{==============================================================================| | Project : Ararat Synapse | 007.006.001 | |==============================================================================| | Content: Serial port support | |==============================================================================| | Copyright (c)2001-2017, Lukas Gebauer | | All rights reserved. | | | | Redistribution and use in source and binary forms, with or without | | modification, are permitted provided that the following conditions are met: | | | | Redistributions of source code must retain the above copyright notice, this | | list of conditions and the following disclaimer. | | | | Redistributions in binary form must reproduce the above copyright notice, | | this list of conditions and the following disclaimer in the documentation | | and/or other materials provided with the distribution. | | | | Neither the name of Lukas Gebauer nor the names of its contributors may | | be used to endorse or promote products derived from this software without | | specific prior written permission. | | | | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | | ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR | | ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | | LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | | OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH | | DAMAGE. | |==============================================================================| | The Initial Developer of the Original Code is Lukas Gebauer (Czech Republic).| | Portions created by Lukas Gebauer are Copyright (c)2001-2017. | | All Rights Reserved. | |==============================================================================| | Contributor(s): | | (c)2002, Hans-Georg Joepgen (cpom Comport Ownership Manager and bugfixes) | |==============================================================================| | History: see HISTORY.HTM from distribution package | | (Found at URL: http://www.ararat.cz/synapse/) | |==============================================================================} {: @abstract(Serial port communication library) This unit contains a class that implements serial port communication for Windows, Linux, Unix or MacOSx. This class provides numerous methods with same name and functionality as methods of the Ararat Synapse TCP/IP library. The following is a small example how establish a connection by modem (in this case with my USB modem): @longcode(# ser:=TBlockSerial.Create; try ser.Connect('COM3'); ser.config(460800,8,'N',0,false,true); ser.ATCommand('AT'); if (ser.LastError <> 0) or (not ser.ATResult) then Exit; ser.ATConnect('ATDT+420971200111'); if (ser.LastError <> 0) or (not ser.ATResult) then Exit; // you are now connected to a modem at +420971200111 // you can transmit or receive data now finally ser.free; end; #) } //old Delphi does not have MSWINDOWS define. {$IFDEF WIN32} {$IFNDEF MSWINDOWS} {$DEFINE MSWINDOWS} {$ENDIF} {$ENDIF} //Kylix does not known UNIX define {$IFDEF LINUX} {$IFNDEF UNIX} {$DEFINE UNIX} {$ENDIF} {$ENDIF} {$IFDEF FPC} {$MODE DELPHI} {$IFDEF MSWINDOWS} {$ASMMODE intel} {$ENDIF} {define working mode w/o LIBC for fpc} {$DEFINE NO_LIBC} {$ENDIF} {$Q-} {$H+} {$M+} unit synaser; interface uses {$IFNDEF MSWINDOWS} {$IFNDEF NO_LIBC} Libc, KernelIoctl, {$ELSE} termio, baseunix, unix, {$ENDIF} {$IFNDEF FPC} Types, {$ENDIF} {$ELSE} Windows, registry, {$IFDEF FPC} winver, {$ENDIF} {$ENDIF} synafpc, Classes, SysUtils, synautil; const CR = #$0d; LF = #$0a; CRLF = CR + LF; cSerialChunk = 8192; LockfileDirectory = '/var/lock'; {HGJ} PortIsClosed = -1; {HGJ} ErrAlreadyOwned = 9991; {HGJ} ErrAlreadyInUse = 9992; {HGJ} ErrWrongParameter = 9993; {HGJ} ErrPortNotOpen = 9994; {HGJ} ErrNoDeviceAnswer = 9995; {HGJ} ErrMaxBuffer = 9996; ErrTimeout = 9997; ErrNotRead = 9998; ErrFrame = 9999; ErrOverrun = 10000; ErrRxOver = 10001; ErrRxParity = 10002; ErrTxFull = 10003; dcb_Binary = $00000001; dcb_ParityCheck = $00000002; dcb_OutxCtsFlow = $00000004; dcb_OutxDsrFlow = $00000008; dcb_DtrControlMask = $00000030; dcb_DtrControlDisable = $00000000; dcb_DtrControlEnable = $00000010; dcb_DtrControlHandshake = $00000020; dcb_DsrSensivity = $00000040; dcb_TXContinueOnXoff = $00000080; dcb_OutX = $00000100; dcb_InX = $00000200; dcb_ErrorChar = $00000400; dcb_NullStrip = $00000800; dcb_RtsControlMask = $00003000; dcb_RtsControlDisable = $00000000; dcb_RtsControlEnable = $00001000; dcb_RtsControlHandshake = $00002000; dcb_RtsControlToggle = $00003000; dcb_AbortOnError = $00004000; dcb_Reserveds = $FFFF8000; {:stopbit value for 1 stopbit} SB1 = 0; {:stopbit value for 1.5 stopbit} SB1andHalf = 1; {:stopbit value for 2 stopbits} SB2 = 2; {$IFNDEF MSWINDOWS} const INVALID_HANDLE_VALUE = THandle(-1); CS7fix = $0000020; type TDCB = record DCBlength: DWORD; BaudRate: DWORD; Flags: Longint; wReserved: Word; XonLim: Word; XoffLim: Word; ByteSize: Byte; Parity: Byte; StopBits: Byte; XonChar: CHAR; XoffChar: CHAR; ErrorChar: CHAR; EofChar: CHAR; EvtChar: CHAR; wReserved1: Word; end; PDCB = ^TDCB; const {$IFDEF UNIX} {$IFDEF BSD} MaxRates = 18; //MAC {$ELSE} MaxRates = 30; //UNIX {$ENDIF} {$ELSE} MaxRates = 19; //WIN {$ENDIF} Rates: array[0..MaxRates, 0..1] of cardinal = ( (0, B0), (50, B50), (75, B75), (110, B110), (134, B134), (150, B150), (200, B200), (300, B300), (600, B600), (1200, B1200), (1800, B1800), (2400, B2400), (4800, B4800), (9600, B9600), (19200, B19200), (38400, B38400), (57600, B57600), (115200, B115200), (230400, B230400) {$IFNDEF BSD} ,(460800, B460800) {$IFDEF UNIX} ,(500000, B500000), (576000, B576000), (921600, B921600), (1000000, B1000000), (1152000, B1152000), (1500000, B1500000), (2000000, B2000000), (2500000, B2500000), (3000000, B3000000), (3500000, B3500000), (4000000, B4000000) {$ENDIF} {$ENDIF} ); {$ENDIF} {$IFDEF BSD} const // From fcntl.h O_SYNC = $0080; { synchronous writes } {$ENDIF} const sOK = 0; sErr = integer(-1); type {:Possible status event types for @link(THookSerialStatus)} THookSerialReason = ( HR_SerialClose, HR_Connect, HR_CanRead, HR_CanWrite, HR_ReadCount, HR_WriteCount, HR_Wait ); {:procedural prototype for status event hooking} THookSerialStatus = procedure(Sender: TObject; Reason: THookSerialReason; const Value: string) of object; {:@abstract(Exception type for SynaSer errors)} ESynaSerError = class(Exception) public ErrorCode: integer; ErrorMessage: string; end; {:@abstract(Main class implementing all communication routines)} TBlockSerial = class(TObject) protected FOnStatus: THookSerialStatus; Fhandle: THandle; FTag: integer; FDevice: string; FLastError: integer; FLastErrorDesc: string; FBuffer: AnsiString; FRaiseExcept: boolean; FRecvBuffer: integer; FSendBuffer: integer; FModemWord: integer; FRTSToggle: Boolean; FDeadlockTimeout: integer; FInstanceActive: boolean; {HGJ} FTestDSR: Boolean; FTestCTS: Boolean; FLastCR: Boolean; FLastLF: Boolean; FMaxLineLength: Integer; FLinuxLock: Boolean; FMaxSendBandwidth: Integer; FNextSend: LongWord; FMaxRecvBandwidth: Integer; FNextRecv: LongWord; FConvertLineEnd: Boolean; FATResult: Boolean; FAtTimeout: integer; FInterPacketTimeout: Boolean; FComNr: integer; {$IFDEF MSWINDOWS} FPortAddr: Word; function CanEvent(Event: dword; Timeout: integer): boolean; procedure DecodeCommError(Error: DWord); virtual; {$IFDEF WIN32} function GetPortAddr: