1
0
mirror of https://github.com/BurntSushi/ripgrep.git synced 2025-06-04 05:57:39 +02:00

660 lines
22 KiB
Rust
Raw Normal View History

use std::error;
use std::fmt;
use std::io;
use grep_matcher::LineTerminator;
use crate::lines::LineIter;
use crate::searcher::{ConfigError, Searcher};
/// A trait that describes errors that can be reported by searchers and
/// implementations of `Sink`.
///
/// Unless you have a specialized use case, you probably don't need to
/// implement this trait explicitly. It's likely that using `io::Error` (which
/// implements this trait) for your error type is good enough, largely because
/// most errors that occur during search will likely be an `io::Error`.
pub trait SinkError: Sized {
/// A constructor for converting any value that satisfies the
/// `fmt::Display` trait into an error.
fn error_message<T: fmt::Display>(message: T) -> Self;
/// A constructor for converting I/O errors that occur while searching into
/// an error of this type.
///
/// By default, this is implemented via the `error_message` constructor.
fn error_io(err: io::Error) -> Self {
Self::error_message(err)
}
/// A constructor for converting configuration errors that occur while
/// building a searcher into an error of this type.
///
/// By default, this is implemented via the `error_message` constructor.
fn error_config(err: ConfigError) -> Self {
Self::error_message(err)
}
}
/// An `io::Error` can be used as an error for `Sink` implementations out of
/// the box.
impl SinkError for io::Error {
fn error_message<T: fmt::Display>(message: T) -> io::Error {
io::Error::new(io::ErrorKind::Other, message.to_string())
}
fn error_io(err: io::Error) -> io::Error {
err
}
}
/// A `Box<std::error::Error>` can be used as an error for `Sink`
/// implementations out of the box.
impl SinkError for Box<dyn error::Error> {
fn error_message<T: fmt::Display>(message: T) -> Box<dyn error::Error> {
Box::<dyn error::Error>::from(message.to_string())
}
}
/// A trait that defines how results from searchers are handled.
///
/// In this crate, a searcher follows the "push" model. What that means is that
/// the searcher drives execution, and pushes results back to the caller. This
/// is in contrast to a "pull" model where the caller drives execution and
/// takes results as they need them. These are also known as "internal" and
/// "external" iteration strategies, respectively.
///
/// For a variety of reasons, including the complexity of the searcher
/// implementation, this crate chooses the "push" or "internal" model of
/// execution. Thus, in order to act on search results, callers must provide
/// an implementation of this trait to a searcher, and the searcher is then
/// responsible for calling the methods on this trait.
///
/// This trait defines several behaviors:
///
/// * What to do when a match is found. Callers must provide this.
/// * What to do when an error occurs. Callers must provide this via the
/// [`SinkError`](trait.SinkError.html) trait. Generally, callers can just
/// use `io::Error` for this, which already implements `SinkError`.
/// * What to do when a contextual line is found. By default, these are
/// ignored.
/// * What to do when a gap between contextual lines has been found. By
/// default, this is ignored.
/// * What to do when a search has started. By default, this does nothing.
/// * What to do when a search has finished successfully. By default, this does
/// nothing.
///
/// Callers must, at minimum, specify the behavior when an error occurs and
/// the behavior when a match occurs. The rest is optional. For each behavior,
/// callers may report an error (say, if writing the result to another
/// location failed) or simply return `false` if they want the search to stop
/// (e.g., when implementing a cap on the number of search results to show).
///
/// When errors are reported (whether in the searcher or in the implementation
/// of `Sink`), then searchers quit immediately without calling `finish`.
///
/// For simpler uses of `Sink`, callers may elect to use one of
/// the more convenient but less flexible implementations in the
/// [`sinks`](sinks/index.html) module.
pub trait Sink {
/// The type of an error that should be reported by a searcher.
///
/// Errors of this type are not only returned by the methods on this
/// trait, but the constructors defined in `SinkError` are also used in
/// the searcher implementation itself. e.g., When a I/O error occurs when
/// reading data from a file.
type Error: SinkError;
/// This method is called whenever a match is found.
