1
0
mirror of https://github.com/BurntSushi/ripgrep.git synced 2024-12-12 19:18:24 +02:00
ripgrep/src/args.rs

1763 lines
62 KiB
Rust
Raw Normal View History

use std::cmp;
use std::env;
use std::ffi::{OsStr, OsString};
use std::fs;
use std::io::{self, Write};
use std::path::{Path, PathBuf};
use std::process;
use std::sync::Arc;
use std::time::SystemTime;
use clap;
use grep::cli;
use grep::matcher::LineTerminator;
#[cfg(feature = "pcre2")]
use grep::pcre2::{
RegexMatcher as PCRE2RegexMatcher,
RegexMatcherBuilder as PCRE2RegexMatcherBuilder,
};
use grep::printer::{
ColorSpecs, Stats,
JSON, JSONBuilder,
Standard, StandardBuilder,
Summary, SummaryBuilder, SummaryKind,
default_color_specs,
};
use grep::regex::{
RegexMatcher as RustRegexMatcher,
RegexMatcherBuilder as RustRegexMatcherBuilder,
};
use grep::searcher::{
BinaryDetection, Encoding, MmapChoice, Searcher, SearcherBuilder,
};
use ignore::overrides::{Override, OverrideBuilder};
use ignore::types::{FileTypeDef, Types, TypesBuilder};
use ignore::{Walk, WalkBuilder, WalkParallel};
use log;
use num_cpus;
use regex;
use termcolor::{
WriteColor,
BufferWriter, ColorChoice,
};
use crate::app;
use crate::config;
use crate::logger::Logger;
use crate::messages::{set_messages, set_ignore_messages};
use crate::path_printer::{PathPrinter, PathPrinterBuilder};
use crate::search::{
PatternMatcher, Printer, SearchWorker, SearchWorkerBuilder,
};
use crate::subject::SubjectBuilder;
use crate::Result;
/// The command that ripgrep should execute based on the command line
/// configuration.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
pub enum Command {
/// Search using exactly one thread.
Search,
/// Search using possibly many threads.
SearchParallel,
/// The command line parameters suggest that a search should occur, but
/// ripgrep knows that a match can never be found (e.g., no given patterns
/// or --max-count=0).
SearchNever,
/// Show the files that would be searched, but don't actually search them,
/// and use exactly one thread.
Files,
/// Show the files that would be searched, but don't actually search them,
/// and perform directory traversal using possibly many threads.
FilesParallel,
/// List all file type definitions configured, including the default file
/// types and any additional file types added to the command line.
Types,
/// Print the version of PCRE2 in use.
PCRE2Version,
}
impl Command {
/// Returns true if and only if this command requires executing a search.
fn is_search(&self) -> bool {
use self::Command::*;
match *self {
Search | SearchParallel => true,
| SearchNever
| Files
| FilesParallel
| Types
| PCRE2Version => false,
}
}
}
/// The primary configuration object used throughout ripgrep. It provides a
/// high-level convenient interface to the provided command line arguments.
///
/// An `Args` object is cheap to clone and can be used from multiple threads
/// simultaneously.
#[derive(Clone, Debug)]
pub struct Args(Arc<ArgsImp>);
#[derive(Clone, Debug)]
struct ArgsImp {
/// Mid-to-low level routines for extracting CLI arguments.
matches: ArgMatches,
/// The patterns provided at the command line and/or via the -f/--file
/// flag. This may be empty.
patterns: Vec<String>,
/// A matcher built from the patterns.
///
/// It's important that this is only built once, since building this goes
/// through regex compilation and various types of analyses. That is, if
/// you need many of theses (one per thread, for example), it is better to
/// build it once and then clone it.
matcher: PatternMatcher,
/// The paths provided at the command line. This is guaranteed to be
/// non-empty. (If no paths are provided, then a default path is created.)
paths: Vec<PathBuf>,
/// Returns true if and only if `paths` had to be populated with a single
/// default path.
using_default_path: bool,
}
impl Args {
/// Parse the command line arguments for this process.
///
/// If a CLI usage error occurred, then exit the process and print a usage
/// or error message. Similarly, if the user requested the version of
2016-09-08 22:15:44 +02:00
/// ripgrep, then print the version and exit.
///
/// Also, initialize a global logger.
pub fn parse() -> Result<Args> {
config: add persistent configuration This commit adds support for reading configuration files that change ripgrep's default behavior. The format of the configuration file is an "rc" style and is very simple. It is defined by two rules: 1. Every line is a shell argument, after trimming ASCII whitespace. 2. Lines starting with '#' (optionally preceded by any amount of ASCII whitespace) are ignored. ripgrep will look for a single configuration file if and only if the RIPGREP_CONFIG_PATH environment variable is set and is non-empty. ripgrep will parse shell arguments from this file on startup and will behave as if the arguments in this file were prepended to any explicit arguments given to ripgrep on the command line. For example, if your ripgreprc file contained a single line: --smart-case then the following command RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo would behave identically to the following command rg --smart-case foo This commit also adds a new flag, --no-config, that when present will suppress any and all support for configuration. This includes any future support for auto-loading configuration files from pre-determined paths (which this commit does not add). Conflicts between configuration files and explicit arguments are handled exactly like conflicts in the same command line invocation. That is, this command: RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo --case-sensitive is exactly equivalent to rg --smart-case foo --case-sensitive in which case, the --case-sensitive flag would override the --smart-case flag. Closes #196
2018-02-04 03:33:52 +02:00
// We parse the args given on CLI. This does not include args from
// the config. We use the CLI args as an initial configuration while
// trying to parse config files. If a config file exists and has
// arguments, then we re-parse argv, otherwise we just use the matches
// we have here.