Word; virtual; function ReadTxEmpty(PortAddr: Word): Boolean; virtual; {$ENDIF} {$ENDIF} procedure SetSizeRecvBuffer(size: integer); virtual; function GetDSR: Boolean; virtual; procedure SetDTRF(Value: Boolean); virtual; function GetCTS: Boolean; virtual; procedure SetRTSF(Value: Boolean); virtual; function GetCarrier: Boolean; virtual; function GetRing: Boolean; virtual; procedure DoStatus(Reason: THookSerialReason; const Value: string); virtual; procedure GetComNr(Value: string); virtual; function PreTestFailing: boolean; virtual;{HGJ} function TestCtrlLine: Boolean; virtual; {$IFDEF UNIX} procedure DcbToTermios(const dcb: TDCB; var term: termios); virtual; procedure TermiosToDcb(const term: termios; var dcb: TDCB); virtual; function ReadLockfile: integer; virtual; function LockfileName: String; virtual; procedure CreateLockfile(PidNr: integer); virtual; {$ENDIF} procedure LimitBandwidth(Length: Integer; MaxB: integer; var Next: LongWord); virtual; procedure SetBandwidth(Value: Integer); virtual; public {: data Control Block with communication parameters. Usable only when you need to call API directly.} DCB: Tdcb; {$IFDEF UNIX} TermiosStruc: termios; {$ENDIF} {:Object constructor.} constructor Create; {:Object destructor.} destructor Destroy; override; {:Returns a string containing the version number of the library.} class function GetVersion: string; virtual; {:Destroy handle in use. It close connection to serial port.} procedure CloseSocket; virtual; {:Reconfigure communication parameters on the fly. You must be connected to port before! @param(baud Define connection speed. Baud rate can be from 50 to 4000000 bits per second. (it depends on your hardware!)) @param(bits Number of bits in communication.) @param(parity Define communication parity (N - None, O - Odd, E - Even, M - Mark or S - Space).) @param(stop Define number of stopbits. Use constants @link(SB1), @link(SB1andHalf) and @link(SB2).) @param(softflow Enable XON/XOFF handshake.) @param(hardflow Enable CTS/RTS handshake.)} procedure Config(baud, bits: integer; parity: char; stop: integer; softflow, hardflow: boolean); virtual; {:Connects to the port indicated by comport. Comport can be used in Windows style (COM2), or in Linux style (/dev/ttyS1). When you use windows style in Linux, then it will be converted to Linux name. And vice versa! However you can specify any device name! (other device names then standart is not converted!) After successfull connection the DTR signal is set (if you not set hardware handshake, then the RTS signal is set, too!) Connection parameters is predefined by your system configuration. If you need use another parameters, then you can use Config method after. Notes: - Remember, the commonly used serial Laplink cable does not support hardware handshake. - Before setting any handshake you must be sure that it is supported by your hardware. - Some serial devices are slow. In some cases you must wait up to a few seconds after connection for the device to respond. - when you connect to a modem device, then is best to test it by an empty AT command. (call ATCommand('AT'))} procedure Connect(comport: string); virtual; {:Set communication parameters from the DCB structure (the DCB structure is simulated under Linux).} procedure SetCommState; virtual; {:Read communication parameters into the DCB structure (DCB structure is simulated under Linux).} procedure GetCommState; virtual; {:Sends Length bytes of data from Buffer through the connected port.} function SendBuffer(buffer: pointer; length: integer): integer; virtual; {:One data BYTE is sent.} procedure SendByte(data: byte); virtual; {:Send the string in the data parameter. No terminator is appended by this method. If you need to send a string with CR/LF terminator, you must append the CR/LF characters to the data string! Since no terminator is appended, you can use this function for sending binary data too.} procedure SendString(data: AnsiString); virtual; {:send four bytes as integer.} procedure SendInteger(Data: integer); virtual; {:send data as one block. Each block begins with integer value with Length of block.} procedure SendBlock(const Data: AnsiString); virtual; {:send content of stream from current position} procedure SendStreamRaw(const Stream: TStream); virtual; {:send content of stream as block. see @link(SendBlock)} procedure SendStream(const Stream: TStream); virtual; {:send content of stream as block, but this is compatioble with Indy library. (it have swapped lenght of block). See @link(SendStream)} procedure SendStreamIndy(const Stream: TStream); virtual; {:Waits until the allocated buffer is filled by received data. Returns number of data bytes received, which equals to the Length value under normal operation. If it is not equal, the communication channel is possibly broken. This method not using any internal buffering, like all others receiving methods. You cannot freely combine this method with all others receiving methods!} function RecvBuffer(buffer: pointer; length: integer): integer; virtual; {:Method waits until data is received. If no data is received within the Timeout (in milliseconds) period, @link(LastError) is set to @link(ErrTimeout). This method is used to read any amount of data (e. g. 1MB), and may be freely combined with all receviving methods what have Timeout parameter, like the @link(RecvString), @link(RecvByte) or @link(RecvTerminated) methods.} function RecvBufferEx(buffer: pointer; length: integer; timeout: integer): integer; virtual; {:It is like recvBufferEx, but data is readed to dynamicly allocated binary string.} function RecvBufferStr(Length: Integer; Timeout: Integer): AnsiString; virtual; {:Read all available data and return it in the function result string. This function may be combined with @link(RecvString), @link(RecvByte) or related methods.} function RecvPacket(Timeout: Integer): AnsiString; virtual; {:Waits until one data byte is received which is returned as the function result. If no data is received within the Timeout (in milliseconds) period, @link(LastError) is set to @link(ErrTimeout).} function RecvByte(timeout: integer): byte; virtual; {:This method waits until a terminated data string is received. This string is terminated by the Terminator string. The resulting string is returned without this termination string! If no data is received within the Timeout (in milliseconds) period, @link(LastError) is set to @link(ErrTimeout).} function RecvTerminated(Timeout: Integer; const Terminator: AnsiString): AnsiString; virtual; {:This method waits until a terminated data string is received. The string is terminated by a CR/LF sequence. The resulting string is returned without the terminator (CR/LF)! If no data is received within the Timeout (in milliseconds) period, @link(LastError) is set to @link(ErrTimeout). If @link(ConvertLineEnd) is used, then the CR/LF sequence may not be exactly CR/LF. See the description of @link(ConvertLineEnd). This method serves for line protocol implementation and uses its own buffers to maximize performance. Therefore do NOT use this method with the @link(RecvBuffer) method to receive data as it may cause data loss.} function Recvstring(timeout: integer): AnsiString; virtual; {:Waits until four data bytes are received which is returned as the function integer result. If no data is received within the Timeout (in milliseconds) period, @link(LastError) is set to @link(ErrTimeout).