuart
and are distributed under the terms of the GNU General Public License
version 3 or later. See the file COPYING for more information. The
following terms form part of the GPL:

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

Qt4 code is Copyright © 2009 BogDan Vatra, used under the terms of the GNU General Public
Licence.

Some Data Matrix code is Copyright © 2004 Adrian Kennard, Andrews & Arnold Ltd and © 2006
Stefan Schmidt, used under the terms of the GNU General Public Licence.

Reed-Solomon code is Copyright © 2004 Cliff Hones, used under the terms of the GNU General
Public Licence.

Portions of GS1 DataBar and Composite Symbology code are Copyright © 2006 ISO/BSI Global
and used with permission.

Portions of OneCode code is © 2006 United States Postal Service. This is indicated where
appropriate in the source code and is used on the understanding that this code has been released to
the public domain and that such use is intended by the copyright holder.

Telepen is a trademark of SB Electronic Systems Ltd.

QR Code is a registered trademark of Denso Wave Incorporated.

Microsoft, Windows and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Zint.org.uk website design and hosting provided by Robert Elliott.

7.2 Patent Issues

All of the code in Zint is developed using information in the public domain, usually freely available
on the Internet. Some of the techniques used may be subject to patents and other intellectual
property legislation. It is my belief that any patents involved in the technology underlying
symbologies utilised by Zint are 'unadopted', that is the holder does not object to their methods
being used. If, however, you are a patent holder or hold any other intellectual property rights on the
methods used by Zint or the symbologies which Zint generates, and do not want Zint to continue to
support your symbology then please contact me and I will update the code to accommodate your

47/61

http://www.robs-roost.co.uk/
http://www.gnu.org/copyleft/gpl.html

wishes at the soonest opportunity.

Any methods patented or owned by third parties or trademarks or registered trademarks used within
Zint or in this document are and remain the property of their respective owners and do not indicate
endorsement or affiliation with those owners, companies or organisations.

7.3 Version Information

v0.1 - (as Zebar) Draws UPC-A. UPC-E, EAN-8, EAN-13, Interlaced 2 of 5, Codabar, Code 39,
Extended Code 39 and Code 93 barcodes and Add-on codes EAN-2 and EAN-5 without parity.
13/11/2006

v0.2 - Added Code 128 (which is now the default), Code 11, Code 2 of 5, Add-on codes EAN-2 and
EAN-5 parity and MSI/Plessey without check digit. 12/12/2006

v0.3 - Added MSI/Plessey Mod 10 check and 2 x Mod 10 check options, Telepen ASCII and
Telepen numeric, Postnet, RM4SCC. Code has been tidied up quite a bit. Bind option added.
30/12/2006

v0.4 - Added barcode stacking (now stacks up to 16 barcodes) and Code16k (stub). 15/1/2007

v0.5 - Added Australia Post 4-State Barcodes and Pharmacode (1 and 2 track). 4-state codes now
draw with correct height/width ratio. 28/2/2007

v0.6 - Added Plessey and some derivative codes (EAN-128, Code 128 subset B, Auspost Reply,
Auspost Routing, Auspost Redirect, ITF-14). Tidied up code again: separated symbologies into
more files and put all lookup tables into arrays (much reducing the amount of code, especially for
Code 39e and Code 93). Errors now output to stderr. Added proper input verification. Distribution
now packs with HTML pages instead of separate README. Outputs to PNG. Outputs colour. User
variable whitespace and border width. Box option. Fixed EAN add-on bug. Added whitespace and
height options. Project name changed to Zint to avoid conflict with extant trade name. Added
escape character input. 1/4/2007

v1.0 - Corrected problem with escape character codes. Supports PDF417. This completes the list of
features I originally wanted (plus a few more), hence skip to version 1.0. 20/4/2007

v1.1 - Added more derivatives (Code 2 of 5 Matrix, IATA and Data Logic, Truncated PDF417,
Deutsche Post Leitcode and Identcode, Pharmazentralnummer, Planet) and Flattermarken. Tidied up
2 of 5 code. 26/4/2007

v1.2 - Supports Data Matrix (by absorption of IEC16022 code by Stefan Schmidt et al). Added
reverse colours, FIM, MSI/Plessey Modulo 11 and Modulo 11/10. Corrected Code 16k check digit
calculation. 28/5/2007

v1.3 - Supports USPS OneCode and LOGMARS. Brought all usage information into one User
Manual document. 13/6/2007

v1.4 - Added NVE-18 support. Corrected some problems with compilation and input verification.
Command line option handling now uses getopt(), and all the switches have changed. Added --font
option. 20/6/2007

v1.5 - Pulled everything together to make an API. Corrected errors with EAN-13, PDF417 and
LOGMARS. Added EPS output. Added QR Code support using libqrencode. Corrected ISBN
verification error. Re-compiled documentation in HTML form. Put in place proper error handling