let early_matches = ArgMatches::new(clap_matches(env::args_os())?);
set_messages(!early_matches.is_present("no-messages"));
set_ignore_messages(!early_matches.is_present("no-ignore-messages"));
if let Err(err) = Logger::init() {
return Err(format!("failed to initialize logger: {}", err).into());
}
if early_matches.is_present("trace") {
log::set_max_level(log::LevelFilter::Trace);
} else if early_matches.is_present("debug") {
config: add persistent configuration This commit adds support for reading configuration files that change ripgrep's default behavior. The format of the configuration file is an "rc" style and is very simple. It is defined by two rules: 1. Every line is a shell argument, after trimming ASCII whitespace. 2. Lines starting with '#' (optionally preceded by any amount of ASCII whitespace) are ignored. ripgrep will look for a single configuration file if and only if the RIPGREP_CONFIG_PATH environment variable is set and is non-empty. ripgrep will parse shell arguments from this file on startup and will behave as if the arguments in this file were prepended to any explicit arguments given to ripgrep on the command line. For example, if your ripgreprc file contained a single line: --smart-case then the following command RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo would behave identically to the following command rg --smart-case foo This commit also adds a new flag, --no-config, that when present will suppress any and all support for configuration. This includes any future support for auto-loading configuration files from pre-determined paths (which this commit does not add). Conflicts between configuration files and explicit arguments are handled exactly like conflicts in the same command line invocation. That is, this command: RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo --case-sensitive is exactly equivalent to rg --smart-case foo --case-sensitive in which case, the --case-sensitive flag would override the --smart-case flag. Closes #196
2018-02-04 03:33:52 +02:00
log::set_max_level(log::LevelFilter::Debug);
} else {
log::set_max_level(log::LevelFilter::Warn);
}
let matches = early_matches.reconfigure()?;
config: add persistent configuration This commit adds support for reading configuration files that change ripgrep's default behavior. The format of the configuration file is an "rc" style and is very simple. It is defined by two rules: 1. Every line is a shell argument, after trimming ASCII whitespace. 2. Lines starting with '#' (optionally preceded by any amount of ASCII whitespace) are ignored. ripgrep will look for a single configuration file if and only if the RIPGREP_CONFIG_PATH environment variable is set and is non-empty. ripgrep will parse shell arguments from this file on startup and will behave as if the arguments in this file were prepended to any explicit arguments given to ripgrep on the command line. For example, if your ripgreprc file contained a single line: --smart-case then the following command RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo would behave identically to the following command rg --smart-case foo This commit also adds a new flag, --no-config, that when present will suppress any and all support for configuration. This includes any future support for auto-loading configuration files from pre-determined paths (which this commit does not add). Conflicts between configuration files and explicit arguments are handled exactly like conflicts in the same command line invocation. That is, this command: RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo --case-sensitive is exactly equivalent to rg --smart-case foo --case-sensitive in which case, the --case-sensitive flag would override the --smart-case flag. Closes #196
2018-02-04 03:33:52 +02:00
// The logging level may have changed if we brought in additional
// arguments from a configuration file, so recheck it and set the log
// level as appropriate.
if matches.is_present("trace") {
log::set_max_level(log::LevelFilter::Trace);
} else if matches.is_present("debug") {
log::set_max_level(log::LevelFilter::Debug);
} else {
log::set_max_level(log::LevelFilter::Warn);
}
set_messages(!matches.is_present("no-messages"));
set_ignore_messages(!matches.is_present("no-ignore-messages"));
config: add persistent configuration This commit adds support for reading configuration files that change ripgrep's default behavior. The format of the configuration file is an "rc" style and is very simple. It is defined by two rules: 1. Every line is a shell argument, after trimming ASCII whitespace. 2. Lines starting with '#' (optionally preceded by any amount of ASCII whitespace) are ignored. ripgrep will look for a single configuration file if and only if the RIPGREP_CONFIG_PATH environment variable is set and is non-empty. ripgrep will parse shell arguments from this file on startup and will behave as if the arguments in this file were prepended to any explicit arguments given to ripgrep on the command line. For example, if your ripgreprc file contained a single line: --smart-case then the following command RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo would behave identically to the following command rg --smart-case foo This commit also adds a new flag, --no-config, that when present will suppress any and all support for configuration. This includes any future support for auto-loading configuration files from pre-determined paths (which this commit does not add). Conflicts between configuration files and explicit arguments are handled exactly like conflicts in the same command line invocation. That is, this command: RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo --case-sensitive is exactly equivalent to rg --smart-case foo --case-sensitive in which case, the --case-sensitive flag would override the --smart-case flag. Closes #196
2018-02-04 03:33:52 +02:00
matches.to_args()
}
/// Return direct access to command line arguments.
fn matches(&self) -> &ArgMatches {
&self.0.matches
}
/// Return the patterns found in the command line arguments. This includes
/// patterns read via the -f/--file flags.
fn patterns(&self) -> &[String] {
&self.0.patterns
}
/// Return the matcher builder from the patterns.
fn matcher(&self) -> &PatternMatcher {
&self.0.matcher
}
/// Return the paths found in the command line arguments. This is
/// guaranteed to be non-empty. In the case where no explicit arguments are
/// provided, a single default path is provided automatically.
fn paths(&self) -> &[PathBuf] {
&self.0.paths
}
/// Returns true if and only if `paths` had to be populated with a default
/// path, which occurs only when no paths were given as command line
/// arguments.
fn using_default_path(&self) -> bool {
self.0.using_default_path
}
/// Return the printer that should be used for formatting the output of
/// search results.
