1
0
mirror of https://github.com/donnemartin/system-design-primer.git synced 2025-06-12 21:47:33 +02:00

zh-cn: Sync with upstream to keep it up-to-date (#374)

This commit is contained in:
根号三
2020-03-10 09:34:18 +08:00
committed by GitHub
parent 8e9c89129b
commit 301b9d88e4
9 changed files with 1449 additions and 1457 deletions

View File

@ -1,112 +1,113 @@
# Design Pastebin.com (or Bit.ly)
# 设计 Pastebin.com(或 Bit.ly
*Note: This document links directly to relevant areas found in the [system design topics](https://github.com/donnemartin/system-design-primer#index-of-system-design-topics) to avoid duplication. Refer to the linked content for general talking points, tradeoffs, and alternatives.*
**注意:这个文档中的链接会直接指向[系统设计主题索引](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#系统设计主题的索引)中的有关部分,以避免重复的内容。你可以参考链接的相关内容,来了解其总的要点、方案的权衡取舍以及可选的替代方案。**
**Design Bit.ly** - is a similar question, except pastebin requires storing the paste contents instead of the original unshortened url.
除了粘贴板需要存储的是完整的内容而不是短链接之外,**设计 Bit.ly**是与本文类似的一个问题。
## Step 1: Outline use cases and constraints
## 第一步:简述用例与约束条件
> Gather requirements and scope the problem.
> Ask questions to clarify use cases and constraints.
> Discuss assumptions.
> 搜集需求与问题的范围。
> 提出问题来明确用例与约束条件。
> 讨论假设。
Without an interviewer to address clarifying questions, we'll define some use cases and constraints.
我们将在没有面试官明确说明问题的情况下,自己定义一些用例以及限制条件。
### Use cases
### 用例
#### We'll scope the problem to handle only the following use cases
#### 我们将把问题限定在仅处理以下用例的范围中
* **User** enters a block of text and gets a randomly generated link
* Expiration
* Default setting does not expire
* Can optionally set a timed expiration
* **User** enters a paste's url and views the contents
* **User** is anonymous
* **Service** tracks analytics of pages
* Monthly visit stats
* **Service** deletes expired pastes
* **Service** has high availability
#### Out of scope
* **用户**输入一些文本,然后得到一个随机生成的链接
* 过期时间
* 默认为永不过期
* 可选设置为一定时间过期
* **用户**输入粘贴板中的 url,查看内容
* **用户**是匿名访问的
* **服务**需要能够对页面进行跟踪分析
* 月访问量统计
* **服务**将过期的内容删除
* **服务**有着高可用性
* **User** registers for an account
* **User** verifies email
* **User** logs into a registered account
* **User** edits the document
* **User** can set visibility
* **User** can set the shortlink
#### 不在用例范围内的有
### Constraints and assumptions
* **用户**注册了账号
* **用户**通过了邮箱验证
* **用户**登录已注册的账号
* **用户**编辑他们的文档
* **用户**能设置他们的内容是否可见
* **用户**是否能自行设置短链接
#### State assumptions
### 限制条件与假设
* Traffic is not evenly distributed
* Following a short link should be fast
* Pastes are text only
* Page view analytics do not need to be realtime
* 10 million users
* 10 million paste writes per month
* 100 million paste reads per month
* 10:1 read to write ratio
#### 提出假设
#### Calculate usage
* 网络流量不是均匀分布的
* 生成短链接的速度必须要快
* 只允许粘贴文本
* 不需要对页面预览做实时分析
* 1000 万用户
* 每个月 1000 万次粘贴
* 每个月 1 亿次读取请求
* 10:1 的读写比例
**Clarify with your interviewer if you should run back-of-the-envelope usage calculations.**
#### 计算用量
* Size per paste
* 1 KB content per paste
* `shortlink` - 7 bytes
* `expiration_length_in_minutes` - 4 bytes
* `created_at` - 5 bytes
* `paste_path` - 255 bytes
* total = ~1.27 KB
* 12.7 GB of new paste content per month
* 1.27 KB per paste * 10 million pastes per month
* ~450 GB of new paste content in 3 years
* 360 million shortlinks in 3 years
* Assume most are new pastes instead of updates to existing ones
* 4 paste writes per second on average
* 40 read requests per second on average
**如果你需要进行粗略的用量计算,请向你的面试官说明。**
Handy conversion guide:
* 每次粘贴的用量
* 1 KB 的内容
* `shortlink` - 7 字节
* `expiration_length_in_minutes` - 4 字节
* `created_at` - 5 字节
* `paste_path` - 255 字节
* 总计:大约 1.27 KB
* 每个月的粘贴造作将会产生 12.7 GB 的记录
* 每次粘贴 1.27 KB * 1000 万次粘贴
* 3年内大约产生了 450 GB 的新内容记录
* 3年内生成了 36000 万个短链接
* 假设大多数的粘贴操作都是新的粘贴而不是更新以前的粘贴内容
* 平均每秒 4 次读取粘贴
* 平均每秒 40 次读取粘贴请求
* 2.5 million seconds per month
* 1 request per second = 2.5 million requests per month
* 40 requests per second = 100 million requests per month
* 400 requests per second = 1 billion requests per month
便利换算指南:
## Step 2: Create a high level design
* 每个月有 250 万秒
* 每秒一个请求 = 每个月 250 万次请求
* 每秒 40 个请求 = 每个月 1 亿次请求
* 每秒 400 个请求 = 每个月 10 亿次请求
> Outline a high level design with all important components.