///
/// If multi line is enabled on the searcher, then the match reported here
/// may span multiple lines and it may include multiple matches. When multi
/// line is disabled, then the match is guaranteed to span exactly one
/// non-empty line (where a single line is, at minimum, a line terminator).
///
/// If this returns `true`, then searching continues. If this returns
/// `false`, then searching is stopped immediately and `finish` is called.
///
/// If this returns an error, then searching is stopped immediately,
/// `finish` is not called and the error is bubbled back up to the caller
/// of the searcher.
fn matched(
&mut self,
_searcher: &Searcher,
_mat: &SinkMatch<'_>,
) -> Result<bool, Self::Error>;
/// This method is called whenever a context line is found, and is optional
/// to implement. By default, it does nothing and returns `true`.
///
/// In all cases, the context given is guaranteed to span exactly one
/// non-empty line (where a single line is, at minimum, a line terminator).
///
/// If this returns `true`, then searching continues. If this returns
/// `false`, then searching is stopped immediately and `finish` is called.
///
/// If this returns an error, then searching is stopped immediately,
/// `finish` is not called and the error is bubbled back up to the caller
/// of the searcher.
#[inline]
fn context(
&mut self,
_searcher: &Searcher,
_context: &SinkContext<'_>,
) -> Result<bool, Self::Error> {
Ok(true)
}
/// This method is called whenever a break in contextual lines is found,
/// and is optional to implement. By default, it does nothing and returns
/// `true`.
///
/// A break can only occur when context reporting is enabled (that is,
/// either or both of `before_context` or `after_context` are greater than
/// `0`). More precisely, a break occurs between non-contiguous groups of
/// lines.
///
/// If this returns `true`, then searching continues. If this returns
/// `false`, then searching is stopped immediately and `finish` is called.
///
/// If this returns an error, then searching is stopped immediately,
/// `finish` is not called and the error is bubbled back up to the caller
/// of the searcher.
#[inline]
fn context_break(
&mut self,
_searcher: &Searcher,
) -> Result<bool, Self::Error> {
Ok(true)
}
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-08 19:28:38 -04:00
/// This method is called whenever binary detection is enabled and binary
/// data is found. If binary data is found, then this is called at least
/// once for the first occurrence with the absolute byte offset at which
/// the binary data begins.
///
/// If this returns `true`, then searching continues. If this returns
/// `false`, then searching is stopped immediately and `finish` is called.
///
/// If this returns an error, then searching is stopped immediately,
/// `finish` is not called and the error is bubbled back up to the caller
/// of the searcher.
///
/// By default, it does nothing and returns `true`.
#[inline]
fn binary_data(
&mut self,
_searcher: &Searcher,
_binary_byte_offset: u64,
) -> Result<bool, Self::Error> {
Ok(true)
}
/// This method is called when a search has begun, before any search is
/// executed. By default, this does nothing.
///
/// If this returns `true`, then searching continues. If this returns
/// `false`, then searching is stopped immediately and `finish` is called.
///
/// If this returns an error, then searching is stopped immediately,
/// `finish` is not called and the error is bubbled back up to the caller
/// of the searcher.
#[inline]
fn begin(&mut self, _searcher: &Searcher) -> Result<bool, Self::Error> {
Ok(true)
}
/// This method is called when a search has completed. By default, this
/// does nothing.
///
/// If this returns an error, the error is bubbled back up to the caller of
/// the searcher.