///
/// The returned printer will write results to the given writer.
fn printer<W: WriteColor>(&self, wtr: W) -> Result<Printer<W>> {
match self.matches().output_kind() {
OutputKind::Standard => {
let separator_search = self.command()? == Command::Search;
self.matches()
.printer_standard(self.paths(), wtr, separator_search)
.map(Printer::Standard)
}
OutputKind::Summary => {
self.matches()
.printer_summary(self.paths(), wtr)
.map(Printer::Summary)
}
OutputKind::JSON => {
self.matches()
.printer_json(wtr)
.map(Printer::JSON)
}
}
}
}
/// High level public routines for building data structures used by ripgrep
/// from command line arguments.
impl Args {
/// Create a new buffer writer for multi-threaded printing with color
/// support.
pub fn buffer_writer(&self) -> Result<BufferWriter> {
let mut wtr = BufferWriter::stdout(self.matches().color_choice());
wtr.separator(self.matches().file_separator()?);
Ok(wtr)
}
/// Return the high-level command that ripgrep should run.
pub fn command(&self) -> Result<Command> {
let is_one_search = self.matches().is_one_search(self.paths());
let threads = self.matches().threads()?;
let one_thread = is_one_search || threads == 1;
Ok(if self.matches().is_present("pcre2-version") {
Command::PCRE2Version
} else if self.matches().is_present("type-list") {
Command::Types
} else if self.matches().is_present("files") {
if one_thread {
Command::Files
} else {
Command::FilesParallel
}
} else if self.matches().can_never_match(self.patterns()) {
Command::SearchNever
} else if one_thread {
Command::Search
} else {
Command::SearchParallel
})
}
/// Builder a path printer that can be used for printing just file paths,
/// with optional color support.
///
/// The printer will print paths to the given writer.
pub fn path_printer<W: WriteColor>(
&self,
wtr: W,
) -> Result<PathPrinter<W>> {
let mut builder = PathPrinterBuilder::new();
builder
.color_specs(self.matches().color_specs()?)
.separator(self.matches().path_separator()?)
.terminator(self.matches().path_terminator().unwrap_or(b'\n'));
Ok(builder.build(wtr))
}
/// Returns true if and only if ripgrep should be "quiet."
pub fn quiet(&self) -> bool {
self.matches().is_present("quiet")
}
/// Returns true if and only if the search should quit after finding the
/// first match.
pub fn quit_after_match(&self) -> Result<bool> {
Ok(self.matches().is_present("quiet") && self.stats()?.is_none())
}
/// Build a worker for executing searches.
///
/// Search results are written to the given writer.
pub fn search_worker<W: WriteColor>(
&self,
wtr: W,
) -> Result<SearchWorker<W>> {
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-09 01:28:38 +02:00
let matches = self.matches();
let matcher = self.matcher().clone();
let printer = self.printer(wtr)?;
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-09 01:28:38 +02:00
let searcher = matches.searcher(self.paths())?;
let mut builder = SearchWorkerBuilder::new();
builder
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-09 01:28:38 +02:00
.json_stats(matches.is_present("json"))
.preprocessor(matches.preprocessor())
.preprocessor_globs(matches.preprocessor_globs()?)
.search_zip(matches.is_present("search-zip"))
.binary_detection_implicit(matches.binary_detection_implicit())
.binary_detection_explicit(matches.binary_detection_explicit());
Ok(builder.build(matcher, searcher, printer))
}
/// Returns a zero value for tracking statistics if and only if it has been
/// requested.
///
/// When this returns a `Stats` value, then it is guaranteed that the
/// search worker will be configured to track statistics as well.
pub fn stats(&self) -> Result<Option<Stats>> {
Ok(if self.command()?.is_search() && self.matches().stats() {
Some(Stats::new())
} else {
None
})
}
/// Return a builder for constructing subjects. A subject represents a
/// single unit of something to search. Typically, this corresponds to a
/// file or a stream such as stdin.
pub fn subject_builder(&self) -> SubjectBuilder {
let mut builder = SubjectBuilder::new();
builder.strip_dot_prefix(self.using_default_path());
builder
}
/// Execute the given function with a writer to stdout that enables color
/// support based on the command line configuration.
pub fn stdout(&self) -> cli::StandardStream {
let color = self.matches().color_choice();
if self.matches().is_present("line-buffered") {
cli::stdout_buffered_line(color)
} else if self.matches().is_present("block-buffered") {
cli::stdout_buffered_block(color)
} else {
cli::stdout(color)
}
}
/// Return the type definitions compiled into ripgrep.
///
/// If there was a problem reading and parsing the type definitions, then
/// this returns an error.
pub fn type_defs(&self) -> Result<Vec<FileTypeDef>> {
Ok(self.matches().types()?.definitions().to_vec())
}
/// Return a walker that never uses additional threads.
pub fn walker(&self) -> Result<Walk> {
Ok(self.matches().walker_builder(self.paths())?.build())
}
/// Return a walker that never uses additional threads.
pub fn walker_parallel(&self) -> Result<WalkParallel> {
Ok(self.matches().walker_builder(self.paths())?.build_parallel())
}
}
/// `ArgMatches` wraps `clap::ArgMatches` and provides semantic meaning to
/// the parsed arguments.
#[derive(Clone, Debug)]
struct ArgMatches(clap::ArgMatches<'static>);
/// The output format. Generally, this corresponds to the printer that ripgrep
/// uses to show search results.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum OutputKind {
/// Classic grep-like or ack-like format.
Standard,
/// Show matching files and possibly the number of matches in each file.
Summary,
/// Emit match information in the JSON Lines format.
JSON,
}
/// The sort criteria, if present.
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
struct SortBy {
/// Whether to reverse the sort criteria (i.e., descending order).
reverse: bool,
/// The actual sorting criteria.
kind: SortByKind,
}
#[derive(Clone, Copy, Debug, Eq, PartialEq)]
enum SortByKind {
/// No sorting at all.