## 第二步:概要设计
> 列出所有重要组件以规划概要设计。
![Imgur](http://i.imgur.com/BKsBnmG.png)
## Step 3: Design core components
## 第三步:设计核心组件
> Dive into details for each core component.
> 深入每个核心组件的细节。
### Use case: User enters a block of text and gets a randomly generated link
### 用例:用户输入一些文本,然后得到一个随机生成的链接
We could use a [relational database](https://github.com/donnemartin/system-design-primer#relational-database-management-system-rdbms) as a large hash table, mapping the generated url to a file server and path containing the paste file.
我们将使用[关系型数据库](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#关系型数据库管理系统rdbms),将其作为一个超大哈希表,将生成的 url 和文件服务器上对应文件的路径一一对应。
Instead of managing a file server, we could use a managed **Object Store** such as Amazon S3 or a [NoSQL document store](https://github.com/donnemartin/system-design-primer#document-store).
我们可以使用诸如 Amazon S3 之类的**对象存储服务**或者[NoSQL](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#nosql)来代替自建文件服务器。
An alternative to a relational database acting as a large hash table, we could use a [NoSQL key-value store](https://github.com/donnemartin/system-design-primer#key-value-store). We should discuss the [tradeoffs between choosing SQL or NoSQL](https://github.com/donnemartin/system-design-primer#sql-or-nosql). The following discussion uses the relational database approach.
除了使用关系型数据库来作为一个超大哈希表之外,我们也可以使用[NoSQL](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#nosql)来代替它。[究竟是用 SQL 还是用 NoSQL](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-还是-nosql)。不过在下面的讨论中,我们默认选择了使用关系型数据库的方案。
* The **Client** sends a create paste request to the **Web Server**, running as a [reverse proxy](https://github.com/donnemartin/system-design-primer#reverse-proxy-web-server)
* The **Web Server** forwards the request to the **Write API** server
* The **Write API** server does the following:
* Generates a unique url
* Checks if the url is unique by looking at the **SQL Database** for a duplicate
* If the url is not unique, it generates another url
* If we supported a custom url, we could use the user-supplied (also check for a duplicate)
* Saves to the **SQL Database** `pastes` table
* Saves the paste data to the **Object Store**
* Returns the url
* **客户端**向向运行[反向代理](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#反向代理web-服务器)的 **Web 服务器**发送一个粘贴请求
* **Web 服务器** 将请求转发给**Write API** 服务
* **Write API**服务将会:
* 生成一个独一无二的 url
* 通过在 **SQL 数据库**中查重来确认这个 url 是否的确独一无二
* 如果这个 url 已经存在了,重新生成一个 url
* 如果支持自定义 url,我们也可以使用用户提供的 url(也需要进行查重)