48/61

routines. --font option removed. Encoding is now done with a restructured zint_symbol structure.
Added make install option and optional QR Code support to Makefile. Corrected minor problem
with 4-State Codes. Restructured code into fewer source code files. Added MicroPDF417 support.
12/8/2007

v1.5.1 - Added formatting code to EPS output of EAN and UPC symbols according to EN
797:1996. Checked against and, where appropriate, altered or corrected to comply with ISO 16388
and ISO 15417 including Latin-1 support. Altered default image settings, added automatic ITF
border. Corrected error with USPS OneCode. Tidied up Code 39 quite a bit, added Mod 43 options.
3/9/2007

v1.5.2 - Added extended ASCII support to Code 16k. Corrected Code 128 error. Added Maxicode
support by integrating code by John Lien. 26/9/2007

v1.5.3 - Made huge corrections to Maxicode support by removing and re-writing much of John's
code. Maxicode now supports extended ASCII and modes 4, 5 and 6. 10/10/2007

v1.5.4 - Added GS1 DataBar (Reduced Space Symbology) support. 26/11/2007

v1.5.5 - Added composite symbology support. Corrected errors with GS1-128 and
PDF417/MicroPDF417 byte processing. Transferred licence to GPL version 3. 9/3/2008

v1.6 - Data Matrix, Maxicode and Australia Post now use common Reed-Solomon functions - this
also fixes a bug in Maxicode error correction and replaces the last of the Lien code. Added PNG
output for Maxicode symbols. Removed some useless code. Updated QR support for libqrencode
v2.0.0. 22/4/2008

v1.6.1 - Major restructuring of PNG generating code: Now draws UPCA and EAN symbols
properly and puts human readable text into the image. Also corrected some nasty 'never ending
loop' bugs in Code 128 and check digit bugs in PostNet and Planet. 8/7/2008

v1.6.2 - Added KIX Code support and PNG image rotation. Corrected a bug affecting extended
ASCII support in Code 128 and Code 16k. 28/7/2008.

v2.0 beta - Added support for Aztec Code, Codablock-F, Code 32, EAN-14 and DAFT Code. Re-
arranged symbology numbers to match Tbarcode v8. Corrected a never ending loop bug in EAN-
128. 29/9/2008

v2.0 beta r2 - Many corrections and bugfixes. (Code 11, Code 128, EAN-128, Aztec Code,
Codablock-F, Code 16k, Postnet, PLANET, NVE-18, PZN, Data Matrix, Maxicode and QR Code)

v2.0 - Made corrections to Aztec Code and tested output with bcTester. Added Aztec Runes, Micro
QR Code and Data Matrix ECC 000-140. Updated e-mail information. 18/11/2008

v2.1 - Reinstated Korea Post barcodes, harmonised bind and box options, moved Unicode handling
into backend and added input_mode option, added size options to Data Matrix, added NULL
character handling for Codablock-F, Code 128, Code 16k, Extended Code 39, Code 93, Telepen,
Maxicode, Data Matrix ECC 200, PDF417 and MicroPDF417. Added GS1 support for Code 16k,
Codablock-F and Aztec Code. Added scale and direct to stdout options. Rebult Data Matrix ECC
200 encoding algorithms to support NULL encoding and GS1 data encoding. 31/1/2009

v2.1.1 - Minor Data Matrix bugfix and added HIBC options. 10/2/2009

v2.1.2 - Added SVG output option. Improved Japanese character support including Unicode >