None,
/// Sort by path.
Path,
/// Sort by last modified time.
LastModified,
/// Sort by last accessed time.
LastAccessed,
/// Sort by creation time.
Created,
}
impl SortBy {
fn asc(kind: SortByKind) -> SortBy {
SortBy { reverse: false, kind: kind }
}
fn desc(kind: SortByKind) -> SortBy {
SortBy { reverse: true, kind: kind }
}
fn none() -> SortBy {
SortBy::asc(SortByKind::None)
}
/// Try to check that the sorting criteria selected is actually supported.
/// If it isn't, then an error is returned.
fn check(&self) -> Result<()> {
match self.kind {
SortByKind::None | SortByKind::Path => {}
SortByKind::LastModified => {
env::current_exe()?.metadata()?.modified()?;
}
SortByKind::LastAccessed => {
env::current_exe()?.metadata()?.accessed()?;
}
SortByKind::Created => {
env::current_exe()?.metadata()?.created()?;
}
}
Ok(())
}
fn configure_walk_builder(self, builder: &mut WalkBuilder) {
// This isn't entirely optimal. In particular, we will wind up issuing
// a stat for many files redundantly. Aside from having potentially
// inconsistent results with respect to sorting, this is also slow.
// We could fix this here at the expense of memory by caching stat
// calls. A better fix would be to find a way to push this down into
// directory traversal itself, but that's a somewhat nasty change.
match self.kind {
SortByKind::None => {}
SortByKind::Path => {
if self.reverse {
builder.sort_by_file_name(|a, b| a.cmp(b).reverse());
} else {
builder.sort_by_file_name(|a, b| a.cmp(b));
}
}
SortByKind::LastModified => {
builder.sort_by_file_path(move |a, b| {
sort_by_metadata_time(
a, b,
self.reverse,
|md| md.modified(),
)
});
}
SortByKind::LastAccessed => {
builder.sort_by_file_path(move |a, b| {
sort_by_metadata_time(
a, b,
self.reverse,
|md| md.accessed(),
)
});
}
SortByKind::Created => {
builder.sort_by_file_path(move |a, b| {
sort_by_metadata_time(
a, b,
self.reverse,
|md| md.created(),
)
});
}
}
}
}
impl SortByKind {
fn new(kind: &str) -> SortByKind {
match kind {
"none" => SortByKind::None,
"path" => SortByKind::Path,
"modified" => SortByKind::LastModified,
"accessed" => SortByKind::LastAccessed,
"created" => SortByKind::Created,
_ => SortByKind::None,
}
}
}
/// Encoding mode the searcher will use.
#[derive(Clone, Debug)]
enum EncodingMode {
/// Use an explicit encoding forcefully, but let BOM sniffing override it.
Some(Encoding),
/// Use only BOM sniffing to auto-detect an encoding.
Auto,
/// Use no explicit encoding and disable all BOM sniffing. This will
/// always result in searching the raw bytes, regardless of their
/// true encoding.
Disabled,
}
impl EncodingMode {
/// Checks if an explicit encoding has been set. Returns false for
/// automatic BOM sniffing and no sniffing.
///
/// This is only used to determine whether PCRE2 needs to have its own
/// UTF-8 checking enabled. If we have an explicit encoding set, then
/// we're always guaranteed to get UTF-8, so we can disable PCRE2's check.
/// Otherwise, we have no such guarantee, and must enable PCRE2' UTF-8
/// check.
#[cfg(feature = "pcre2")]
fn has_explicit_encoding(&self) -> bool {
match self {
EncodingMode::Some(_) => true,
_ => false
}
}
}
impl ArgMatches {
/// Create an ArgMatches from clap's parse result.
fn new(clap_matches: clap::ArgMatches<'static>) -> ArgMatches {
ArgMatches(clap_matches)
}
/// Run clap and return the matches using a config file if present. If clap
/// determines a problem with the user provided arguments (or if --help or
/// --version are given), then an error/usage/version will be printed and
/// the process will exit.
config: add persistent configuration This commit adds support for reading configuration files that change ripgrep's default behavior. The format of the configuration file is an "rc" style and is very simple. It is defined by two rules: 1. Every line is a shell argument, after trimming ASCII whitespace. 2. Lines starting with '#' (optionally preceded by any amount of ASCII whitespace) are ignored. ripgrep will look for a single configuration file if and only if the RIPGREP_CONFIG_PATH environment variable is set and is non-empty. ripgrep will parse shell arguments from this file on startup and will behave as if the arguments in this file were prepended to any explicit arguments given to ripgrep on the command line. For example, if your ripgreprc file contained a single line: --smart-case then the following command RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo would behave identically to the following command rg --smart-case foo This commit also adds a new flag, --no-config, that when present will suppress any and all support for configuration. This includes any future support for auto-loading configuration files from pre-determined paths (which this commit does not add). Conflicts between configuration files and explicit arguments are handled exactly like conflicts in the same command line invocation. That is, this command: RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo --case-sensitive is exactly equivalent to rg --smart-case foo --case-sensitive in which case, the --case-sensitive flag would override the --smart-case flag. Closes #196
2018-02-04 03:33:52 +02:00
///
/// If there are no additional arguments from the environment (e.g., a
/// config file), then the given matches are returned as is.