#[inline]
fn finish(
&mut self,
_searcher: &Searcher,
_: &SinkFinish,
) -> Result<(), Self::Error> {
Ok(())
}
}
impl<'a, S: Sink> Sink for &'a mut S {
type Error = S::Error;
#[inline]
fn matched(
&mut self,
searcher: &Searcher,
mat: &SinkMatch<'_>,
) -> Result<bool, S::Error> {
(**self).matched(searcher, mat)
}
#[inline]
fn context(
&mut self,
searcher: &Searcher,
context: &SinkContext<'_>,
) -> Result<bool, S::Error> {
(**self).context(searcher, context)
}
#[inline]
fn context_break(
&mut self,
searcher: &Searcher,
) -> Result<bool, S::Error> {
(**self).context_break(searcher)
}
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-08 19:28:38 -04:00
#[inline]
fn binary_data(
&mut self,
searcher: &Searcher,
binary_byte_offset: u64,
) -> Result<bool, S::Error> {
(**self).binary_data(searcher, binary_byte_offset)
}
#[inline]
fn begin(&mut self, searcher: &Searcher) -> Result<bool, S::Error> {
(**self).begin(searcher)
}
#[inline]
fn finish(
&mut self,
searcher: &Searcher,
sink_finish: &SinkFinish,
) -> Result<(), S::Error> {
(**self).finish(searcher, sink_finish)
}
}
impl<S: Sink + ?Sized> Sink for Box<S> {
type Error = S::Error;
#[inline]
fn matched(
&mut self,
searcher: &Searcher,
mat: &SinkMatch<'_>,
) -> Result<bool, S::Error> {
(**self).matched(searcher, mat)
}
#[inline]
fn context(
&mut self,
searcher: &Searcher,
context: &SinkContext<'_>,
) -> Result<bool, S::Error> {
(**self).context(searcher, context)
}
#[inline]
fn context_break(
&mut self,
searcher: &Searcher,
) -> Result<bool, S::Error> {
(**self).context_break(searcher)
}
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-08 19:28:38 -04:00
#[inline]
fn binary_data(
&mut self,
searcher: &Searcher,
binary_byte_offset: u64,
) -> Result<bool, S::Error> {
(**self).binary_data(searcher, binary_byte_offset)
}
#[inline]
fn begin(&mut self, searcher: &Searcher) -> Result<bool, S::Error> {
(**self).begin(searcher)
}
#[inline]
fn finish(
&mut self,
searcher: &Searcher,
sink_finish: &SinkFinish,
) -> Result<(), S::Error> {
(**self).finish(searcher, sink_finish)
}
}
/// Summary data reported at the end of a search.
///
/// This reports data such as the total number of bytes searched and the
/// absolute offset of the first occurrence of binary data, if any were found.
///
/// A searcher that stops early because of an error does not call `finish`.
/// A searcher that stops early because the `Sink` implementor instructed it
/// to will still call `finish`.
#[derive(Clone, Debug)]
pub struct SinkFinish {
pub(crate) byte_count: u64,
pub(crate) binary_byte_offset: Option<u64>,
}
impl SinkFinish {
/// Return the total number of bytes searched.
#[inline]
pub fn byte_count(&self) -> u64 {
self.byte_count
}
/// If binary detection is enabled and if binary data was found, then this
/// returns the absolute byte offset of the first detected byte of binary
/// data.
///
/// Note that since this is an absolute byte offset, it cannot be relied
/// upon to index into any addressable memory.
#[inline]
pub fn binary_byte_offset(&self) -> Option<u64> {
self.binary_byte_offset
}
}
/// A type that describes a match reported by a searcher.
