
Autocorrelation

A large number of measurements are collected over a period of time.  Stock prices, quantities sold,
student enrollments, grade point averages, etc. may vary systematically across time periods.  Variations
may reflect trends which repeat by week, month or year.  For example, a grocery item may sell at a fairly
steady rate on Tuesday through Thursday but increase or decrease on Friday, Saturday, Sunday and
Monday.  If we were examining product sales variations for a product across the days of a year, we might
calculate the correlation between units sold over consecutive days.  The data might be recorded simply as a
series such as  “units sold” each day.  The observations can be recorded across the columns of a grid or as a
column of data in a grid.  As an example, the grid might contain:

CASE/VAR Day Sold
Case 1 1 34
Case 2 2 26
Case 3 3 32
Case 4 4 39
Case 5 5 29
Case 6 6 14
...
Case 216 6 15
Case 217 7 12

If we were to copy the data in the above “Sold” column into an adjacent column but starting with the Case
2 data, we would end up with:



CASE/VAR Day Sold Sold2
Case 1 1 34 26
Case 2 2 26 32
Case 3 3 32 39
Case 4 4 39 29
Case 5 5 29 14
Case 6 6 14 11
...
Case 216 6 15 12
Case 217 7 12 -

In other words, we repeat our original scores from Case 2 through case 217 in the second column but
moved up one row.  Of course, we now have one fewer case with complete data in the second column.  We
say that the second column of data “lags” the first column by 1.   In a similar fashion we might create a
third, fourth, fifth, etc. column representing lags of 2, 3, 4, 5, etc..  Creating lag variables 1 through 6 would
result in variables starting with sales on days 1 through 7, that is, a week of sale data.  If we obtain the
product-moment correlations for these seven variables, we would have the correlations among Monday
sales, Tuesday Sales, Wednesday Sales, etc.  We note that the mean and variance are best estimated by the
lag 0 (first column) data since it contains all of the observations (each lag loses one additional observation.)
If the sales from day to day represent “noise” or simply random variations then we would expect the
correlations to be close to zero.  If, on the other hand, we see an systematic increase or decrease in sales
between say, Monday and Tuesday, then we would observe a positive or negative correlation.

In addition to the inter-correlations among the lagged variables, we would likely want to plot the
average sales for each.  Of course, these averages may reflect simply random variation from day to day.
We may want to “smooth” these averages to enhance our ability to discern possible trends.  For example,
we might want the average of day three to be a weighted average of that day plus the previous two day
sales.  This “moving average” would tend to smooth random peaks and valleys that occur from day to day.

It is also the case that an investigator may want to predict the sales for a particular day based on
the previous sales history.  For example, we may want to predict day 8 sales given the history of previous
seven day sales.

Now let us look at an example of auto-correlation.  We will use a file named strikes.tab.  The file
contains a column of values representing the number of strikes which occurred each month over a 30 month
period.  Select the auto-correlation procedure from the Correlations sub-menu of the Statistics main menu.
Below is a representation of the form as completed to obtain auto-correlations, partial auto-correlations,
and data smoothing using both moving average smoothing and polynomial regression smoothing:



Figure 1.   The Autocorrelation Dialog

When we click the Compute button, we first obtain a dialog form for setting the parameters of our moving
average.
In that form we first enter the number of values to include in the average from both sides of the current
average value.  We selected 2.  Be sure and press the Enter key after entering the order value.  When you
do, two theta values will appear in a list box.  When you click on each of those thetas, you will see a default
value appear in a text box.  This is the weight to assign the leading and trailing averages (first or second in
our example.)  In our example we have accepted the default value for both thetas (simply press the Return
key to accept the default or enter a value and press the Return key.)  Now press the Apply button.  When
you do this, the weights for all of the values (the current mean and the 1, 2, … order means) are
recalculated.  You can then press the OK button to proceed with the process.



Figure 2.   The Moving Average Dialog

The procedure then plots the original (30) data points and their moving average smoothed values.  Since we
also asked for a projection of 5 points, they too are plotted.  The plot should look like that shown below:

Figure 3.   Plot of Smoothed Points Using Moving Averages



We notice that there seems to be a “wave” type of trend with a half-cycle of about 15 months.  When we
press the Return button on the plot of points we next get the following:

Figure 4.   Plot of Residuals Obtained Using Moving Averages

This plot shows the original points and the difference (residual) of the smoothed values from the original.
At this point, the procedure replaces the original points with the smoothed values.  Press the Return button
and you next obtain the following:

Figure 5.   Polynomial Regression Smoothing Form

This is the form for specifying our next smoothing choice, the polynomial regression smoothing.  We have
elected to use a polynomial value of 2 which will result in a model for a data point Yt-1 = B * t2 + C for
each data point.  Click the OK button to proceed.  You then obtain the following result:



Figure 6.   Plot of Polynomial Smoothed Points

It appears that the use of the second order polynomial has “removed” the cyclic trend we saw in the
previously smoothed data points.  Click the return key to obtain the next output as shown below:

Figure 7.   Plot of Residuals from Polynomial Smoothing

This result shows the previously smoothed data points and the residuals obtained by subtracting the
polynomial smoothed points from those previous points.  Click the Return key again to see the next output
shown below:



Overall mean = 4532.604, variance = 11487.241
Lag      Rxy      MeanX     MeanY    Std.Dev.X Std.Dev.Y    Cases     LCL       UCL