fn reconfigure(self) -> Result<ArgMatches> {
config: add persistent configuration This commit adds support for reading configuration files that change ripgrep's default behavior. The format of the configuration file is an "rc" style and is very simple. It is defined by two rules: 1. Every line is a shell argument, after trimming ASCII whitespace. 2. Lines starting with '#' (optionally preceded by any amount of ASCII whitespace) are ignored. ripgrep will look for a single configuration file if and only if the RIPGREP_CONFIG_PATH environment variable is set and is non-empty. ripgrep will parse shell arguments from this file on startup and will behave as if the arguments in this file were prepended to any explicit arguments given to ripgrep on the command line. For example, if your ripgreprc file contained a single line: --smart-case then the following command RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo would behave identically to the following command rg --smart-case foo This commit also adds a new flag, --no-config, that when present will suppress any and all support for configuration. This includes any future support for auto-loading configuration files from pre-determined paths (which this commit does not add). Conflicts between configuration files and explicit arguments are handled exactly like conflicts in the same command line invocation. That is, this command: RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo --case-sensitive is exactly equivalent to rg --smart-case foo --case-sensitive in which case, the --case-sensitive flag would override the --smart-case flag. Closes #196
2018-02-04 03:33:52 +02:00
// If the end user says no config, then respect it.
if self.is_present("no-config") {
log::debug!(
"not reading config files because --no-config is present"
);
return Ok(self);
config: add persistent configuration This commit adds support for reading configuration files that change ripgrep's default behavior. The format of the configuration file is an "rc" style and is very simple. It is defined by two rules: 1. Every line is a shell argument, after trimming ASCII whitespace. 2. Lines starting with '#' (optionally preceded by any amount of ASCII whitespace) are ignored. ripgrep will look for a single configuration file if and only if the RIPGREP_CONFIG_PATH environment variable is set and is non-empty. ripgrep will parse shell arguments from this file on startup and will behave as if the arguments in this file were prepended to any explicit arguments given to ripgrep on the command line. For example, if your ripgreprc file contained a single line: --smart-case then the following command RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo would behave identically to the following command rg --smart-case foo This commit also adds a new flag, --no-config, that when present will suppress any and all support for configuration. This includes any future support for auto-loading configuration files from pre-determined paths (which this commit does not add). Conflicts between configuration files and explicit arguments are handled exactly like conflicts in the same command line invocation. That is, this command: RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo --case-sensitive is exactly equivalent to rg --smart-case foo --case-sensitive in which case, the --case-sensitive flag would override the --smart-case flag. Closes #196
2018-02-04 03:33:52 +02:00
}
// If the user wants ripgrep to use a config file, then parse args
// from that first.
let mut args = config::args();
config: add persistent configuration This commit adds support for reading configuration files that change ripgrep's default behavior. The format of the configuration file is an "rc" style and is very simple. It is defined by two rules: 1. Every line is a shell argument, after trimming ASCII whitespace. 2. Lines starting with '#' (optionally preceded by any amount of ASCII whitespace) are ignored. ripgrep will look for a single configuration file if and only if the RIPGREP_CONFIG_PATH environment variable is set and is non-empty. ripgrep will parse shell arguments from this file on startup and will behave as if the arguments in this file were prepended to any explicit arguments given to ripgrep on the command line. For example, if your ripgreprc file contained a single line: --smart-case then the following command RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo would behave identically to the following command rg --smart-case foo This commit also adds a new flag, --no-config, that when present will suppress any and all support for configuration. This includes any future support for auto-loading configuration files from pre-determined paths (which this commit does not add). Conflicts between configuration files and explicit arguments are handled exactly like conflicts in the same command line invocation. That is, this command: RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo --case-sensitive is exactly equivalent to rg --smart-case foo --case-sensitive in which case, the --case-sensitive flag would override the --smart-case flag. Closes #196
2018-02-04 03:33:52 +02:00
if args.is_empty() {
return Ok(self);
config: add persistent configuration This commit adds support for reading configuration files that change ripgrep's default behavior. The format of the configuration file is an "rc" style and is very simple. It is defined by two rules: 1. Every line is a shell argument, after trimming ASCII whitespace. 2. Lines starting with '#' (optionally preceded by any amount of ASCII whitespace) are ignored. ripgrep will look for a single configuration file if and only if the RIPGREP_CONFIG_PATH environment variable is set and is non-empty. ripgrep will parse shell arguments from this file on startup and will behave as if the arguments in this file were prepended to any explicit arguments given to ripgrep on the command line. For example, if your ripgreprc file contained a single line: --smart-case then the following command RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo would behave identically to the following command rg --smart-case foo This commit also adds a new flag, --no-config, that when present will suppress any and all support for configuration. This includes any future support for auto-loading configuration files from pre-determined paths (which this commit does not add). Conflicts between configuration files and explicit arguments are handled exactly like conflicts in the same command line invocation. That is, this command: RIPGREP_CONFIG_PATH=wherever/.ripgreprc rg foo --case-sensitive is exactly equivalent to rg --smart-case foo --case-sensitive in which case, the --case-sensitive flag would override the --smart-case flag. Closes #196
2018-02-04 03:33:52 +02:00
}
let mut cliargs = env::args_os();
if let Some(bin) = cliargs.next() {
args.insert(0, bin);
}
args.extend(cliargs);
log::debug!("final argv: {:?}", args);
Ok(ArgMatches(clap_matches(args)?))
}
/// Convert the result of parsing CLI arguments into ripgrep's higher level
/// configuration structure.
fn to_args(self) -> Result<Args> {
// We compute these once since they could be large.
let patterns = self.patterns()?;
let matcher = self.matcher(&patterns)?;
let mut paths = self.paths();
let using_default_path =
if paths.is_empty() {
paths.push(self.path_default());
true
} else {
false
};
Ok(Args(Arc::new(ArgsImp {
matches: self,
patterns: patterns,
matcher: matcher,
paths: paths,
using_default_path: using_default_path,
})))
}
}
/// High level routines for converting command line arguments into various
/// data structures used by ripgrep.