49/61

Shift-JIS capability. Bugfixes for Data Matrix (missing characters at end of string) and Codablock-F
(K1/K2 check digit and row indicators above row 6). 1/3/2009

v2.1.3 - Many improvements to the QZint GUI which is now renamed "Zint Barcode Studio 0.2".
Added Japanese Postal Barcode, Code 49 and Channel Code and made corrections to Data Matrix
(Binary mode data compression terminates too soon), Aztec Code (Bug when automatically resizing
after removing "all 0" and "all 1" codewords) and Code 128 (Extended ASCII characters become
corrupt). 19/5/2009

v2.1.4 - Many stability improvements including removal of buffer overruns in Code 39,
LOGMARS, PZN, Aztec Code and Composite CC-A. Addition of files for compiling on MS
Windows platform - tested successfully on XP and Vista. 19/6/2009

v2.2 - Added Code One and GS1 support in Code 49. Changed GUI binary name to zint-qt and
brought GUI up to version 1.0. Made some minor bugfixes to Code 39, ITF-14, Aztec Code, Code
128 and Code 16K. Added 'rest' button to GUI. Included .spec file from Radist. 18/7/2009

v2.2.1 - Data encoding bugfixes for Aztec Code, Data Matrix, USPS One Code and PDF417.
Symbol plotting bugfixes for MicroPDF417 and 2D components of composite symbols. Text
formatting bugfix for Qt renderer and a couple of compiler fixes for MSVC PNG image output.
6/8/2009

v2.2.2 - A beta release previewing the new API structure. Better NULL character support with
"nullchar" value removed. Added loading from file and sequence dialogs in Barcode Studio.
29/9/2009

v2.3 - Fixed problems with Micro QR Code and rebuilt QR Code support removing dependence on
libqrencode. Improved Kanji character support for QR Code and Micro QR Code which now auto-
detects and automatically converts to Shift-JIS. Added Grid Matrix symbology with Kanji character
support and automatic conversion to GB 2312. Removed no_qr compile option. Advanced Barcode
Studio version number to match library version number. 23/11/2009

v2.3.1 - Removed Codablock-F. Redesigned scale function so that human readable text and
Maxicode symbols can be scaled consistently. Corrected encoding bugs with Code 128/Code 16k
and Data Matrix ECC 050. Added --notext option to CLI. 7/3/2010

v2.3.2 - Corrected many bugs in GS1 DataBar Extended thanks to the careful study of the code by
Pablo Orduña at the PIRAmIDE project. Similarly corrected some bugs in Maxicode thanks to
Monica Swanson at Source Technologies. Also minor bugfixes for ISBN and Aztec Code, and
added some small features like a --square option in the CLI. 29/5/2010

v2.4 - Built extensions to the API for integrating with glabels with thanks to Sam Lown and Jim
Evins. Added code optimisation and input from stdin thanks to Ismael Luceno. Reinstated escape
character input. Simplification of Barcode Studio. 13/9/2010

v2.4.1 & 2.4.2 – A whole host of bugfixes including correction of ECC routines for Code-1 and
addition of batch processing at the command line.

7.4 Sources of Information

Below is a list of some of the sources used in rough chronological order:

Nick Johnson's Barcode Specifications

50/61

http://www.spatula.net/proc/barcode/index.src
http://www.glabels.org/

Bar Code 1 Specification Source Page

SB Electronic Systems Telepen website

Pharmacode specifications from Laetus

Morovia RM4SCC specification

Austalia Post's 'A Guide to Printing the 4-State Barcode' and bcsample source code

Plessey algorithm from GNU-Barcode v0.98 by Leonid A. Broukhis

GS1 General Specifications v 8.0 Issue 2

PNG: The Definitive Guide and wpng source code by Greg Reolofs

PDF417 specification and pdf417 source code by Grand Zebu

Barcode Reference, TBarCode/X User Documentation and TBarCode/X demonstration program
from Tec-It

IEC16022 source code by Stefan Schmidt et al

United States Postal Service Specification USPS-B-3200

Adobe Systems Incorporated Encapsulated PostScript File Format Specification

BSI Online Library

Libdmtx Data Matrix decoding library

7.5 Standard Compliance

Zint was developed to provide compliance with the following British and international standards:

BS EN 797:1996 Bar coding - Symbology specifications - 'EAN/UPC'

BS EN 798:1996 Bar coding - Symbology specifications - 'Codabar'