* 将 url 存入 **SQL 数据库** `pastes` 表中
* 将粘贴的数据存入**对象存储**系统中
* 返回 url
**Clarify with your interviewer how much code you are expected to write**.
**向你的面试官告知你准备写多少代码**
The `pastes` table could have the following structure:
`pastes` 表的数据结构如下:
```
shortlink char(7) NOT NULL
@ -116,19 +117,19 @@ paste_path varchar(255) NOT NULL
PRIMARY KEY(shortlink)
```
We'll create an [index](https://github.com/donnemartin/system-design-primer#use-good-indices) on `shortlink ` and `created_at` to speed up lookups (log-time instead of scanning the entire table) and to keep the data in memory. Reading 1 MB sequentially from memory takes about 250 microseconds, while reading from SSD takes 4x and from disk takes 80x longer.<sup><a href=https://github.com/donnemartin/system-design-primer#latency-numbers-every-programmer-should-know>1</a></sup>
我们会以`shortlink``created_at` 创建一个 [索引](https://github.com/donnemartin/system-design-primer#use-good-indices)以加快查询速度(只需要使用读取日志的时间,不再需要每次都扫描整个数据表)并让数据常驻内存。从内存读取 1 MB 连续数据大约要花 250 微秒,而从 SSD 读取同样大小的数据要花费 4 倍的时间,从机械硬盘读取需要花费 80 倍以上的时间。<sup><a href=https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#每个程序员都应该知道的延迟数>1</a></sup>
To generate the unique url, we could:
为了生成独一无二的 url,我们需要:
* Take the [**MD5**](https://en.wikipedia.org/wiki/MD5) hash of the user's ip_address + timestamp
* MD5 is a widely used hashing function that produces a 128-bit hash value
* MD5 is uniformly distributed
* Alternatively, we could also take the MD5 hash of randomly-generated data
* [**Base 62**](https://www.kerstner.at/2012/07/shortening-strings-using-base-62-encoding/) encode the MD5 hash
* Base 62 encodes to `[a-zA-Z0-9]` which works well for urls, eliminating the need for escaping special characters
* There is only one hash result for the original input and Base 62 is deterministic (no randomness involved)
* Base 64 is another popular encoding but provides issues for urls because of the additional `+` and `/` characters
* The following [Base 62 pseudocode](http://stackoverflow.com/questions/742013/how-to-code-a-url-shortener) runs in O(k) time where k is the number of digits = 7:
* 对用户的 IP 地址 + 时间戳进行 [**MD5**](https://en.wikipedia.org/wiki/MD5) 哈希编码
* MD5 是一种非常常用的哈希化函数,它能生成 128 字节的哈希值
* MD5 是均匀分布的
* 另外,我们可以使用 MD5 哈希算法来生成随机数据
* 对 MD5 哈希值进行 [**Base 62**](https://www.kerstner.at/2012/07/shortening-strings-using-base-62-encoding/) 编码
* Base 62 编码后的值由 `[a-zA-Z0-9]` 组成,它们可以直接作为 url 的字符,不需要再次转义
* 在这儿仅仅只对原始输入进行过一次哈希处理,Base 62 编码步骤是确定性的(不涉及随机性)
* Base 64 是另一种很流行的编码形式,但是它生成的字符串作为 url 存在一些问题:Base 64m字符串内包含 `+` `/` 符号
* 下面的 [Base 62 pseudocode](http://stackoverflow.com/questions/742013/how-to-code-a-url-shortener) 算法时间复杂度为 O(k),本例中取 num =7,即 k 值为 7
```python
def base_encode(num, base=62):
@ -140,20 +141,19 @@ def base_encode(num, base=62):
digits = digits.reverse
```
* Take the first 7 characters of the output, which results in 62^7 possible values and should be sufficient to handle our constraint of 360 million shortlinks in 3 years:
* 输出前 7 个字符,其结果将有 62^7 种可能的值,作为短链接来说足够了。因为我们限制了 3 年内最多产生 36000 万个短链接:
```python
url = base_encode(md5(ip_address+timestamp))[:URL_LENGTH]
```
We'll use a public [**REST API**](https://github.com/donnemartin/system-design-primer#representational-state-transfer-rest):
我们可以调用一个公共的 [REST API](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#表述性状态转移rest):
```
$ curl -X POST --data '{ "expiration_length_in_minutes": "60", \
"paste_contents": "Hello World!" }' https://pastebin.com/api/v1/paste
```
Response:
返回:
```
{
@ -161,16 +161,16 @@ Response:
}
```
For internal communications, we could use [Remote Procedure Calls](https://github.com/donnemartin/system-design-primer#remote-procedure-call-rpc).