   0    1.0000 4532.6037 4532.6037  109.0108  109.0108        30    1.0000    1.0000
   1    0.8979 4525.1922 4537.3814  102.9611  107.6964        29    0.7948    0.9507
   2    0.7964 4517.9688 4542.3472   97.0795  106.2379        28    0.6116    0.8988
   3    0.6958 4510.9335 4547.5011   91.3660  104.6337        27    0.4478    0.8444
   4    0.5967 4504.0864 4552.8432   85.8206  102.8825        26    0.3012    0.7877
   5    0.4996 4497.4274 4558.3734   80.4432  100.9829        25    0.1700    0.7287
   6    0.4050 4490.9565 4564.0917   75.2340   98.9337        24    0.0524    0.6679
   7    0.3134 4484.6738 4569.9982   70.1928   96.7340        23   -0.0528    0.6053
   8    0.2252 4478.5792 4576.0928   65.3196   94.3825        22   -0.1470    0.5416
   9    0.1410 4472.6727 4582.3755   60.6144   91.8784        21   -0.2310    0.4770
  10    0.0611 4466.9544 4588.8464   56.0772   89.2207        20   -0.3059    0.4123
  11   -0.0139 4461.4242 4595.5054   51.7079   86.4087        19   -0.3723    0.3481
  12   -0.0836 4456.0821 4602.3525   47.5065   83.4415        18   -0.4309    0.2852

In the output above we are shown the auto-correlations obtained between the values at lag 0 and those at
lags 1 through 12.  The procedure limited the number of lags automatically to insure a sufficient number of
cases upon which to base the correlations.  You can see that the upper and lower 95% confidence limits
increases as the number of cases decreases.   Click the Return button on the output form to continue the
process. 

Matrix of Lagged Variable: VAR00001 with   30 valid cases.

Variables
                  Lag 0        Lag 1        Lag 2        Lag 3
Lag 4
     Lag 0       1.000        0.898        0.796        0.696
0.597 
     Lag 1       0.898        1.000        0.898        0.796
0.696 
     Lag 2       0.796        0.898        1.000        0.898
0.796 
     Lag 3       0.696        0.796        0.898        1.000
0.898 
     Lag 4       0.597        0.696        0.796        0.898
1.000 
     Lag 5       0.500        0.597        0.696        0.796
0.898 
     Lag 6       0.405        0.500        0.597        0.696
0.796 
     Lag 7       0.313        0.405        0.500        0.597
0.696 
     Lag 8       0.225        0.313        0.405        0.500
0.597 
     Lag 9       0.141        0.225        0.313        0.405
0.500 
    Lag 10       0.061        0.141        0.225        0.313
0.405 
    Lag 11      -0.014        0.061        0.141        0.225
0.313 
    Lag 12      -0.084       -0.014        0.061        0.141
0.225 

Variables



                  Lag 5        Lag 6        Lag 7        Lag 8
Lag 9
     Lag 0       0.500        0.405        0.313        0.225
0.141 
     Lag 1       0.597        0.500        0.405        0.313
0.225 
     Lag 2       0.696        0.597        0.500        0.405
0.313 
     Lag 3       0.796        0.696        0.597        0.500
0.405 
     Lag 4       0.898        0.796        0.696        0.597
0.500 
     Lag 5       1.000        0.898        0.796        0.696
0.597 
     Lag 6       0.898        1.000        0.898        0.796
0.696 
     Lag 7       0.796        0.898        1.000        0.898
0.796 
     Lag 8       0.696        0.796        0.898        1.000
0.898 
     Lag 9       0.597        0.696        0.796        0.898
1.000 
    Lag 10       0.500        0.597        0.696        0.796
0.898 
    Lag 11       0.405        0.500        0.597        0.696
0.796 
    Lag 12       0.313        0.405        0.500        0.597
0.696 

Variables
                 Lag 10       Lag 11       Lag 12
     Lag 0       0.061       -0.014       -0.084 
     Lag 1       0.141        0.061       -0.014 
     Lag 2       0.225        0.141        0.061 
     Lag 3       0.313        0.225        0.141 
     Lag 4       0.405        0.313        0.225 
     Lag 5       0.500        0.405        0.313 
     Lag 6       0.597        0.500        0.405 
     Lag 7       0.696        0.597        0.500 
     Lag 8       0.796        0.696        0.597 
     Lag 9       0.898        0.796        0.696 
    Lag 10       1.000        0.898        0.796 
    Lag 11       0.898        1.000        0.898 
    Lag 12       0.796        0.898        1.000 

The above data presents the inter-correlations among the 12 lag variables.  Click the output form’s Return
button to obtain the next output:

Partial Correlation Coefficients with   30 valid cases.

Variables        Lag 0        Lag 1        Lag 2        Lag 3
Lag 4
                 1.000        0.898       -0.051       -0.051       -
0.052 



Variables        Lag 5        Lag 6        Lag 7        Lag 8
Lag 9
                -0.052       -0.052       -0.052       -0.052       -
0.051 

Variables       Lag 10       Lag 11
                -0.051       -0.051 

The partial auto-correlation coefficients represent the correlation between lag 0 and each remaining lag
with previous lag values partialled out.  For example, for lag 2 the correlation of -0.051 represents the
correlation between lag 0 and lag 2 with lag 1 effects removed.  Since the original correlation was 0.796,
removing the effect of lag 1 made a considerable impact.  Again click the Return button on the output form.
Next you should see the following results:

Figure 8.   Auto and Partial Autocorrelation Plot

This plot or “correlogram” shows the auto-correlations and partial auto-correlations obtained in the
analysis.  If only “noise” were present, the correlations would vary around zero.  The presence of large
values is indicative of trends in the data.
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