BS ISO/IEC 12323:2005 AIDC technologies - Symbology specifications - Code 16K

BS ISO/IEC 15417:2007 Information technology - Automatic identification and data capture
techniques - Code 128 bar code symbology specification

BS ISO/IEC 15438:2006 Information technology - Automatic identification and data capture
techniques - PDF417 bar code symbology specification

BS ISO/IEC 16022:2006 Information technology - Automatic identification and data capture
techniques - Data Matrix bar code symbology specification

BS ISO/IEC 16023:2000 Information technology - International symbology specification -
Maxicode

BS ISO/IEC 16388:2007 Information technology - Automatic identification and data capture
techniques - Code 39 bar code symbology specification

BS ISO/IEC 18004:2006 Information technology - Automatic identification and data capture

51/61

http://sourceforge.net/projects/libdmtx
http://www.bsi-global.com/
http://ribbs.usps.gov/onecodesolution/
http://www.datenfreihafen.org/projects/iec16022.html
http://www.tec-it.com/
http://grandzebu.net/index.php
http://www.linpng.org/pub/png/book/
http://www.gs1uk.org/downloads/standards/GS1%20General%20%20Specifications.pdf
http://ar.linux.it/pub/barcode
http://www.auspost.com.au/
http://www.morovia.com/education/symbology/royalmail.asp
http://www.laetus.com/
http://www.telepen-barcode.co.uk/
http://www.barcode-1.net/pub/russadam/spec.html

techniques - QR Code 2005 bar code symbology specification

BS ISO/IEC 24723:2006 Information technology - Automatic identification and data capture
techniques - EAN.UCC Composite bar code symbology specification

BS ISO/IEC 24724:2006 Information technology - Automatic identification and data capture
techniques - Reduced Space Symbology (RSS) bar code symbology specification

BS ISO/IEC 24728:2006 Information technology - Automatic identification and data capture
techniques - MicroPDF417 bar code symbology specification

ISO/IEC 24778:2008 Information technology - Automatic identification and data capture techniques
- Aztec Code bar code symbology specification

Uniform Symbology Specification Code One (AIM Inc., 1994)

ANSI/AIM BC12-1998 - Uniform Symbology Specification Channel Code

ANSI/AIM BC6-2000 - Uniform Symbology Specification Code 49

ANSI/HIBC 2.3-2009 - The Health Industry Bar Code (HIBC) Supplier Labeling Standard

AIMD014 (v 1.63) - Information technology, Automatic identification and data capture techniques -
Bar code symbology specification - Grid Matrix (Released 9th Dec 2008)

GS1 General Specifications Version 8.0

A. Character Encoding
This section is intended as a quick reference to the character sets used by Zint. All symbologies use
standard ASCII input as shown in section A.1, but some support extended character support as
shown in the subsequent section.

A.1 ASCII Standard

The ubiquitous ASCII standard is well known to most computer users. It's reproduced here for
reference.

Hex 0 1 2 3 4 5 6 7

0 NULL DLE SPACE 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D Y d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

52/61

8 BS CAN (8 H X h x

9 TAB EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

A.2 Latin Alphabet No 1 (ISO 8859-1)

A common extension to the ASCII standard, Latin-1 is used to expand the range of Code 128,
PDF417 and other symbols. Input strings should be in Unicode format.