而对于服务器内部的通信,我们可以使用 [RPC](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#远程过程调用协议rpc)
### Use case: User enters a paste's url and views the contents
### 用例:用户输入了一个之前粘贴得到的 url,希望浏览其存储的内容
* The **Client** sends a get paste request to the **Web Server**
* The **Web Server** forwards the request to the **Read API** server
* The **Read API** server does the following:
* Checks the **SQL Database** for the generated url
* If the url is in the **SQL Database**, fetch the paste contents from the **Object Store**
* Else, return an error message for the user
* **客户端**向**Web 服务器**发起读取内容请求
* **Web 服务器**将请求转发给**Read API**服务
* **Read API**服务将会:
* 在**SQL 数据库**中检查生成的 url
* 如果查询的 url 存在于 **SQL 数据库**中,从**对象存储**服务将对应的粘贴内容取出
* 否则,给用户返回报错
REST API:
@ -178,7 +178,7 @@ REST API:
$ curl https://pastebin.com/api/v1/paste?shortlink=foobar
```
Response:
返回:
```
{
@ -188,27 +188,27 @@ Response:
}
```
### Use case: Service tracks analytics of pages
### 用例:对页面进行跟踪分析
Since realtime analytics are not a requirement, we could simply **MapReduce** the **Web Server** logs to generate hit counts.
由于不需要进行实时分析,因此我们可以简单地对 **Web 服务**产生的日志用 **MapReduce** 来统计 hit 计数(命中数)。
**Clarify with your interviewer how much code you are expected to write**.
**向你的面试官告知你准备写多少代码**
```python
class HitCounts(MRJob):
def extract_url(self, line):
"""Extract the generated url from the log line."""
"""从 log 中取出生成的 url。"""
...
def extract_year_month(self, line):
"""Return the year and month portions of the timestamp."""
"""返回时间戳中表示年份与月份的一部分"""
...
def mapper(self, _, line):
"""Parse each log line, extract and transform relevant lines.
"""解析日志的每一行,提取并转换相关行,
Emit key value pairs of the form:
将键值对设定为如下形式:
(2016-01, url0), 1
(2016-01, url0), 1
@ -218,8 +218,8 @@ class HitCounts(MRJob):
period = self.extract_year_month(line)
yield (period, url), 1
def reducer(self, key, values):
"""Sum values for each key.
def reducer(self, key, value):
"""将所有的 key 加起来
(2016-01, url0), 2
(2016-01, url1), 1
@ -227,106 +227,105 @@ class HitCounts(MRJob):
yield key, sum(values)
```
### Use case: Service deletes expired pastes
### 用例:服务删除过期的粘贴内容
To delete expired pastes, we could just scan the **SQL Database** for all entries whose expiration timestamp are older than the current timestamp. All expired entries would then be deleted (or marked as expired) from the table.
我们可以通过扫描 **SQL 数据库**,查找出那些过期时间戳小于当前时间戳的条目,然后在表中删除(或者将其标记为过期)这些过期的粘贴内容。
## Step 4: Scale the design
## 第四步:架构扩展
> Identify and address bottlenecks, given the constraints.
> 根据限制条件,找到并解决瓶颈。
![Imgur](http://i.imgur.com/4edXG0T.png)
**Important: Do not simply jump right into the final design from the initial design!**
**重要提示:不要从最初设计直接跳到最终设计中!**
State you would do this iteratively: 1) **Benchmark/Load Test**, 2) **Profile** for bottlenecks 3) address bottlenecks while evaluating alternatives and trade-offs, and 4) repeat. See [Design a system that scales to millions of users on AWS](../scaling_aws/README.md) as a sample on how to iteratively scale the initial design.
现在你要 1) **基准测试、负载测试**2) **分析、描述**性能瓶颈。3) 在解决瓶颈问题的同时,评估替代方案、权衡利弊。4) 重复以上步骤。请阅读[「设计一个系统,并将其扩大到为数以百万计的 AWS 用户服务」](../scaling_aws/README.md) 来了解如何逐步扩大初始设计。
It's important to discuss what bottlenecks you might encounter with the initial design and how you might address each of them. For example, what issues are addressed by adding a **Load Balancer** with multiple **Web Servers**? **CDN**? **Master-Slave Replicas**? What are the alternatives and **Trade-Offs** for each?
讨论初始设计可能遇到的瓶颈及相关解决方案是很重要的。例如加上一个配置多台 **Web 服务器**的**负载均衡器**是否能够解决问题?**CDN**呢?**主从复制**呢?它们各自的替代方案和需要**权衡**的利弊又有什么呢?