} function RecvInteger(Timeout: Integer): Integer; virtual; {:Waits until one data block is received. See @link(sendblock). If no data is received within the Timeout (in milliseconds) period, @link(LastError) is set to @link(ErrTimeout).} function RecvBlock(Timeout: Integer): AnsiString; virtual; {:Receive all data to stream, until some error occured. (for example timeout)} procedure RecvStreamRaw(const Stream: TStream; Timeout: Integer); virtual; {:receive requested count of bytes to stream} procedure RecvStreamSize(const Stream: TStream; Timeout: Integer; Size: Integer); virtual; {:receive block of data to stream. (Data can be sended by @link(sendstream)} procedure RecvStream(const Stream: TStream; Timeout: Integer); virtual; {:receive block of data to stream. (Data can be sended by @link(sendstreamIndy)} procedure RecvStreamIndy(const Stream: TStream; Timeout: Integer); virtual; {:Returns the number of received bytes waiting for reading. 0 is returned when there is no data waiting.} function WaitingData: integer; virtual; {:Same as @link(WaitingData), but in respect to data in the internal @link(LineBuffer).} function WaitingDataEx: integer; virtual; {:Returns the number of bytes waiting to be sent in the output buffer. 0 is returned when the output buffer is empty.} function SendingData: integer; virtual; {:Enable or disable RTS driven communication (half-duplex). It can be used to communicate with RS485 converters, or other special equipment. If you enable this feature, the system automatically controls the RTS signal. Notes: - On Windows NT (or higher) ir RTS signal driven by system driver. - On Win9x family is used special code for waiting until last byte is sended from your UART. - On Linux you must have kernel 2.1 or higher!} procedure EnableRTSToggle(value: boolean); virtual; {:Waits until all data to is sent and buffers are emptied. Warning: On Windows systems is this method returns when all buffers are flushed to the serial port controller, before the last byte is sent!} procedure Flush; virtual; {:Unconditionally empty all buffers. It is good when you need to interrupt communication and for cleanups.} procedure Purge; virtual; {:Returns @True, if you can from read any data from the port. Status is tested for a period of time given by the Timeout parameter (in milliseconds). If the value of the Timeout parameter is 0, the status is tested only once and the function returns immediately. If the value of the Timeout parameter is set to -1, the function returns only after it detects data on the port (this may cause the process to hang).} function CanRead(Timeout: integer): boolean; virtual; {:Returns @True, if you can write any data to the port (this function is not sending the contents of the buffer). Status is tested for a period of time given by the Timeout parameter (in milliseconds). If the value of the Timeout parameter is 0, the status is tested only once and the function returns immediately. If the value of the Timeout parameter is set to -1, the function returns only after it detects that it can write data to the port (this may cause the process to hang).} function CanWrite(Timeout: integer): boolean; virtual; {:Same as @link(CanRead), but the test is against data in the internal @link(LineBuffer) too.} function CanReadEx(Timeout: integer): boolean; virtual; {:Returns the status word of the modem. Decoding the status word could yield the status of carrier detect signaland other signals. This method is used internally by the modem status reading properties. You usually do not need to call this method directly.} function ModemStatus: integer; virtual; {:Send a break signal to the communication device for Duration milliseconds.} procedure SetBreak(Duration: integer); virtual; {:This function is designed to send AT commands to the modem. The AT command is sent in the Value parameter and the response is returned in the function return value (may contain multiple lines!). If the AT command is processed successfully (modem returns OK), then the @link(ATResult) property is set to True. This function is designed only for AT commands that return OK or ERROR response! To call connection commands the @link(ATConnect) method. Remember, when you connect to a modem device, it is in AT command mode. Now you can send AT commands to the modem. If you need to transfer data to the modem on the other side of the line, you must first switch to data mode using the @link(ATConnect) method.} function ATCommand(value: AnsiString): AnsiString; virtual; {:This function is used to send connect type AT commands to the modem. It is for commands to switch to connected state. (ATD, ATA, ATO,...) It sends the AT command in the Value parameter and returns the modem's response (may be multiple lines - usually with connection parameters info). If the AT command is processed successfully (the modem returns CONNECT), then the ATResult property is set to @True. This function is designed only for AT commands which respond by CONNECT, BUSY, NO DIALTONE NO CARRIER or ERROR. For other AT commands use the @link(ATCommand) method. The connect timeout is 90*@link(ATTimeout). If this command is successful (@link(ATresult) is @true), then the modem is in data state. When you now send or receive some data, it is not to or from your modem, but from the modem on other side of the line. Now you can transfer your data. If the connection attempt failed (@link(ATResult) is @False), then the modem is still in AT command mode.} function ATConnect(value: AnsiString): AnsiString; virtual; {:If you "manually" call API functions, forward their return code in the SerialResult parameter to this function, which evaluates it and sets @link(LastError) and @link(LastErrorDesc).} function SerialCheck(SerialResult: integer): integer; virtual; {:If @link(Lasterror) is not 0 and exceptions are enabled, then this procedure raises an exception. This method is used internally. You may need it only in special cases.} procedure ExceptCheck; virtual; {:Set Synaser to error state with ErrNumber code. Usually used by internal routines.} procedure SetSynaError(ErrNumber: integer); virtual; {:Raise Synaser error with ErrNumber code. Usually used by internal routines.} procedure RaiseSynaError(ErrNumber: integer); virtual; {$IFDEF UNIX} function cpomComportAccessible: boolean; virtual;{HGJ} procedure cpomReleaseComport; virtual; {HGJ} {$ENDIF} {:True device name of currently used port} property Device: string read FDevice; {:Error code of last operation. Value is defined by the host operating system, but value 0 is always OK.} property LastError: integer read FLastError; {:Human readable description of LastError code.} property LastErrorDesc: string read FLastErrorDesc; {:Indicates if the last @link(ATCommand) or @link(ATConnect) method was successful} property ATResult: Boolean read FATResult; {:Read the value of the RTS signal.} property RTS: Boolean write SetRTSF; {:Indicates the presence of the CTS signal} property CTS: boolean read GetCTS; {:Use this property to set the value of the DTR signal.} property DTR: Boolean write SetDTRF; {:Exposes the status of the DSR signal.} property DSR: boolean read GetDSR; {:Indicates the presence of the Carrier signal} property Carrier: boolean read GetCarrier; {:Reflects the status of the Ring signal.