#[derive(Clone, Debug)]
pub struct SinkMatch<'b> {
pub(crate) line_term: LineTerminator,
pub(crate) bytes: &'b [u8],
pub(crate) absolute_byte_offset: u64,
pub(crate) line_number: Option<u64>,
grep: fix bugs in handling multi-line look-around This commit hacks in a bug fix for handling look-around across multiple lines. The main problem is that by the time the matching lines are sent to the printer, the surrounding context---which some look-behind or look-ahead might have matched---could have been dropped if it wasn't part of the set of matching lines. Therefore, when the printer re-runs the regex engine in some cases (to do replacements, color matches, etc etc), it won't be guaranteed to see the same matches that the searcher found. Overall, this is a giant clusterfuck and suggests that the way I divided the abstraction boundary between the printer and the searcher is just wrong. It's likely that the searcher needs to handle more of the work of matching and pass that info on to the printer. The tricky part is that this additional work isn't always needed. Ultimately, this means a serious re-design of the interface between searching and printing. Sigh. The way this fix works is to smuggle the underlying buffer used by the searcher through into the printer. Since these bugs only impact multi-line search (otherwise, searches are only limited to matches across a single line), and since multi-line search always requires having the entire file contents in a single contiguous slice (memory mapped or on the heap), it follows that the buffer we pass through when we need it is, in fact, the entire haystack. So this commit refactors the printer's regex searching to use that buffer instead of the intended bundle of bytes containing just the relevant matching portions of that same buffer. There is one last little hiccup: PCRE2 doesn't seem to have a way to specify an ending position for a search. So when we re-run the search to find matches, we can't say, "but don't search past here." Since the buffer is likely to contain the entire file, we really cannot do anything here other than specify a fixed upper bound on the number of bytes to search. So if look-ahead goes more than N bytes beyond the match, this code will break by simply being unable to find the match. In practice, this is probably pretty rare. I believe that if we did a better fix for this bug by fixing the interfaces, then we'd probably try to have PCRE2 find the pertinent matches up front so that it never needs to re-discover them. Fixes #1412
2021-05-31 08:29:01 -04:00
pub(crate) buffer: &'b [u8],
pub(crate) bytes_range_in_buffer: std::ops::Range<usize>,
}
impl<'b> SinkMatch<'b> {
/// Returns the bytes for all matching lines, including the line
/// terminators, if they exist.
#[inline]
pub fn bytes(&self) -> &'b [u8] {
self.bytes
}
/// Return an iterator over the lines in this match.
///
/// If multi line search is enabled, then this may yield more than one
/// line (but always at least one line). If multi line search is disabled,
/// then this always reports exactly one line (but may consist of just
/// the line terminator).
///
/// Lines yielded by this iterator include their terminators.
#[inline]
pub fn lines(&self) -> LineIter<'b> {
LineIter::new(self.line_term.as_byte(), self.bytes)
}
/// Returns the absolute byte offset of the start of this match. This
/// offset is absolute in that it is relative to the very beginning of the
/// input in a search, and can never be relied upon to be a valid index
/// into an in-memory slice.
#[inline]
pub fn absolute_byte_offset(&self) -> u64 {
self.absolute_byte_offset
}
/// Returns the line number of the first line in this match, if available.
///
/// Line numbers are only available when the search builder is instructed
/// to compute them.
#[inline]
pub fn line_number(&self) -> Option<u64> {
self.line_number
}
grep: fix bugs in handling multi-line look-around This commit hacks in a bug fix for handling look-around across multiple lines. The main problem is that by the time the matching lines are sent to the printer, the surrounding context---which some look-behind or look-ahead might have matched---could have been dropped if it wasn't part of the set of matching lines. Therefore, when the printer re-runs the regex engine in some cases (to do replacements, color matches, etc etc), it won't be guaranteed to see the same matches that the searcher found. Overall, this is a giant clusterfuck and suggests that the way I divided the abstraction boundary between the printer and the searcher is just wrong. It's likely that the searcher needs to handle more of the work of matching and pass that info on to the printer. The tricky part is that this additional work isn't always needed. Ultimately, this means a serious re-design of the interface between searching and printing. Sigh. The way this fix works is to smuggle the underlying buffer used by the searcher through into the printer. Since these bugs only impact multi-line search (otherwise, searches are only limited to matches across a single line), and since multi-line search always requires having the entire file contents in a single contiguous slice (memory mapped or on the heap), it follows that the buffer we pass through when we need it is, in fact, the entire haystack. So this commit refactors the printer's regex searching to use that buffer instead of the intended bundle of bytes containing just the relevant matching portions of that same buffer. There is one last little hiccup: PCRE2 doesn't seem to have a way to specify an ending position for a search. So when we re-run the search to find matches, we can't say, "but don't search past here." Since the buffer is likely to contain the entire file, we really cannot do anything here other than specify a fixed upper bound on the number of bytes to search. So if look-ahead goes more than N bytes beyond the match, this code will break by simply being unable to find the match. In practice, this is probably pretty rare. I believe that if we did a better fix for this bug by fixing the interfaces, then we'd probably try to have PCRE2 find the pertinent matches up front so that it never needs to re-discover them. Fixes #1412
2021-05-31 08:29:01 -04:00
/// TODO
#[inline]
pub fn buffer(&self) -> &'b [u8] {
self.buffer
}
/// TODO
#[inline]
pub fn bytes_range_in_buffer(&self) -> std::ops::Range<usize> {
self.bytes_range_in_buffer.clone()
}
}
/// The type of context reported by a searcher.