We'll introduce some components to complete the design and to address scalability issues. Internal load balancers are not shown to reduce clutter.
我们将会介绍一些组件来完成设计,并解决架构扩张问题。内置的负载均衡器将不做讨论以节省篇幅。
*To avoid repeating discussions*, refer to the following [system design topics](https://github.com/donnemartin/system-design-primer#index-of-system-design-topics) for main talking points, tradeoffs, and alternatives:
**为了避免重复讨论**,请参考[系统设计主题索引](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#系统设计主题的索引)相关部分来了解其要点、方案的权衡取舍以及可选的替代方案。
* [DNS](https://github.com/donnemartin/system-design-primer#domain-name-system)
* [CDN](https://github.com/donnemartin/system-design-primer#content-delivery-network)
* [Load balancer](https://github.com/donnemartin/system-design-primer#load-balancer)
* [Horizontal scaling](https://github.com/donnemartin/system-design-primer#horizontal-scaling)
* [Web server (reverse proxy)](https://github.com/donnemartin/system-design-primer#reverse-proxy-web-server)
* [API server (application layer)](https://github.com/donnemartin/system-design-primer#application-layer)
* [Cache](https://github.com/donnemartin/system-design-primer#cache)
* [Relational database management system (RDBMS)](https://github.com/donnemartin/system-design-primer#relational-database-management-system-rdbms)
* [SQL write master-slave failover](https://github.com/donnemartin/system-design-primer#fail-over)
* [Master-slave replication](https://github.com/donnemartin/system-design-primer#master-slave-replication)
* [Consistency patterns](https://github.com/donnemartin/system-design-primer#consistency-patterns)
* [Availability patterns](https://github.com/donnemartin/system-design-primer#availability-patterns)
* [DNS](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#域名系统)
* [负载均衡器](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#负载均衡器)
* [水平拓展](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#水平扩展)
* [反向代理(web 服务器)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#反向代理web-服务器)
* [API 服务(应用层)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#应用层)
* [缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#缓存)
* [关系型数据库管理系统 (RDBMS)](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#关系型数据库管理系统rdbms)
* [SQL 故障主从切换](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#故障切换)
* [主从复制](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#主从复制)
* [一致性模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#一致性模式)
* [可用性模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#可用性模式)
The **Analytics Database** could use a data warehousing solution such as Amazon Redshift or Google BigQuery.
**分析数据库** 可以用现成的数据仓储系统,例如使用 Amazon Redshift 或者 Google BigQuery 的解决方案。
An **Object Store** such as Amazon S3 can comfortably handle the constraint of 12.7 GB of new content per month.
Amazon S3 的**对象存储**系统可以很方便地设置每个月限制只允许新增 12.7 GB 的存储内容。
To address the 40 *average* read requests per second (higher at peak), traffic for popular content should be handled by the **Memory Cache** instead of the database. The **Memory Cache** is also useful for handling the unevenly distributed traffic and traffic spikes. The **SQL Read Replicas** should be able to handle the cache misses, as long as the replicas are not bogged down with replicating writes.
平均每秒 40 次的读取请求(峰值将会更高), 可以通过扩展 **内存缓存** 来处理热点内容的读取流量,这对于处理不均匀分布的流量和流量峰值也很有用。只要 SQL 副本不陷入复制-写入困境中,**SQL Read 副本** 基本能够处理缓存命中问题。
4 *average* paste writes per second (with higher at peak) should be do-able for a single **SQL Write Master-Slave**. Otherwise, we'll need to employ additional SQL scaling patterns:
平均每秒 4 次的粘贴写入操作(峰值将会更高)对于单个**SQL 写主-从** 模式来说是可行的。不过,我们也需要考虑其它的 SQL 性能拓展技术:
* [Federation](https://github.com/donnemartin/system-design-primer#federation)
* [Sharding](https://github.com/donnemartin/system-design-primer#sharding)
* [Denormalization](https://github.com/donnemartin/system-design-primer#denormalization)
* [SQL Tuning](https://github.com/donnemartin/system-design-primer#sql-tuning)
* [联合](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#联合)
* [分片](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#分片)
* [非规范化](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#非规范化)
* [SQL 调优](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-调优)
We should also consider moving some data to a **NoSQL Database**.