} property Ring: boolean read GetRing; {:indicates if this instance of SynaSer is active. (Connected to some port)} property InstanceActive: boolean read FInstanceActive; {HGJ} {:Defines maximum bandwidth for all sending operations in bytes per second. If this value is set to 0 (default), bandwidth limitation is not used.} property MaxSendBandwidth: Integer read FMaxSendBandwidth Write FMaxSendBandwidth; {:Defines maximum bandwidth for all receiving operations in bytes per second. If this value is set to 0 (default), bandwidth limitation is not used.} property MaxRecvBandwidth: Integer read FMaxRecvBandwidth Write FMaxRecvBandwidth; {:Defines maximum bandwidth for all sending and receiving operations in bytes per second. If this value is set to 0 (default), bandwidth limitation is not used.} property MaxBandwidth: Integer Write SetBandwidth; {:Size of the Windows internal receive buffer. Default value is usually 4096 bytes. Note: Valid only in Windows versions!} property SizeRecvBuffer: integer read FRecvBuffer write SetSizeRecvBuffer; published {:Returns the descriptive text associated with ErrorCode. You need this method only in special cases. Description of LastError is now accessible through the LastErrorDesc property.} class function GetErrorDesc(ErrorCode: integer): string; {:Freely usable property} property Tag: integer read FTag write FTag; {:Contains the handle of the open communication port. You may need this value to directly call communication functions outside SynaSer.} property Handle: THandle read Fhandle write FHandle; {:Internally used read buffer.} property LineBuffer: AnsiString read FBuffer write FBuffer; {:If @true, communication errors raise exceptions. If @false (default), only the @link(LastError) value is set.} property RaiseExcept: boolean read FRaiseExcept write FRaiseExcept; {:This event is triggered when the communication status changes. It can be used to monitor communication status.} property OnStatus: THookSerialStatus read FOnStatus write FOnStatus; {:If you set this property to @true, then the value of the DSR signal is tested before every data transfer. It can be used to detect the presence of a communications device.} property TestDSR: boolean read FTestDSR write FTestDSR; {:If you set this property to @true, then the value of the CTS signal is tested before every data transfer. It can be used to detect the presence of a communications device. Warning: This property cannot be used if you need hardware handshake!} property TestCTS: boolean read FTestCTS write FTestCTS; {:Use this property you to limit the maximum size of LineBuffer (as a protection against unlimited memory allocation for LineBuffer). Default value is 0 - no limit.} property MaxLineLength: Integer read FMaxLineLength Write FMaxLineLength; {:This timeout value is used as deadlock protection when trying to send data to (or receive data from) a device that stopped communicating during data transmission (e.g. by physically disconnecting the device). The timeout value is in milliseconds. The default value is 30,000 (30 seconds).} property DeadlockTimeout: Integer read FDeadlockTimeout Write FDeadlockTimeout; {:If set to @true (default value), port locking is enabled (under Linux only). WARNING: To use this feature, the application must run by a user with full permission to the /var/lock directory!} property LinuxLock: Boolean read FLinuxLock write FLinuxLock; {:Indicates if non-standard line terminators should be converted to a CR/LF pair (standard DOS line terminator). If @TRUE, line terminators CR, single LF or LF/CR are converted to CR/LF. Defaults to @FALSE. This property has effect only on the behavior of the RecvString method.} property ConvertLineEnd: Boolean read FConvertLineEnd Write FConvertLineEnd; {:Timeout for AT modem based operations} property AtTimeout: integer read FAtTimeout Write FAtTimeout; {:If @true (default), then all timeouts is timeout between two characters. If @False, then timeout is overall for whoole reading operation.} property InterPacketTimeout: Boolean read FInterPacketTimeout Write FInterPacketTimeout; end; {:Returns list of existing computer serial ports. Working properly only in Windows!} function GetSerialPortNames: string; implementation constructor TBlockSerial.Create; begin inherited create; FRaiseExcept := false; FHandle := INVALID_HANDLE_VALUE; FDevice := ''; FComNr:= PortIsClosed; {HGJ} FInstanceActive:= false; {HGJ} Fbuffer := ''; FRTSToggle := False; FMaxLineLength := 0; FTestDSR := False; FTestCTS := False; FDeadlockTimeout := 30000; FLinuxLock := True; FMaxSendBandwidth := 0; FNextSend := 0; FMaxRecvBandwidth := 0; FNextRecv := 0; FConvertLineEnd := False; SetSynaError(sOK); FRecvBuffer := 4096; FLastCR := False; FLastLF := False; FAtTimeout := 1000; FInterPacketTimeout := True; end; destructor TBlockSerial.Destroy; begin CloseSocket; inherited destroy; end; class function TBlockSerial.GetVersion: string; begin Result := 'SynaSer 7.6.0'; end; procedure TBlockSerial.CloseSocket; begin if Fhandle <> INVALID_HANDLE_VALUE then begin Purge; RTS := False; DTR := False; FileClose(FHandle); end; if InstanceActive then begin {$IFDEF UNIX} if FLinuxLock then cpomReleaseComport; {$ENDIF} FInstanceActive:= false end; Fhandle := INVALID_HANDLE_VALUE; FComNr:= PortIsClosed; SetSynaError(sOK); DoStatus(HR_SerialClose, FDevice); end; {$IFDEF WIN32} function TBlockSerial.GetPortAddr: Word; begin Result := 0; if Win32Platform <> VER_PLATFORM_WIN32_NT then begin EscapeCommFunction(FHandle, 10); asm MOV @Result, DX; end; end; end; function TBlockSerial.ReadTxEmpty(PortAddr: Word): Boolean; begin Result := True; if Win32Platform <> VER_PLATFORM_WIN32_NT then begin asm MOV DX, PortAddr; ADD DX, 5; IN AL, DX; AND AL, $40; JZ @K; MOV AL,1; @K: MOV @Result, AL; end; end; end; {$ENDIF} procedure TBlockSerial.GetComNr(Value: string); begin FComNr := PortIsClosed; if pos('COM', uppercase(Value)) = 1 then FComNr := StrToIntdef(copy(Value, 4, Length(Value) - 3), PortIsClosed + 1) - 1; if pos('/DEV/TTYS', uppercase(Value)) = 1 then FComNr := StrToIntdef(copy(Value, 10, Length(Value) - 9), PortIsClosed - 1); end; procedure TBlockSerial.SetBandwidth(Value: Integer); begin MaxSendBandwidth := Value; MaxRecvBandwidth := Value; end; procedure TBlockSerial.LimitBandwidth(Length: Integer; MaxB: integer; var Next: LongWord); var x: LongWord; y: LongWord; begin if MaxB > 0 then begin y := GetTick; if Next > y then begin x := Next - y; if x > 0 then begin DoStatus(HR_Wait, IntToStr(x)); sleep(x); end; end; Next := GetTick + Trunc((Length / MaxB) * 1000); end; end; procedure TBlockSerial.Config(baud, bits: integer; parity: char; stop: integer; softflow, hardflow: boolean); begin FillChar(dcb, SizeOf(dcb), 0); GetCommState; dcb.DCBlength := SizeOf(dcb); dcb.BaudRate := baud; dcb.ByteSize := bits; case parity of 'N', 'n': dcb.parity := 0; 'O', 'o': dcb.parity := 1; 'E', 'e': dcb.parity := 2; 'M', 'm': dcb.parity := 3; 'S', 's': dcb.parity := 4; end; dcb.StopBits := stop; dcb.XonChar := #17; dcb.XoffChar := #19; dcb.XonLim := FRecvBuffer div 4; dcb.XoffLim := FRecvBuffer div 4; dcb.Flags := dcb_Binary; if softflow then dcb.Flags := dcb.Flags or dcb_OutX or dcb_InX; if hardflow then dcb.Flags := dcb.Flags or dcb_OutxCtsFlow or