///
/// Methods are sorted alphabetically.
impl ArgMatches {
/// Return the matcher that should be used for searching.
///
/// If there was a problem building the matcher (e.g., a syntax error),
/// then this returns an error.
#[cfg(feature = "pcre2")]
fn matcher(&self, patterns: &[String]) -> Result<PatternMatcher> {
if self.is_present("pcre2") {
let matcher = self.matcher_pcre2(patterns)?;
Ok(PatternMatcher::PCRE2(matcher))
} else {
let matcher = match self.matcher_rust(patterns) {
Ok(matcher) => matcher,
Err(err) => {
return Err(From::from(suggest_pcre2(err.to_string())));
}
};
Ok(PatternMatcher::RustRegex(matcher))
}
}
/// Return the matcher that should be used for searching.
///
/// If there was a problem building the matcher (e.g., a syntax error),
/// then this returns an error.
#[cfg(not(feature = "pcre2"))]
fn matcher(&self, patterns: &[String]) -> Result<PatternMatcher> {
if self.is_present("pcre2") {
return Err(From::from(
"PCRE2 is not available in this build of ripgrep",
));
}
let matcher = self.matcher_rust(patterns)?;
Ok(PatternMatcher::RustRegex(matcher))
}
/// Build a matcher using Rust's regex engine.
///
/// If there was a problem building the matcher (such as a regex syntax
/// error), then an error is returned.
fn matcher_rust(&self, patterns: &[String]) -> Result<RustRegexMatcher> {
let mut builder = RustRegexMatcherBuilder::new();
builder
.case_smart(self.case_smart())
.case_insensitive(self.case_insensitive())
.multi_line(true)
.unicode(true)
.octal(false)
.word(self.is_present("word-regexp"));
if self.is_present("multiline") {
builder.dot_matches_new_line(self.is_present("multiline-dotall"));
if self.is_present("crlf") {
builder
.crlf(true)
.line_terminator(None);
}
} else {
builder
.line_terminator(Some(b'\n'))
.dot_matches_new_line(false);
if self.is_present("crlf") {
builder.crlf(true);
}
// We don't need to set this in multiline mode since mulitline
// matchers don't use optimizations related to line terminators.
// Moreover, a mulitline regex used with --null-data should
// be allowed to match NUL bytes explicitly, which this would
// otherwise forbid.
if self.is_present("null-data") {
builder.line_terminator(Some(b'\x00'));
}
}
if let Some(limit) = self.regex_size_limit()? {
builder.size_limit(limit);
}
if let Some(limit) = self.dfa_size_limit()? {
builder.dfa_size_limit(limit);
}
regex: make multi-literal searcher faster This makes the case of searching for a dictionary of a very large number of literals much much faster. (~10x or so.) In particular, we achieve this by short-circuiting the construction of a full regex when we know we have a simple alternation of literals. Building the regex for a large dictionary (>100,000 literals) turns out to be quite slow, even if it internally will dispatch to Aho-Corasick. Even that isn't quite enough. It turns out that even *parsing* such a regex is quite slow. So when the -F/--fixed-strings flag is set, we short circuit regex parsing completely and jump straight to Aho-Corasick. We aren't quite as fast as GNU grep here, but it's much closer (less than 2x slower). In general, this is somewhat of a hack. In particular, it seems plausible that this optimization could be implemented entirely in the regex engine. Unfortunately, the regex engine's internals are just not amenable to this at all, so it would require a larger refactoring effort. For now, it's good enough to add this fairly simple hack at a higher level. Unfortunately, if you don't pass -F/--fixed-strings, then ripgrep will be slower, because of the aforementioned missing optimization. Moreover, passing flags like `-i` or `-S` will cause ripgrep to abandon this optimization and fall back to something potentially much slower. Again, this fix really needs to happen inside the regex engine, although we might be able to special case -i when the input literals are pure ASCII via Aho-Corasick's `ascii_case_insensitive`. Fixes #497, Fixes #838
2019-04-08 00:43:01 +02:00
let res =
if self.is_present("fixed-strings") {
builder.build_literals(patterns)
} else {
builder.build(&patterns.join("|"))
};
match res {
Ok(m) => Ok(m),
Err(err) => Err(From::from(suggest_multiline(err.to_string()))),
}
}
/// Build a matcher using PCRE2.
///
/// If there was a problem building the matcher (such as a regex syntax
/// error), then an error is returned.
#[cfg(feature = "pcre2")]
fn matcher_pcre2(&self, patterns: &[String]) -> Result<PCRE2RegexMatcher> {
let mut builder = PCRE2RegexMatcherBuilder::new();
builder
.case_smart(self.case_smart())
.caseless(self.case_insensitive())
.multi_line(true)
.word(self.is_present("word-regexp"));
// For whatever reason, the JIT craps out during regex compilation with
// a "no more memory" error on 32 bit systems. So don't use it there.
if cfg!(target_pointer_width = "64") {
builder
.jit_if_available(true)
// The PCRE2 docs say that 32KB is the default, and that 1MB
// should be big enough for anything. But let's crank it to
// 10MB.
.max_jit_stack_size(Some(10 * (1<<20)));
}
if self.pcre2_unicode() {
builder.utf(true).ucp(true);
if self.encoding()?.has_explicit_encoding() {
// SAFETY: If an encoding was specified, then we're guaranteed
// to get valid UTF-8, so we can disable PCRE2's UTF checking.
// (Feeding invalid UTF-8 to PCRE2 is undefined behavior.)
unsafe {
builder.disable_utf_check();
}
}
}
if self.is_present("multiline") {
builder.dotall(self.is_present("multiline-dotall"));
}
if self.is_present("crlf") {
builder.crlf(true);
}
Ok(builder.build(&patterns.join("|"))?)