我们也可以考虑将一些数据移至 **NoSQL 数据库**
## Additional talking points
## 其它要点
> Additional topics to dive into, depending on the problem scope and time remaining.
> 是否深入这些额外的主题,取决于你的问题范围和剩下的时间。
#### NoSQL
* [Key-value store](https://github.com/donnemartin/system-design-primer#key-value-store)
* [Document store](https://github.com/donnemartin/system-design-primer#document-store)
* [Wide column store](https://github.com/donnemartin/system-design-primer#wide-column-store)
* [Graph database](https://github.com/donnemartin/system-design-primer#graph-database)
* [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer#sql-or-nosql)
* [键-值存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#键-值存储)
* [文档类型存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#文档类型存储)
* [列型存储](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#列型存储)
* [图数据库](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#图数据库)
* [SQL vs NoSQL](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#sql-还是-nosql)
### Caching
### 缓存
* Where to cache
* [Client caching](https://github.com/donnemartin/system-design-primer#client-caching)
* [CDN caching](https://github.com/donnemartin/system-design-primer#cdn-caching)
* [Web server caching](https://github.com/donnemartin/system-design-primer#web-server-caching)
* [Database caching](https://github.com/donnemartin/system-design-primer#database-caching)
* [Application caching](https://github.com/donnemartin/system-design-primer#application-caching)
* What to cache
* [Caching at the database query level](https://github.com/donnemartin/system-design-primer#caching-at-the-database-query-level)
* [Caching at the object level](https://github.com/donnemartin/system-design-primer#caching-at-the-object-level)
* When to update the cache
* [Cache-aside](https://github.com/donnemartin/system-design-primer#cache-aside)
* [Write-through](https://github.com/donnemartin/system-design-primer#write-through)
* [Write-behind (write-back)](https://github.com/donnemartin/system-design-primer#write-behind-write-back)
* [Refresh ahead](https://github.com/donnemartin/system-design-primer#refresh-ahead)
* 在哪缓存
* [客户端缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#客户端缓存)
* [CDN 缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#cdn-缓存)
* [Web 服务器缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#web-服务器缓存)
* [数据库缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#数据库缓存)
* [应用缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#应用缓存)
* 什么需要缓存
* [数据库查询级别的缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#数据库查询级别的缓存)
* [对象级别的缓存](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#对象级别的缓存)
* 何时更新缓存
* [缓存模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#缓存模式)
* [直写模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#直写模式)
* [回写模式](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#回写模式)
* [刷新](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#刷新)
### Asynchronism and microservices
### 异步与微服务
* [Message queues](https://github.com/donnemartin/system-design-primer#message-queues)
* [Task queues](https://github.com/donnemartin/system-design-primer#task-queues)
* [Back pressure](https://github.com/donnemartin/system-design-primer#back-pressure)
* [Microservices](https://github.com/donnemartin/system-design-primer#microservices)
* [消息队列](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#消息队列)
* [任务队列](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#任务队列)
* [背压](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#背压)
* [微服务](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#微服务)
### Communications
### 通信
* Discuss tradeoffs:
* External communication with clients - [HTTP APIs following REST](https://github.com/donnemartin/system-design-primer#representational-state-transfer-rest)
* Internal communications - [RPC](https://github.com/donnemartin/system-design-primer#remote-procedure-call-rpc)
* [Service discovery](https://github.com/donnemartin/system-design-primer#service-discovery)
* 可权衡选择的方案:
* 与客户端的外部通信 - [使用 REST 作为 HTTP API](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#表述性状态转移rest)
* 服务器内部通信 - [RPC](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#远程过程调用协议rpc)
* [服务发现](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#服务发现)
### Security
### 安全性
Refer to the [security section](https://github.com/donnemartin/system-design-primer#security).
请参阅[「安全」](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#安全)一章。
### Latency numbers
### 延迟数值
See [Latency numbers every programmer should know](https://github.com/donnemartin/system-design-primer#latency-numbers-every-programmer-should-know).
请参阅[「每个程序员都应该知道的延迟数」](https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md#每个程序员都应该知道的延迟数)
### Ongoing
### 持续探讨
* Continue benchmarking and monitoring your system to address bottlenecks as they come up
* Scaling is an iterative process
* 持续进行基准测试并监控你的系统,以解决他们提出的瓶颈问题。
* 架构拓展是一个迭代的过程。