dcb_RtsControlHandshake else dcb.Flags := dcb.Flags or dcb_RtsControlEnable; dcb.Flags := dcb.Flags or dcb_DtrControlEnable; if dcb.Parity > 0 then dcb.Flags := dcb.Flags or dcb_ParityCheck; SetCommState; end; procedure TBlockSerial.Connect(comport: string); {$IFDEF MSWINDOWS} var CommTimeouts: TCommTimeouts; {$ENDIF} begin // Is this TBlockSerial Instance already busy? if InstanceActive then {HGJ} begin {HGJ} RaiseSynaError(ErrAlreadyInUse); Exit; {HGJ} end; {HGJ} FBuffer := ''; FDevice := comport; GetComNr(comport); {$IFDEF MSWINDOWS} SetLastError (sOK); {$ELSE} {$IFNDEF FPC} SetLastError (sOK); {$ELSE} fpSetErrno(sOK); {$ENDIF} {$ENDIF} {$IFNDEF MSWINDOWS} if FComNr <> PortIsClosed then FDevice := '/dev/ttyS' + IntToStr(FComNr); // Comport already owned by another process? {HGJ} if FLinuxLock then if not cpomComportAccessible then begin RaiseSynaError(ErrAlreadyOwned); Exit; end; {$IFNDEF FPC} FHandle := THandle(Libc.open(pchar(FDevice), O_RDWR or O_SYNC)); {$ELSE} FHandle := THandle(fpOpen(FDevice, O_RDWR or O_SYNC)); {$ENDIF} if FHandle = INVALID_HANDLE_VALUE then //because THandle is not integer on all platforms! SerialCheck(-1) else SerialCheck(0); {$IFDEF UNIX} if FLastError <> sOK then if FLinuxLock then cpomReleaseComport; {$ENDIF} ExceptCheck; if FLastError <> sOK then Exit; {$ELSE} if FComNr <> PortIsClosed then FDevice := '\\.\COM' + IntToStr(FComNr + 1); FHandle := THandle(CreateFile(PChar(FDevice), GENERIC_READ or GENERIC_WRITE, 0, nil, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL or FILE_FLAG_OVERLAPPED, 0)); if FHandle = INVALID_HANDLE_VALUE then //because THandle is not integer on all platforms! SerialCheck(-1) else SerialCheck(0); ExceptCheck; if FLastError <> sOK then Exit; SetCommMask(FHandle, 0); SetupComm(Fhandle, FRecvBuffer, 0); CommTimeOuts.ReadIntervalTimeout := MAXWORD; CommTimeOuts.ReadTotalTimeoutMultiplier := 0; CommTimeOuts.ReadTotalTimeoutConstant := 0; CommTimeOuts.WriteTotalTimeoutMultiplier := 0; CommTimeOuts.WriteTotalTimeoutConstant := 0; SetCommTimeOuts(FHandle, CommTimeOuts); {$IFDEF WIN32} FPortAddr := GetPortAddr; {$ENDIF} {$ENDIF} SetSynaError(sOK); if not TestCtrlLine then {HGJ} begin SetSynaError(ErrNoDeviceAnswer); FileClose(FHandle); {HGJ} {$IFDEF UNIX} if FLinuxLock then cpomReleaseComport; {HGJ} {$ENDIF} {HGJ} Fhandle := INVALID_HANDLE_VALUE; {HGJ} FComNr:= PortIsClosed; {HGJ} end else begin FInstanceActive:= True; RTS := True; DTR := True; Purge; end; ExceptCheck; DoStatus(HR_Connect, FDevice); end; function TBlockSerial.SendBuffer(buffer: pointer; length: integer): integer; {$IFDEF MSWINDOWS} var Overlapped: TOverlapped; x, y, Err: DWord; {$ENDIF} begin Result := 0; if PreTestFailing then {HGJ} Exit; {HGJ} LimitBandwidth(Length, FMaxSendBandwidth, FNextsend); if FRTSToggle then begin Flush; RTS := True; end; {$IFNDEF MSWINDOWS} result := FileWrite(Fhandle, Buffer^, Length); serialcheck(result); {$ELSE} FillChar(Overlapped, Sizeof(Overlapped), 0); SetSynaError(sOK); y := 0; if not WriteFile(FHandle, Buffer^, Length, DWord(Result), @Overlapped) then y := GetLastError; if y = ERROR_IO_PENDING then begin x := WaitForSingleObject(FHandle, FDeadlockTimeout); if x = WAIT_TIMEOUT then begin PurgeComm(FHandle, PURGE_TXABORT); SetSynaError(ErrTimeout); end; GetOverlappedResult(FHandle, Overlapped, Dword(Result), False); end else SetSynaError(y); err := 0; ClearCommError(FHandle, err, nil); if err <> 0 then DecodeCommError(err); {$ENDIF} if FRTSToggle then begin Flush; CanWrite(255); RTS := False; end; ExceptCheck; DoStatus(HR_WriteCount, IntToStr(Result)); end; procedure TBlockSerial.SendByte(data: byte); begin SendBuffer(@Data, 1); end; procedure TBlockSerial.SendString(data: AnsiString); begin SendBuffer(Pointer(Data), Length(Data)); end; procedure TBlockSerial.SendInteger(Data: integer); begin SendBuffer(@data, SizeOf(Data)); end; procedure TBlockSerial.SendBlock(const Data: AnsiString); begin SendInteger(Length(data)); SendString(Data); end; procedure TBlockSerial.SendStreamRaw(const Stream: TStream); var si: integer; x, y, yr: integer; s: AnsiString; begin si := Stream.Size - Stream.Position; x := 0; while x < si do begin y := si - x; if y > cSerialChunk then y := cSerialChunk; Setlength(s, y); yr := Stream.read(PAnsiChar(s)^, y); if yr > 0 then begin SetLength(s, yr); SendString(s); Inc(x, yr); end else break; end; end; procedure TBlockSerial.SendStreamIndy(const Stream: TStream); var si: integer; begin si := Stream.Size - Stream.Position; si := Swapbytes(si); SendInteger(si); SendStreamRaw(Stream); end; procedure TBlockSerial.SendStream(const Stream: TStream); var si: integer; begin si := Stream.Size - Stream.Position; SendInteger(si); SendStreamRaw(Stream); end; function TBlockSerial.RecvBuffer(buffer: pointer; length: integer): integer; {$IFNDEF MSWINDOWS} begin Result := 0; if PreTestFailing then {HGJ} Exit; {HGJ} LimitBandwidth(Length, FMaxRecvBandwidth, FNextRecv); result := FileRead(FHandle, Buffer^, length); serialcheck(result); {$ELSE} var Overlapped: TOverlapped; x, y, Err: DWord; begin Result := 0; if PreTestFailing then {HGJ} Exit; {HGJ} LimitBandwidth(Length, FMaxRecvBandwidth, FNextRecv); FillChar(Overlapped, Sizeof(Overlapped), 0); SetSynaError(sOK); y := 0; if not ReadFile(FHandle, Buffer^, length, Dword(Result), @Overlapped) then y := GetLastError; if y = ERROR_IO_PENDING then begin x := WaitForSingleObject(FHandle, FDeadlockTimeout); if x = WAIT_TIMEOUT then begin PurgeComm(FHandle, PURGE_RXABORT); SetSynaError(ErrTimeout); end; GetOverlappedResult(FHandle, Overlapped, Dword(Result), False); end else SetSynaError(y); err := 0; ClearCommError(FHandle, err, nil); if err <> 0 then DecodeCommError(err); {$ENDIF} ExceptCheck; DoStatus(HR_ReadCount, IntToStr(Result)); end; function TBlockSerial.RecvBufferEx(buffer: pointer; length: integer; timeout: integer): integer; var s: AnsiString; rl, l: integer; ti: LongWord; begin Result := 0; if PreTestFailing then {HGJ} Exit; {HGJ} SetSynaError(sOK); rl := 0; repeat ti := GetTick; s := RecvPacket(Timeout); l := System.Length(s); if (rl + l) > Length then l := Length - rl; Move(Pointer(s)^, IncPoint(Buffer, rl)^, l); rl := rl + l; if FLastError <> sOK then Break; if rl >= Length then Break; if not FInterPacketTimeout then begin Timeout := Timeout - integer(TickDelta(ti, GetTick)); if Timeout <= 0 then begin SetSynaError(ErrTimeout); Break; end; end; until False; delete(s, 1, l); FBuffer := s; Result := rl; end; function TBlockSerial.RecvBufferStr(Length: Integer; Timeout: Integer): AnsiString; var x: integer; begin Result := ''; if PreTestFailing then {HGJ} Exit; {HGJ} SetSynaError(sOK); if Length > 0 then begin Setlength(Result, Length); x := RecvBufferEx(PAnsiChar(Result), Length , Timeout); if FLastError = sOK then SetLength(Result, x) else Result := ''; end; end; function TBlockSerial.RecvPacket(Timeout: Integer): AnsiString; var x: integer; begin Result := ''; if PreTestFailing then {HGJ} Exit; {HGJ} SetSynaError(sOK); if FBuffer <> '' then begin Result := FBuffer; FBuffer := ''; end else begin //not drain CPU on large downloads... Sleep(0); x := WaitingData; if x > 0 then begin SetLength(Result, x); x := RecvBuffer(Pointer(Result), x); if x >= 0 then SetLength(Result, x); end else begin if CanRead(Timeout) then begin x := WaitingData; if x = 0 then SetSynaError(ErrTimeout); if x > 0 then begin