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum SinkContextKind {
/// The line reported occurred before a match.
Before,
/// The line reported occurred after a match.
After,
/// Any other type of context reported, e.g., as a result of a searcher's
/// "passthru" mode.
Other,
}
/// A type that describes a contextual line reported by a searcher.
#[derive(Clone, Debug)]
pub struct SinkContext<'b> {
#[cfg(test)]
pub(crate) line_term: LineTerminator,
pub(crate) bytes: &'b [u8],
pub(crate) kind: SinkContextKind,
pub(crate) absolute_byte_offset: u64,
pub(crate) line_number: Option<u64>,
}
impl<'b> SinkContext<'b> {
/// Returns the context bytes, including line terminators.
#[inline]
pub fn bytes(&self) -> &'b [u8] {
self.bytes
}
/// Returns the type of context.
#[inline]
pub fn kind(&self) -> &SinkContextKind {
&self.kind
}
/// Return an iterator over the lines in this match.
///
/// This always yields exactly one line (and that one line may contain just
/// the line terminator).
///
/// Lines yielded by this iterator include their terminators.
#[cfg(test)]
pub(crate) fn lines(&self) -> LineIter<'b> {
LineIter::new(self.line_term.as_byte(), self.bytes)
}
/// Returns the absolute byte offset of the start of this context. This
/// offset is absolute in that it is relative to the very beginning of the
/// input in a search, and can never be relied upon to be a valid index
/// into an in-memory slice.
#[inline]
pub fn absolute_byte_offset(&self) -> u64 {
self.absolute_byte_offset
}
/// Returns the line number of the first line in this context, if
/// available.
///
/// Line numbers are only available when the search builder is instructed
/// to compute them.
#[inline]
pub fn line_number(&self) -> Option<u64> {
self.line_number
}
}
/// A collection of convenience implementations of `Sink`.
///
/// Each implementation in this module makes some kind of sacrifice in the name
/// of making common cases easier to use. Most frequently, each type is a
/// wrapper around a closure specified by the caller that provides limited
/// access to the full suite of information available to implementors of
/// `Sink`.
///
/// For example, the `UTF8` sink makes the following sacrifices:
///
/// * All matches must be UTF-8. An arbitrary `Sink` does not have this
/// restriction and can deal with arbitrary data. If this sink sees invalid
/// UTF-8, then an error is returned and searching stops. (Use the `Lossy`
/// sink instead to suppress this error.)
/// * The searcher must be configured to report line numbers. If it isn't,
/// an error is reported at the first match and searching stops.
/// * Context lines, context breaks and summary data reported at the end of
/// a search are all ignored.
/// * Implementors are forced to use `io::Error` as their error type.
///
/// If you need more flexibility, then you're advised to implement the `Sink`
/// trait directly.
pub mod sinks {
use std::io;
use std::str;
use super::{Sink, SinkError, SinkMatch};
use crate::searcher::Searcher;
/// A sink that provides line numbers and matches as strings while ignoring
/// everything else.
///
/// This implementation will return an error if a match contains invalid
/// UTF-8 or if the searcher was not configured to count lines. Errors
/// on invalid UTF-8 can be suppressed by using the `Lossy` sink instead
/// of this one.