Hex 8 9 A B C D E F

0 NBSP ° À Ð à ð

1 ¡ ± Á Ñ á ñ

2 ¢ ² Â Ò â ò

3 £ ³ Ã Ó ã ó

4 ¤ ´ Ä Ô ä ô

5 ¥ µ Å Õ å õ

6 ¦ ¶ Æ Ö æ ö

7 § · Ç × ç ÷

8 ¨ ¸ È Ø è ø

9 © ¹ É Ù é ù

A ª º Ê Ú ê ú

B « » Ë Û ë û

C ¬ ¼ Ì Ü ì ü

D SHY ½ Í Ý í ý

E ® ¾ Î Þ î þ

53/61

F ¯ ¿ Ï ß ï ÿ

B. Three Digit Country Codes (ISO 3166)
Below are some of the three digit country codes as determined by ISO 3166 for use with Maxicode
symbols.
AFGHANISTAN 004
ALAND ISLANDS 248
ALBANIA 008
ALGERIA 012
AMERICAN SAMOA 016
ANDORRA 020
ANGOLA 024
ANGUILLA 660
ANTARCTICA 010
ANTIGUA AND BARBUDA 028
ARGENTINA 032
ARMENIA 051
ARUBA 053
AUSTRALIA 036
AUSTRIA 040
AZERBAIJAN 031
BAHAMAS 044
BAHRAIN 048
BANGLADESH 050
BARBADOS 052
BELARUS 112
BELGIUM 056
BELIZE 084
BENIN 204
BERMUDA 060
BHUTAN 064
BOLIVIA 068
BOSNIA AND HERZEGOVINA 070
BOTSWANA 072
BOUVET ISLAND 074
BRAZIL 076
BRITISH INDIAN OCEAN TERRITORY 086
BRUNEI DARUSSALAM 096
BULGARIA 100
BURKINA FASO 854
BURUNDI 108
CAMBODIA 116
CAMEROON 120
CANADA 124
CAPE VERDE 132
CAYMAN ISLANDS 136
CENTRAL AFRICAN REPUBLIC 140
CHAD 148
CHILE 152
CHINA 156
CHRISTMAS ISLAND 162
COCOS (KEELING) ISLANDS 166
COLOMBIA 170
COMOROS 174
CONGO 178

54/61

CONGO, THE DEMOCRATIC REPUBLIC OF THE 180
COOK ISLANDS 184
COSTA RICA 188
COTE D'IVOIRE 384
CROATIA 191
CUBA 192
CYPRUS 196
CZECH REPUBLIC 203
DENMARK 208
DJIBOUTI 262
DOMINICA 212
DOMINICAN REPUBLIC 214
ECUADOR 218
EGYPT 818
EL SALVADOR 222
EQUATORIAL GUINEA 226
ERITREA 232
ESTONIA 233
ETHIOPIA 231
FALKLAND ISLANDS (MALVINAS) 238
FAROE ISLANDS 234
FIJI 242
FINLAND 246
FRANCE 250
FRENCH GUIANA 254
FRENCH POLYNESIA 258
FRENCH SOUTHERN TERRITORIES 260
GABON 266
GAMBIA 270
GEORGIA 268
GERMANY 276
GHANA 288
GIBRALTAR 292
GREECE 300
GREENLAND 304
GRENADA 308
GUADELOUPE 312
GUAM 316
GUATEMALA 320
GUERNSEY 831
GUINEA 324
GUINEA-BISSAU 624
GUYANA 328
HAITI 332
HEARD ISLAND AND MCDONALD ISLANDS 334
HOLY SEE (VATICAN CITY STATE) 336
HONDURAS 340
HONG KONG 344
HUNGARY 348
ICELAND 352
INDIA 356
INDONESIA 360
IRAN (ISLAMIC REPUBLIC OF) 364
IRAQ 368
IRELAND 372
ISLE OF MAN 833
ISRAEL 376
ITALY 380
JAMAICA 388
JAPAN 392
JERSEY 832

55/61

JORDAN 400
KAZAKHSTAN 398
KENYA 404
KIRIBATI 296
KOREA, DEMOCRATIC PEOPLE'S REPUBLIC OF 408
KOREA, REPUBLIC OF 410
KUWAIT 414
KYRGYZSTAN 417
LAO PEOPLE'S DEMOCRATIC REPUBLIC 418
LATVIA 428
LEBANON 422
LESOTHO 426
LIBERIA 430
LIBYAN ARAB JAMAHIRIYA 434
LIECHTENSTEIN 438
LITHUANIA 440
LUXEMBOURG 442
MACAO 446
MACEDONIA, THE FORMER YUGOSLAV REPUBLIC OF 807
MADAGASCAR 450
MALAWI 454
MALAYSIA 458
MALDIVES 462
MALI 466
MALTA 470
MARSHALL ISLANDS 584
MARTINIQUE 474
MAURITANIA 478
MAURITIUS 480
MAYOTTE 175
MEXICO 484
MICRONESIA, FEDERATED STATES OF 583
MOLDOVA, REPUBLIC OF 498
MONACO 492
MONGOLIA 496
MONTENEGRO 499
MONTSERRAT 500
MOROCCO 504
MOZAMBIQUE 508
MYANMAR 104
NAMIBIA 516
NAURU 520
NEPAL 524
NETHERLANDS 528
NETHERLANDS ANTILLES 530
NEW CALEDONIA 540
NEW ZEALAND 554
NICARAGUA 558
NIGER 562
NIGERIA 566
NIUE 570
NORFOLK ISLAND 574
NORTHERN MARIANA ISLANDS 580
NORWAY 578
OMAN 512
PAKISTAN 586
PALAU 585
PALESTINIAN TERRITORY, OCCUPIED 275
PANAMA 591
PAPUA NEW GUINEA 598
PARAGUAY 600