SetLength(Result, x); x := RecvBuffer(Pointer(Result), x); if x >= 0 then SetLength(Result, x); end; end else SetSynaError(ErrTimeout); end; end; ExceptCheck; end; function TBlockSerial.RecvByte(timeout: integer): byte; begin Result := 0; if PreTestFailing then {HGJ} Exit; {HGJ} SetSynaError(sOK); if FBuffer = '' then FBuffer := RecvPacket(Timeout); if (FLastError = sOK) and (FBuffer <> '') then begin Result := Ord(FBuffer[1]); System.Delete(FBuffer, 1, 1); end; ExceptCheck; end; function TBlockSerial.RecvTerminated(Timeout: Integer; const Terminator: AnsiString): AnsiString; var x: Integer; s: AnsiString; l: Integer; CorCRLF: Boolean; t: ansistring; tl: integer; ti: LongWord; begin Result := ''; if PreTestFailing then {HGJ} Exit; {HGJ} SetSynaError(sOK); l := system.Length(Terminator); if l = 0 then Exit; tl := l; CorCRLF := FConvertLineEnd and (Terminator = CRLF); s := ''; x := 0; repeat ti := GetTick; //get rest of FBuffer or incomming new data... s := s + RecvPacket(Timeout); if FLastError <> sOK then Break; x := 0; if Length(s) > 0 then if CorCRLF then begin if FLastCR and (s[1] = LF) then Delete(s, 1, 1); if FLastLF and (s[1] = CR) then Delete(s, 1, 1); FLastCR := False; FLastLF := False; t := ''; x := PosCRLF(s, t); tl := system.Length(t); if t = CR then FLastCR := True; if t = LF then FLastLF := True; end else begin x := pos(Terminator, s); tl := l; end; if (FMaxLineLength <> 0) and (system.Length(s) > FMaxLineLength) then begin SetSynaError(ErrMaxBuffer); Break; end; if x > 0 then Break; if not FInterPacketTimeout then begin Timeout := Timeout - integer(TickDelta(ti, GetTick)); if Timeout <= 0 then begin SetSynaError(ErrTimeout); Break; end; end; until False; if x > 0 then begin Result := Copy(s, 1, x - 1); System.Delete(s, 1, x + tl - 1); end; FBuffer := s; ExceptCheck; end; function TBlockSerial.RecvString(Timeout: Integer): AnsiString; var s: AnsiString; begin Result := ''; s := RecvTerminated(Timeout, #13 + #10); if FLastError = sOK then Result := s; end; function TBlockSerial.RecvInteger(Timeout: Integer): Integer; var s: AnsiString; begin Result := 0; s := RecvBufferStr(4, Timeout); if FLastError = 0 then Result := (ord(s[1]) + ord(s[2]) * 256) + (ord(s[3]) + ord(s[4]) * 256) * 65536; end; function TBlockSerial.RecvBlock(Timeout: Integer): AnsiString; var x: integer; begin Result := ''; x := RecvInteger(Timeout); if FLastError = 0 then Result := RecvBufferStr(x, Timeout); end; procedure TBlockSerial.RecvStreamRaw(const Stream: TStream; Timeout: Integer); var s: AnsiString; begin repeat s := RecvPacket(Timeout); if FLastError = 0 then WriteStrToStream(Stream, s); until FLastError <> 0; end; procedure TBlockSerial.RecvStreamSize(const Stream: TStream; Timeout: Integer; Size: Integer); var s: AnsiString; n: integer; begin for n := 1 to (Size div cSerialChunk) do begin s := RecvBufferStr(cSerialChunk, Timeout); if FLastError <> 0 then Exit; Stream.Write(PAnsichar(s)^, cSerialChunk); end; n := Size mod cSerialChunk; if n > 0 then begin s := RecvBufferStr(n, Timeout); if FLastError <> 0 then Exit; Stream.Write(PAnsichar(s)^, n); end; end; procedure TBlockSerial.RecvStreamIndy(const Stream: TStream; Timeout: Integer); var x: integer; begin x := RecvInteger(Timeout); x := SwapBytes(x); if FLastError = 0 then RecvStreamSize(Stream, Timeout, x); end; procedure TBlockSerial.RecvStream(const Stream: TStream; Timeout: Integer); var x: integer; begin x := RecvInteger(Timeout); if FLastError = 0 then RecvStreamSize(Stream, Timeout, x); end; {$IFNDEF MSWINDOWS} function TBlockSerial.WaitingData: integer; begin {$IFNDEF FPC} serialcheck(ioctl(FHandle, FIONREAD, @result)); {$ELSE} serialcheck(fpIoctl(FHandle, FIONREAD, @result)); {$ENDIF} if FLastError <> 0 then Result := 0; ExceptCheck; end; {$ELSE} function TBlockSerial.WaitingData: integer; var stat: TComStat; err: DWORD; begin err := 0; if ClearCommError(FHandle, err, @stat) then begin SetSynaError(sOK); Result := stat.cbInQue; end else begin SerialCheck(sErr); Result := 0; end; ExceptCheck; end; {$ENDIF} function TBlockSerial.WaitingDataEx: integer; begin if FBuffer <> '' then Result := Length(FBuffer) else Result := Waitingdata; end; {$IFNDEF MSWINDOWS} function TBlockSerial.SendingData: integer; begin SetSynaError(sOK); Result := 0; end; {$ELSE} function TBlockSerial.SendingData: integer; var stat: TComStat; err: DWORD; begin SetSynaError(sOK); err := 0; if not ClearCommError(FHandle, err, @stat) then serialcheck(sErr); ExceptCheck; result := stat.cbOutQue; end; {$ENDIF} {$IFNDEF MSWINDOWS} procedure TBlockSerial.DcbToTermios(const dcb: TDCB; var term: termios); var n: integer; x: cardinal; begin //others cfmakeraw(term); term.c_cflag := term.c_cflag or CREAD; term.c_cflag := term.c_cflag or CLOCAL; term.c_cflag := term.c_cflag or HUPCL; //hardware handshake if (dcb.flags and dcb_RtsControlHandshake) > 0 then term.c_cflag := term.c_cflag or CRTSCTS else term.c_cflag := term.c_cflag and (not CRTSCTS); //software handshake if (dcb.flags and dcb_OutX) > 0 then term.c_iflag := term.c_iflag or IXON or IXOFF or IXANY else term.c_iflag := term.c_iflag and (not (IXON or IXOFF or IXANY)); //size of byte term.c_cflag := term.c_cflag and (not CSIZE); case dcb.bytesize of 5: term.c_cflag := term.c_cflag or CS5; 6: term.c_cflag := term.c_cflag or CS6; 7: {$IFDEF FPC} term.c_cflag := term.c_cflag or CS7; {$ELSE} term.c_cflag := term.c_cflag or CS7fix; {$ENDIF} 8: term.c_cflag := term.c_cflag or CS8; end; //parity if (dcb.flags and dcb_ParityCheck) > 0 then term.c_cflag := term.c_cflag or PARENB else term.c_cflag := term.c_cflag and (not PARENB); case dcb.parity of 1: //'O' term.c_cflag := term.c_cflag or PARODD; 2: //'E' term.c_cflag := term.c_cflag and (not PARODD); end; //stop bits if dcb.stopbits > 0 then term.c_cflag := term.c_cflag or CSTOPB else term.c_cflag := term.c_cflag and (not CSTOPB); //set baudrate; x := 0; for n := 0 to Maxrates do if rates[n, 0] = dcb.BaudRate then begin x := rates[n, 1]; break; end; cfsetospeed(term, x); cfsetispeed(term, x); end; procedure TBlockSerial.TermiosToDcb(const term: termios; var dcb: TDCB); var n: integer; x: cardinal; begin //set baudrate; dcb.baudrate := 0; {$IFDEF FPC} //why FPC not have cfgetospeed??? x := term.c_oflag and $0F; {$ELSE} x := cfgetospeed(term); {$ENDIF} for n := 0 to Maxrates do if rates[n, 1] = x then begin dcb.baudrate := rates[n, 0]; break; end; //hardware handshake if (term.c_cflag and CRTSCTS) > 0 then dcb.flags := dcb.flags or dcb_RtsControlHandshake or dcb_OutxCtsFlow else dcb.flags := dcb.flags and (not (dcb_RtsControlHandshake or dcb_OutxCtsFlow)); //software handshake if (term.c_cflag and IXOFF) > 0 then dcb.flags := dcb.flags or dcb_OutX or dcb_InX else dcb.flags := dcb.flags and (not (dcb_OutX or dcb_InX)); //size of byte case term.c_cflag and CSIZE of CS5: dcb.bytesize := 5; CS6: dcb.bytesize := 6; CS7fix: dcb.bytesize := 7; CS8: dcb.bytesize := 8; end; //parity if (term.c_cflag and PARENB) > 0 then dcb.flags := dcb.flags or dcb_ParityCheck else dcb.flags := dcb.flags and (not dcb_ParityCheck); dcb.parity := 0; if (term.c_cflag and PARODD) > 0 then dcb.parity := 1 else dcb.parity := 2; //stop bits if (term.c_cflag and CSTOPB) > 0 then dcb.stopbits := 2 else dcb.stopbits := 0; end; {$ENDIF} {$IFNDEF MSWINDOWS} procedure TBlockSerial.SetCommState; begin