}
/// Build a JSON printer that writes results to the given writer.
fn printer_json<W: io::Write>(&self, wtr: W) -> Result<JSON<W>> {
let mut builder = JSONBuilder::new();
builder
.pretty(false)
.max_matches(self.max_count()?)
.always_begin_end(false);
Ok(builder.build(wtr))
}
/// Build a Standard printer that writes results to the given writer.
///
/// The given paths are used to configure aspects of the printer.
///
/// If `separator_search` is true, then the returned printer will assume
/// the responsibility of printing a separator between each set of
/// search results, when appropriate (e.g., when contexts are enabled).
/// When it's set to false, the caller is responsible for handling
/// separators.
///
/// In practice, we want the printer to handle it in the single threaded
/// case but not in the multi-threaded case.
fn printer_standard<W: WriteColor>(
&self,
paths: &[PathBuf],
wtr: W,
separator_search: bool,
) -> Result<Standard<W>> {
let mut builder = StandardBuilder::new();
builder
.color_specs(self.color_specs()?)
.stats(self.stats())
.heading(self.heading())
.path(self.with_filename(paths))
.only_matching(self.is_present("only-matching"))
.per_match(self.is_present("vimgrep"))
.replacement(self.replacement())
.max_columns(self.max_columns()?)
.max_column_preview(self.max_column_preview())
.max_matches(self.max_count()?)
.column(self.column())
.byte_offset(self.is_present("byte-offset"))
.trim_ascii(self.is_present("trim"))
.separator_search(None)
.separator_context(Some(self.context_separator()))
.separator_field_match(b":".to_vec())
.separator_field_context(b"-".to_vec())
.separator_path(self.path_separator()?)
.path_terminator(self.path_terminator());
if separator_search {
builder.separator_search(self.file_separator()?);
}
Ok(builder.build(wtr))
}
/// Build a Summary printer that writes results to the given writer.
///
/// The given paths are used to configure aspects of the printer.
///
/// This panics if the output format is not `OutputKind::Summary`.
fn printer_summary<W: WriteColor>(
&self,
paths: &[PathBuf],
wtr: W,
) -> Result<Summary<W>> {
let mut builder = SummaryBuilder::new();
builder
.kind(self.summary_kind().expect("summary format"))
.color_specs(self.color_specs()?)
.stats(self.stats())
.path(self.with_filename(paths))
.max_matches(self.max_count()?)
.separator_field(b":".to_vec())
.separator_path(self.path_separator()?)
.path_terminator(self.path_terminator());
Ok(builder.build(wtr))
}
/// Build a searcher from the command line parameters.
fn searcher(&self, paths: &[PathBuf]) -> Result<Searcher> {
let (ctx_before, ctx_after) = self.contexts()?;
let line_term =
if self.is_present("crlf") {
LineTerminator::crlf()
} else if self.is_present("null-data") {
LineTerminator::byte(b'\x00')
} else {
LineTerminator::byte(b'\n')
};
let mut builder = SearcherBuilder::new();
builder
.line_terminator(line_term)
.invert_match(self.is_present("invert-match"))
.line_number(self.line_number(paths))
.multi_line(self.is_present("multiline"))
.before_context(ctx_before)
.after_context(ctx_after)
.passthru(self.is_present("passthru"))
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-09 01:28:38 +02:00
.memory_map(self.mmap_choice(paths));
match self.encoding()? {
EncodingMode::Some(enc) => {
builder.encoding(Some(enc));
}
EncodingMode::Auto => {} // default for the searcher
EncodingMode::Disabled => {
builder.bom_sniffing(false);
}
}
Ok(builder.build())
}
/// Return a builder for recursively traversing a directory while
/// respecting ignore rules.
///
/// If there was a problem parsing the CLI arguments necessary for
/// constructing the builder, then this returns an error.
fn walker_builder(&self, paths: &[PathBuf]) -> Result<WalkBuilder> {
let mut builder = WalkBuilder::new(&paths[0]);
for path in &paths[1..] {
builder.add(path);
}
for path in self.ignore_paths() {
if let Some(err) = builder.add_ignore(path) {
ignore_message!("{}", err);
}
}
builder
.max_depth(self.usize_of("max-depth")?)
.follow_links(self.is_present("follow"))
.max_filesize(self.max_file_size()?)
.threads(self.threads()?)
.same_file_system(self.is_present("one-file-system"))
.skip_stdout(!self.is_present("files"))
.overrides(self.overrides()?)
.types(self.types()?)
.hidden(!self.hidden())
.parents(!self.no_ignore_parent())
.ignore(!self.no_ignore_dot())
.git_global(!self.no_ignore_vcs() && !self.no_ignore_global())
.git_ignore(!self.no_ignore_vcs())
.git_exclude(!self.no_ignore_vcs())
.ignore_case_insensitive(self.ignore_file_case_insensitive());
if !self.no_ignore() {
builder.add_custom_ignore_filename(".rgignore");
}
let sortby = self.sort_by()?;
sortby.check()?;
sortby.configure_walk_builder(&mut builder);
Ok(builder)
}
}
/// Mid level routines for converting command line arguments into various types
/// of data structures.