56/61

PERU 604
PHILIPPINES 608
PITCAIRN 612
POLAND 616
PORTUGAL 620
PUERTO RICO 630
QATAR 634
REUNION 638
ROMANIA 642
RUSSIAN FEDERATION 643
RWANDA 646
SAINT HELENA 654
SAINT KITTS AND NEVIS 659
SAINT LUCIA 662
SAINT PIERRE AND MIQUELON 666
SAINT VINCENT AND THE GRENADINES 670
SAMOA 882
SAN MARINO 674
SAO TOME AND PRINCIPE 678
SAUDI ARABIA 682
SENEGAL 686
SERBIA 688
SEYCHELLES 690
SIERRA LEONE 694
SINGAPORE 702
SLOVAKIA 703
SLOVENIA 705
SOLOMON ISLANDS 090
SOMALIA 706
SOUTH AFRICA 710
SOUTH GEORGIA AND THE SOUTH SANDWICH ISLANDS 239
SPAIN 724
SRI LANKA 144
SUDAN 736
SURINAME 740
SVALBARD AND JAN MAYEN 744
ST. HELENA 654
ST. PIERRE AND MIQUELON 666
SWAZILAND 748
SWEDEN 752
SWITZERLAND 756
SYRIAN ARAB REPUBLIC 760
TAIWAN, PROVINCE OF CHINA 158
TAJIKISTAN 762
TANZANIA, UNITED REPUBLIC OF 834
THAILAND 764
TIMOR-LESTE 626
TOGO 768
TOKELAU 772
TONGA 776
TRINIDAD AND TOBAGO 780
TUNISIA 788
TURKEY 792
TURKMENISTAN 795
TURKS AND CAICOS ISLANDS 796
TUVALU 798
UGANDA 800
UKRAINE 804
UNITED ARAB EMIRATES 784
UNITED KINGDOM 826
UNITED STATES 840

57/61

UNITED STATES MINOR OUTLYING ISLANDS 581
URUGUAY 858
UZBEKISTAN 860
VANUATU 548
VATICAN CITY STATE (HOLY SEE) 336
VENEZUELA 862
VIET NAM 704
VIRGIN ISLANDS (BRITISH) 092
VIRGIN ISLANDS (U.S.) 850
WALLIS AND FUTUNA 876
WESTERN SAHARA 732
YEMEN 887
YUGOSLAVIA 891
ZAMBIA 894
ZIMBABWE 716

C. GS1 General Specification
The GS1 General Specification defines a global standard for encoding data about products. The full
specification is available here. Data is encoded as a series of number pairs where the first number,
usually shown in (brackets) is an application identifier (AI), and the second is a formatted
representation of the data. For example (401)6773 can be read as "Consignment Number 6773"
where the AI (401) signifies that the data is a consignment number. Note that when using Zint AI
data is entered using [square] brackets. This allows rounded brackets to be included in the data
which is allowed by the specification. When the barcode symbol is generated these square brackets
are replaced by rounded brackets in any text displayed. A list of valid AI numbers is given below.