DcbToTermios(dcb, termiosstruc); SerialCheck(tcsetattr(FHandle, TCSANOW, termiosstruc)); ExceptCheck; end; {$ELSE} procedure TBlockSerial.SetCommState; begin SetSynaError(sOK); if not windows.SetCommState(Fhandle, dcb) then SerialCheck(sErr); ExceptCheck; end; {$ENDIF} {$IFNDEF MSWINDOWS} procedure TBlockSerial.GetCommState; begin SerialCheck(tcgetattr(FHandle, termiosstruc)); ExceptCheck; TermiostoDCB(termiosstruc, dcb); end; {$ELSE} procedure TBlockSerial.GetCommState; begin SetSynaError(sOK); if not windows.GetCommState(Fhandle, dcb) then SerialCheck(sErr); ExceptCheck; end; {$ENDIF} procedure TBlockSerial.SetSizeRecvBuffer(size: integer); begin {$IFDEF MSWINDOWS} SetupComm(Fhandle, size, 0); GetCommState; dcb.XonLim := size div 4; dcb.XoffLim := size div 4; SetCommState; {$ENDIF} FRecvBuffer := size; end; function TBlockSerial.GetDSR: Boolean; begin ModemStatus; {$IFNDEF MSWINDOWS} Result := (FModemWord and TIOCM_DSR) > 0; {$ELSE} Result := (FModemWord and MS_DSR_ON) > 0; {$ENDIF} end; procedure TBlockSerial.SetDTRF(Value: Boolean); begin {$IFNDEF MSWINDOWS} ModemStatus; if Value then FModemWord := FModemWord or TIOCM_DTR else FModemWord := FModemWord and not TIOCM_DTR; {$IFNDEF FPC} ioctl(FHandle, TIOCMSET, @FModemWord); {$ELSE} fpioctl(FHandle, TIOCMSET, @FModemWord); {$ENDIF} {$ELSE} if Value then EscapeCommFunction(FHandle, SETDTR) else EscapeCommFunction(FHandle, CLRDTR); {$ENDIF} end; function TBlockSerial.GetCTS: Boolean; begin ModemStatus; {$IFNDEF MSWINDOWS} Result := (FModemWord and TIOCM_CTS) > 0; {$ELSE} Result := (FModemWord and MS_CTS_ON) > 0; {$ENDIF} end; procedure TBlockSerial.SetRTSF(Value: Boolean); begin {$IFNDEF MSWINDOWS} ModemStatus; if Value then FModemWord := FModemWord or TIOCM_RTS else FModemWord := FModemWord and not TIOCM_RTS; {$IFNDEF FPC} ioctl(FHandle, TIOCMSET, @FModemWord); {$ELSE} fpioctl(FHandle, TIOCMSET, @FModemWord); {$ENDIF} {$ELSE} if Value then EscapeCommFunction(FHandle, SETRTS) else EscapeCommFunction(FHandle, CLRRTS); {$ENDIF} end; function TBlockSerial.GetCarrier: Boolean; begin ModemStatus; {$IFNDEF MSWINDOWS} Result := (FModemWord and TIOCM_CAR) > 0; {$ELSE} Result := (FModemWord and MS_RLSD_ON) > 0; {$ENDIF} end; function TBlockSerial.GetRing: Boolean; begin ModemStatus; {$IFNDEF MSWINDOWS} Result := (FModemWord and TIOCM_RNG) > 0; {$ELSE} Result := (FModemWord and MS_RING_ON) > 0; {$ENDIF} end; {$IFDEF MSWINDOWS} function TBlockSerial.CanEvent(Event: dword; Timeout: integer): boolean; var ex: DWord; y: Integer; Overlapped: TOverlapped; begin FillChar(Overlapped, Sizeof(Overlapped), 0); Overlapped.hEvent := CreateEvent(nil, True, False, nil); try SetCommMask(FHandle, Event); SetSynaError(sOK); if (Event = EV_RXCHAR) and (Waitingdata > 0) then Result := True else begin y := 0; ex := 0; if not WaitCommEvent(FHandle, ex, @Overlapped) then y := GetLastError; if y = ERROR_IO_PENDING then begin //timedout WaitForSingleObject(Overlapped.hEvent, Timeout); SetCommMask(FHandle, 0); GetOverlappedResult(FHandle, Overlapped, DWord(y), True); end; Result := (ex and Event) = Event; end; finally SetCommMask(FHandle, 0); CloseHandle(Overlapped.hEvent); end; end; {$ENDIF} {$IFNDEF MSWINDOWS} function TBlockSerial.CanRead(Timeout: integer): boolean; var FDSet: TFDSet; TimeVal: PTimeVal; TimeV: TTimeVal; x: Integer; begin TimeV.tv_usec := (Timeout mod 1000) * 1000; TimeV.tv_sec := Timeout div 1000; TimeVal := @TimeV; if Timeout = -1 then TimeVal := nil; {$IFNDEF FPC} FD_ZERO(FDSet); FD_SET(FHandle, FDSet); x := Select(FHandle + 1, @FDSet, nil, nil, TimeVal); {$ELSE} fpFD_ZERO(FDSet); fpFD_SET(FHandle, FDSet); x := fpSelect(FHandle + 1, @FDSet, nil, nil, TimeVal); {$ENDIF} SerialCheck(x); if FLastError <> sOK then x := 0; Result := x > 0; ExceptCheck; if Result then DoStatus(HR_CanRead, ''); end; {$ELSE} function TBlockSerial.CanRead(Timeout: integer): boolean; begin Result := WaitingData > 0; if not Result then Result := CanEvent(EV_RXCHAR, Timeout) or (WaitingData > 0); //check WaitingData again due some broken virtual ports if Result then DoStatus(HR_CanRead, ''); end; {$ENDIF} {$IFNDEF MSWINDOWS} function TBlockSerial.CanWrite(Timeout: integer): boolean; var FDSet: TFDSet; TimeVal: PTimeVal; TimeV: TTimeVal; x: Integer; begin TimeV.tv_usec := (Timeout mod 1000) * 1000; TimeV.tv_sec := Timeout div 1000; TimeVal := @TimeV; if Timeout = -1 then TimeVal := nil; {$IFNDEF FPC} FD_ZERO(FDSet); FD_SET(FHandle, FDSet); x := Select(FHandle + 1, nil, @FDSet, nil, TimeVal); {$ELSE} fpFD_ZERO(FDSet); fpFD_SET(FHandle, FDSet); x := fpSelect(FHandle + 1, nil, @FDSet, nil, TimeVal); {$ENDIF} SerialCheck(x); if FLastError <> sOK then x := 0; Result := x > 0; ExceptCheck; if Result then DoStatus(HR_CanWrite, ''); end; {$ELSE} function TBlockSerial.CanWrite(Timeout: integer): boolean; var t: LongWord; begin Result := SendingData = 0; if not Result then Result := CanEvent(EV_TXEMPTY, Timeout); {$IFDEF WIN32} if Result and (Win32Platform <> VER_PLATFORM_WIN32_NT) then begin t := GetTick; while not ReadTxEmpty(FPortAddr) do begin if TickDelta(t, GetTick) > 255 then Break; Sleep(0); end; end; {$ENDIF} if Result then DoStatus(HR_CanWrite, ''); end; {$ENDIF} function TBlockSerial.CanReadEx(Timeout: integer): boolean; begin if Fbuffer <> '' then Result := True else Result := CanRead(Timeout); end; procedure TBlockSerial.EnableRTSToggle(Value: boolean); begin SetSynaError(sOK); {$IFNDEF MSWINDOWS} FRTSToggle := Value; if Value then RTS:=False; {$ELSE} if Win32Platform = VER_PLATFORM_WIN32_NT then begin GetCommState; if value then dcb.Flags := dcb.Flags or dcb_RtsControlToggle else dcb.flags := dcb.flags and (not dcb_RtsControlToggle); SetCommState; end else begin FRTSToggle := Value; if Value then RTS:=False; end; {$ENDIF} end; procedure TBlockSerial.Flush; begin {$IFNDEF MSWINDOWS} SerialCheck(tcdrain(FHandle)); {$ELSE} SetSynaError(sOK); if not Flushfilebuffers(FHandle) then SerialCheck(sErr); {$ENDIF} ExceptCheck; end; {$IFNDEF MSWINDOWS} procedure TBlockSerial.Purge; begin {$IFNDEF FPC} SerialCheck(ioctl(FHandle, TCFLSH, TCIOFLUSH)); {$ELSE} {$IFDEF DARWIN} SerialCheck(fpioctl(FHandle, TCIOflush, Pointer(PtrInt(TCIOFLUSH)))); {$ELSE} SerialCheck(fpioctl(FHandle, {$IFDEF FreeBSD}TCIOFLUSH{$ELSE}TCFLSH{$ENDIF}, Pointer(PtrInt(TCIOFLUSH)))); {$ENDIF} {$ENDIF} FBuffer := ''; ExceptCheck; end; {$ELSE} procedure TBlockSerial.Purge; var x: integer; begin SetSynaError(sOK); x := PURGE_TXABORT or PURGE_TXCLEAR or PURGE_RXABORT or PURGE_RXCLEAR; if not PurgeComm(FHandle, x) then SerialCheck(sErr); FBuffer := ''; ExceptCheck; end; {$ENDIF} function TBlockSerial.ModemStatus: integer; begin Result := 0; {$IFNDEF MSWINDOWS} {$IFNDEF FPC} SerialCheck(ioctl(FHandle, TIOCMGET, @Result)); {$ELSE} SerialCheck(fpioctl(FHandle, TIOCMGET, @Result)); {$ENDIF} {$ELSE} SetSynaError(sOK); if not GetCommModemStatus(FHandle, dword(Result)) then SerialCheck(sErr); {$ENDIF} ExceptCheck; FModemWord := Result; end; procedure TBlockSerial.SetBreak(Duration: integer); begin {$IFNDEF MSWINDOWS} SerialCheck(tcsendbreak(FHandle, Duration)); {$ELSE} SetCommBreak(FHandle); Sleep(Duration); SetSynaError(sOK); if not ClearCommBreak(FHandle) then SerialCheck(sErr); {$ENDIF} end; {$IFDEF MSWINDOWS} procedure TBlockSerial.DecodeCommError(Error: DWord); begin if (Error and DWord(CE_FRAME)) > 1 then FLastError := ErrFrame; if (Error and DWord(CE_OVERRUN)) > 1 then FLastError := ErrOverrun; if (Error and DWord(CE_RXOVER)) > 1 then FLastError := ErrRxOver; if (Error and DWord(CE_RXPARITY)) > 1 then FLastError := ErrRxParity; if (Error and DWord(CE_TXFULL)) > 1 then FLastError := ErrTxFull; end; {$ENDIF} //HGJ function TBlockSerial.PreTestFailing: Boolean; begin if not FInstanceActive then begin RaiseSynaError(ErrPortNotOpen); result:= true; Exit; end; Result := not TestCtrlLine; if result then RaiseSynaError(ErrNoDeviceAnswer) end; function TBlockSerial.TestCtrlLine: Boolean; begin result := ((not FTestDSR) or DSR) and ((not FTestCTS) or CTS); end; function TBlockSerial.ATCommand(value: AnsiString): AnsiString; var s: AnsiString; ConvSave: Boolean; begin result := ''; FAtResult := False; ConvSave := FConvertLineEnd; try FConvertLineEnd := True; SendString(value + #$0D); repeat s := RecvString(FAtTimeout); if s <> Value then result := result + s + CRLF; if s = 'OK' then begin FAtResult := True; break; end; if s = 'ERROR' then break; until FLastError <> sOK; finally FConvertLineEnd := Convsave; end; end; function TBlockSerial.ATConnect(value: AnsiString): AnsiString; var s: AnsiString; ConvSave: Boolean; begin result := ''; FAtResult := False; ConvSave := FConvertLineEnd; try FConvertLineEnd := True; SendString(value + #$0D); repeat s := RecvString(90 * FAtTimeout); if s <> Value then result := result + s + CRLF; if s = 'NO CARRIER' then break; if s = 'ERROR' then break; if s = 'BUSY' then break; if s = 'NO DIALTONE' then break; if Pos('CONNECT', s) = 1 then begin FAtResult := True; break; end; until FLastError <> sOK; finally FConvertLineEnd := Convsave; end; end; function TBlockSerial.SerialCheck(SerialResult: integer): integer; begin if SerialResult = integer(INVALID_HANDLE_VALUE) then {$IFDEF MSWINDOWS} result := GetLastError {$ELSE} {$IFNDEF FPC} result := GetLastError {$ELSE} result := fpGetErrno {$ENDIF} {$ENDIF} else result := sOK; FLastError := result; FLastErrorDesc := GetErrorDesc(FLastError); end; procedure TBlockSerial.ExceptCheck; var e: ESynaSerError; s: string; begin if FRaiseExcept and (FLastError <> sOK) then begin s := GetErrorDesc(FLastError); e := ESynaSerError.CreateFmt('Communication error %d: %s', [FLastError, s]); e.ErrorCode := FLastError; e.ErrorMessage := s; raise e; end; end; procedure TBlockSerial.SetSynaError(ErrNumber: integer); begin FLastError := ErrNumber; FLastErrorDesc := GetErrorDesc(FLastError); end; procedure TBlockSerial.RaiseSynaError(ErrNumber: integer); begin SetSynaError(ErrNumber); ExceptCheck; end; procedure TBlockSerial.DoStatus(Reason: THookSerialReason; const Value: string); begin if assigned(OnStatus) then OnStatus(Self, Reason, Value); end; {======================================================================} class function TBlockSerial.GetErrorDesc(ErrorCode: integer): string; begin Result:= ''; case ErrorCode of sOK: Result := 'OK'; ErrAlreadyOwned: Result := 'Port owned by other process';{HGJ} ErrAlreadyInUse: Result := 'Instance already in use'; {HGJ} ErrWrongParameter: Result := 'Wrong parameter at call'; {HGJ} ErrPortNotOpen: Result := 'Instance not yet connected'; {HGJ} ErrNoDeviceAnswer: Result := 'No device answer detected'; {HGJ} ErrMaxBuffer: Result := 'Maximal buffer length exceeded'; ErrTimeout: Result := 'Timeout during operation'; ErrNotRead: Result := 'Reading of data failed'; ErrFrame: Result := 'Receive framing error'; ErrOverrun: Result := 'Receive Overrun Error'; ErrRxOver: Result := 'Receive Queue overflow'; ErrRxParity: Result := 'Receive Parity Error'; ErrTxFull: Result := 'Tranceive Queue is full'; end; if Result = '' then begin Result := SysErrorMessage(ErrorCode); end; end; {---------- cpom Comport Ownership Manager Routines ------------- by Hans-Georg Joepgen of Stuttgart, Germany. Copyright (c) 2002, by Hans-Georg Joepgen Stefan Krauss of Stuttgart, Germany, contributed literature and Internet research results, invaluable advice and excellent answers to the Comport Ownership Manager. } {$IFDEF UNIX} function TBlockSerial.LockfileName: String; var s: string; begin s := SeparateRight(FDevice, '/dev/'); result := LockfileDirectory + '/LCK..' + s; end; procedure TBlockSerial.CreateLockfile(PidNr: integer); var f: TextFile; s: string; begin // Create content for file s := IntToStr(PidNr); while length(s) < 10 do s := ' ' + s; // Create file try AssignFile(f, LockfileName); try Rewrite(f); writeln(f, s); finally CloseFile(f); end; // Allow all users to enjoy the benefits of cpom s := 'chmod a+rw ' + LockfileName; {$IFNDEF FPC} FileSetReadOnly( LockfileName, False ) ; // Libc.system(pchar(s)); {$ELSE} fpSystem(s); {$ENDIF} except // not raise exception, if you not have write permission for lock. on Exception do ; end; end; function TBlockSerial.ReadLockfile: integer; {Returns PID from Lockfile. Lockfile must exist.} var f: TextFile; s: string; begin AssignFile(f, LockfileName); Reset(f); try readln(f, s); finally CloseFile(f); end; Result := StrToIntDef(s, -1) end; function TBlockSerial.cpomComportAccessible: boolean; var MyPid: integer; Filename: string; begin Filename := LockfileName; {$IFNDEF FPC} MyPid := Libc.getpid; {$ELSE} MyPid := fpGetPid; {$ENDIF} // Make sure, the Lock Files Directory exists. We need it. if not DirectoryExists(LockfileDirectory) then CreateDir(LockfileDirectory); // Check the Lockfile if not FileExists (Filename) then begin // comport is not locked. Lock it for us. CreateLockfile(MyPid); result := true; exit; // done. end; // Is port owned by orphan? Then it's time for error recovery. //FPC forgot to add getsid.. :-( {$IFNDEF FPC} if Libc.getsid(ReadLockfile) = -1 then begin // Lockfile was left from former desaster DeleteFile(Filename); // error recovery CreateLockfile(MyPid); result := true; exit; end; {$ENDIF} result := false // Sorry, port is owned by living PID and locked end; procedure TBlockSerial.cpomReleaseComport; begin DeleteFile(LockfileName); end; {$ENDIF} {----------------------------------------------------------------} {$IFDEF MSWINDOWS} function GetSerialPortNames: string; var reg: TRegistry; l, v: TStringList; n: integer; begin l := TStringList.Create; v := TStringList.Create; reg := TRegistry.Create; try {$IFNDEF VER100} {$IFNDEF VER120} reg.Access := KEY_READ; {$ENDIF} {$ENDIF} reg.RootKey := HKEY_LOCAL_MACHINE; reg.OpenKey('\HARDWARE\DEVICEMAP\SERIALCOMM', false); reg.GetValueNames(l); for n := 0 to l.Count - 1 do v.Add(PChar(reg.ReadString(l[n]))); Result := v.CommaText; finally reg.Free; l.Free; v.Free; end; end; {$ENDIF} {$IFNDEF MSWINDOWS} function GetSerialPortNames: string; var sr : TSearchRec; begin Result := ''; if FindFirst('/dev/ttyS*', $FFFFFFFF, sr) = 0 then repeat if (sr.Attr and $FFFFFFFF) = Sr.Attr then begin if Result <> '' then Result := Result + ','; Result := Result + '/dev/' + sr.Name; end; until FindNext(sr) <> 0; FindClose(sr); if FindFirst('/dev/ttyUSB*', $FFFFFFFF, sr) = 0 then begin repeat if (sr.Attr and $FFFFFFFF) = Sr.Attr then begin if Result <> '' then Result := Result + ','; Result := Result + '/dev/' + sr.Name; end; until FindNext(sr) <> 0; end; FindClose(sr); if FindFirst('/dev/ttyAM*', $FFFFFFFF, sr) = 0 then begin repeat if (sr.Attr and $FFFFFFFF) = Sr.Attr then begin if Result <> '' then Result := Result + ','; Result := Result + '/dev/' + sr.Name; end; until FindNext(sr) <> 0; end; FindClose(sr); end; {$ENDIF} end.