///
/// The closure accepts two parameters: a line number and a UTF-8 string
/// containing the matched data. The closure returns a
/// `Result<bool, io::Error>`. If the `bool` is `false`, then the search
/// stops immediately. Otherwise, searching continues.
///
/// If multi line mode was enabled, the line number refers to the line
/// number of the first line in the match.
#[derive(Clone, Debug)]
pub struct UTF8<F>(pub F)
where
F: FnMut(u64, &str) -> Result<bool, io::Error>;
impl<F> Sink for UTF8<F>
where
F: FnMut(u64, &str) -> Result<bool, io::Error>,
{
type Error = io::Error;
fn matched(
&mut self,
_searcher: &Searcher,
mat: &SinkMatch<'_>,
) -> Result<bool, io::Error> {
let matched = match str::from_utf8(mat.bytes()) {
Ok(matched) => matched,
Err(err) => return Err(io::Error::error_message(err)),
};
let line_number = match mat.line_number() {
Some(line_number) => line_number,
None => {
let msg = "line numbers not enabled";
return Err(io::Error::error_message(msg));
}
};
(self.0)(line_number, &matched)
}
}
/// A sink that provides line numbers and matches as (lossily converted)
/// strings while ignoring everything else.
///
/// This is like `UTF8`, except that if a match contains invalid UTF-8,
/// then it will be lossily converted to valid UTF-8 by substituting
/// invalid UTF-8 with Unicode replacement characters.
///
/// This implementation will return an error on the first match if the
/// searcher was not configured to count lines.
///
/// The closure accepts two parameters: a line number and a UTF-8 string
/// containing the matched data. The closure returns a
/// `Result<bool, io::Error>`. If the `bool` is `false`, then the search
/// stops immediately. Otherwise, searching continues.
///
/// If multi line mode was enabled, the line number refers to the line
/// number of the first line in the match.
#[derive(Clone, Debug)]
pub struct Lossy<F>(pub F)
where
F: FnMut(u64, &str) -> Result<bool, io::Error>;
impl<F> Sink for Lossy<F>
where
F: FnMut(u64, &str) -> Result<bool, io::Error>,
{
type Error = io::Error;
fn matched(
&mut self,
_searcher: &Searcher,
mat: &SinkMatch<'_>,
) -> Result<bool, io::Error> {
use std::borrow::Cow;
let matched = match str::from_utf8(mat.bytes()) {
Ok(matched) => Cow::Borrowed(matched),
// TODO: In theory, it should be possible to amortize
// allocation here, but `std` doesn't provide such an API.
// Regardless, this only happens on matches with invalid UTF-8,
// which should be pretty rare.
Err(_) => String::from_utf8_lossy(mat.bytes()),
};
let line_number = match mat.line_number() {
Some(line_number) => line_number,
None => {
let msg = "line numbers not enabled";
return Err(io::Error::error_message(msg));
}
};
(self.0)(line_number, &matched)
}
}
/// A sink that provides line numbers and matches as raw bytes while
/// ignoring everything else.
///
/// This implementation will return an error on the first match if the
/// searcher was not configured to count lines.
///
/// The closure accepts two parameters: a line number and a raw byte string
/// containing the matched data. The closure returns a `Result<bool,
/// io::Error>`. If the `bool` is `false`, then the search stops
/// immediately. Otherwise, searching continues.
///
/// If multi line mode was enabled, the line number refers to the line
/// number of the first line in the match.
#[derive(Clone, Debug)]
pub struct Bytes<F>(pub F)
where
F: FnMut(u64, &[u8]) -> Result<bool, io::Error>;
impl<F> Sink for Bytes<F>
where
F: FnMut(u64, &[u8]) -> Result<bool, io::Error>,
{
type Error = io::Error;
fn matched(
&mut self,
_searcher: &Searcher,
mat: &SinkMatch<'_>,
) -> Result<bool, io::Error> {
let line_number = match mat.line_number() {
Some(line_number) => line_number,
None => {
let msg = "line numbers not enabled";
return Err(io::Error::error_message(msg));
}
};
(self.0)(line_number, mat.bytes())
}
}
}