C.1 Application Identifiers [1]
00 Serial Shipping Container Code (SSCC)
01 Global Trade Item Number (GTIN)
02 # of containers10 Batch Number
11 Production Date13 Packaging Date
15 Sell by Date (Quality Control)
17 Expiration Date20 Product Variant
21 Serial Number22 HIBCC Quantity, Date, Batch and Link
23x Lot Number
240 Additional Product Identification
250 Second Serial Number30 Quantity Each
310y Product Net Weight in kg
311y Product Length/1st Dimension, in meters
312y Product Width/Diameter/2nd Dimension, in meters
313y Product Depth/Thickness/3rd Dimension, in meters
314y Product Area, in square meters
315y Product Volume, in liters
316y product Volume, in cubic meters
320y Product Net Weight, in pounds
321y Product Length/1st Dimension, in inches
322y Product Length/1st Dimension, in feet
323y Product Length/1st Dimension, in yards
324y Product Width/Diameter/2nd Dimension, in inches
325y Product Width/Diameter/2nd Dimension, in feet
326y Product Width/Diameter/2nd Dimension, in yards
327y Product Depth/Thickness/3rd Dimension, in inches
328y Product Depth/Thickness/3rd Dimension, in feet
329y Product Depth/Thickness/3rd Dimension, in yards
330y Container Gross Weight (kg)
331y Container Length/1st Dimension (Meters)
332y Container Width/Diameter/2nd Dimension (Meters)

58/61

http://www.gs1uk.org/downloads/standards/GS1%20General%20%20Specifications.pdf

333y Container Depth/Thickness/3rd Dimension (Meters)
334y Container Area (Square Meters)
335y Container Gross Volume (Liters)
336y Container Gross Volume (Cubic Meters)
340y Container Gross Weight (Pounds)
341y Container Length/1st Dimension, in inches
342y Container Length/1st Dimension, in feet
343y Container Length/1st Dimension in, in yards
344y Container Width/Diameter/2nd Dimension, in inches
345y Container Width/Diameter/2nd Dimension, in feet
346y Container Width/Diameter/2nd Dimension, in yards
347y Container Depth/Thickness/Height/3rd Dimension, in inches
348y Container Depth/Thickness/Height/3rd Dimension, in feet
349y Container Depth/Thickness/Height/3rd Dimension, in yards
350y Product Area (Square Inches)
351y Product Area (Square Feet)
352y Product Area (Square Yards)
353y Container Area (Square Inches)
354y Container Area (Square Feet)
355y Container Area (Suqare Yards)
356y Net Weight (Troy Ounces)
360y Product Volume (Quarts)
361y Product Volume (Gallons)
362y Container Gross Volume (Quarts)
363y Container Gross Volume (Gallons)
364y Product Volume (Cubic Inches)
365y Product Volume (Cubic Feet)
366y Product Volume (Cubic Yards)
367y Container Gross Volume (Cubic Inches)
368y Container Gross Volume (Cubic Feet)
369y Container Gross Volume (Cubic Yards)
37 Number of Units Contained
400 Customer Purchase Order Number
410 Ship To/Deliver To Location Code (Global Location Number)
411 Bill To/Invoice Location Code (Global Location Number)
412 Purchase From Location Code (Global Location Number)
420 Ship To/Deliver To Postal Code (Single Postal Authority)
421 Ship To/Deliver To Postal Code (Multiple Postal Authority)
8001 Roll Products - Width/Length/Core Diameter
8002 Electronic Serial Number (ESN) for Cellular Phone
8003 Global Returnable Asset Identifier
8004 Global Individual Asset Identifier
8005 Price per Unit of Measure
8100 Coupon Extended Code: Number System and Offer
8101 Coupon Extended Code: Number System, Offer, End of Offer
8102 Coupon Extended Code: Number System preceded by 090 Mutually Agreed Between
Trading Partners
91 Internal Company Codes
92 Internal Company Codes
93 Internal Company Codes
94 Internal Company Codes
95 Internal Company Codes
96 Internal Company Codes
97 Internal Company Codes
98 Internal Company Codes
99 Internal Company Codes

C.2 Fixed Length Fields

The GS1 Specification requires that some of the data to be encoded fits a standard length field. Zint
will generate an error if the correct data lengths are not entered. The following table details which

59/61

AIs have fixed length data fields and how long the data should be for each:

60/61

Application Identifier
Number of characters
(AI and Data Field)

00 20

01 16

02 16

03 16

04 18

11 8

12 8

13 8

14 8

15 8

16 8

17 8

18 8

19 8

20 4

31 10

32 10

33 10

34 10

35 10

36 10

41 16

[1] This information taken from Wikipedia and used under the terms of the GNU Free
Documentation License.

61/61

http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License
http://en.wikipedia.org/wiki/Wikipedia:Text_of_the_GNU_Free_Documentation_License
http://en.wikipedia.org/wiki/GS1-128