///
/// Methods are sorted alphabetically.
impl ArgMatches {
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-09 01:28:38 +02:00
/// Returns the form of binary detection to perform on files that are
/// implicitly searched via recursive directory traversal.
fn binary_detection_implicit(&self) -> BinaryDetection {
let none =
self.is_present("text")
|| self.is_present("null-data");
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-09 01:28:38 +02:00
let convert =
self.is_present("binary")
|| self.unrestricted_count() >= 3;
if none {
BinaryDetection::none()
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-09 01:28:38 +02:00
} else if convert {
BinaryDetection::convert(b'\x00')
} else {
BinaryDetection::quit(b'\x00')
}
}
binary: rejigger ripgrep's handling of binary files This commit attempts to surface binary filtering in a slightly more user friendly way. Namely, before, ripgrep would silently stop searching a file if it detected a NUL byte, even if it had previously printed a match. This can lead to the user quite reasonably assuming that there are no more matches, since a partial search is fairly unintuitive. (ripgrep has this behavior by default because it really wants to NOT search binary files at all, just like it doesn't search gitignored or hidden files.) With this commit, if a match has already been printed and ripgrep detects a NUL byte, then it will print a warning message indicating that the search stopped prematurely. Moreover, this commit adds a new flag, --binary, which causes ripgrep to stop filtering binary files, but in a way that still avoids dumping binary data into terminals. That is, the --binary flag makes ripgrep behave more like grep's default behavior. For files explicitly specified in a search, e.g., `rg foo some-file`, then no binary filtering is applied (just like no gitignore and no hidden file filtering is applied). Instead, ripgrep behaves as if you gave the --binary flag for all explicitly given files. This was a fairly invasive change, and potentially increases the UX complexity of ripgrep around binary files. (Before, there were two binary modes, where as now there are three.) However, ripgrep is now a bit louder with warning messages when binary file detection might otherwise be hiding potential matches, so hopefully this is a net improvement. Finally, the `-uuu` convenience now maps to `--no-ignore --hidden --binary`, since this is closer to the actualy intent of the `--unrestricted` flag, i.e., to reduce ripgrep's smart filtering. As a consequence, `rg -uuu foo` should now search roughly the same number of bytes as `grep -r foo`, and `rg -uuua foo` should search roughly the same number of bytes as `grep -ra foo`. (The "roughly" weasel word is used because grep's and ripgrep's binary file detection might differ somewhat---perhaps based on buffer sizes---which can impact exactly what is and isn't searched.) See the numerous tests in tests/binary.rs for intended behavior. Fixes #306, Fixes #855
2019-04-09 01:28:38 +02:00
/// Returns the form of binary detection to perform on files that are
/// explicitly searched via the user invoking ripgrep on a particular
/// file or files or stdin.
///
/// In general, this should never be BinaryDetection::quit, since that acts
/// as a filter (but quitting immediately once a NUL byte is seen), and we
/// should never filter out files that the user wants to explicitly search.
fn binary_detection_explicit(&self) -> BinaryDetection {
let none =
self.is_present("text")
|| self.is_present("null-data");
if none {
BinaryDetection::none()
} else {
BinaryDetection::convert(b'\x00')
}
}
/// Returns true if the command line configuration implies that a match
/// can never be shown.
fn can_never_match(&self, patterns: &[String]) -> bool {
patterns.is_empty() || self.max_count().ok() == Some(Some(0))
}
/// Returns true if and only if case should be ignore.
///
/// If --case-sensitive is present, then case is never ignored, even if
/// --ignore-case is present.
fn case_insensitive(&self) -> bool {
self.is_present("ignore-case") && !self.is_present("case-sensitive")
}
/// Returns true if and only if smart case has been enabled.
///
/// If either --ignore-case of --case-sensitive are present, then smart
/// case is disabled.
fn case_smart(&self) -> bool {
self.is_present("smart-case")
&& !self.is_present("ignore-case")
&& !self.is_present("case-sensitive")
}
/// Returns the user's color choice based on command line parameters and
/// environment.
fn color_choice(&self) -> ColorChoice {
let preference = match self.value_of_lossy("color") {
None => "auto".to_string(),
Some(v) => v,
};
if preference == "always" {
ColorChoice::Always
} else if preference == "ansi" {
ColorChoice::AlwaysAnsi
} else if preference == "auto" {
if cli::is_tty_stdout() || self.is_present("pretty") {
ColorChoice::Auto
} else {
ColorChoice::Never
}
} else {
ColorChoice::Never
}
}
/// Returns the color specifications given by the user on the CLI.
///
/// If the was a problem parsing any of the provided specs, then an error
/// is returned.
fn color_specs(&self) -> Result<ColorSpecs> {
// Start with a default set of color specs.
let mut specs = default_color_specs();
for spec_str in self.values_of_lossy_vec("colors") {
specs.push(spec_str.parse()?);
}
Ok(ColorSpecs::new(&specs))
}
/// Returns true if and only if column numbers should be shown.
fn column(&self) -> bool {
if self.is_present("no-column") {
return false;
}
self.is_present("column") || self.is_present("vimgrep")
}
/// Returns the before and after contexts from the command line.
///
/// If a context setting was absent, then `0` is returned.
///
/// If there was a problem parsing the values from the user as an integer,
/// then an error is returned.
fn contexts(&self) -> Result<(usize, usize)> {
let after = self.usize_of("after-context")?.unwrap_or(0);
let before = self.usize_of("before-context")?.unwrap_or(0);
let both = self.usize_of("context")?.unwrap_or(0);
Ok(if both > 0 {
(both, both)
} else {
(before, after)
})
}
/// Returns the unescaped context separator in UTF-8 bytes.
///
/// If one was not provided, the default `--` is returned.
fn context_separator(&self) -> Vec<u8> {
match self.value_of_os("context-separator") {
None => b"--".to_vec(),
Some(sep) => cli::unescape_os(&sep),
}
}
/// Returns whether the -c/--count or the --count-matches flags were
/// passed from the command line.
///
/// If --count-matches and --invert-match were passed in, behave
/// as if --count and --invert-match were passed in (i.e. rg will
/// count inverted matches as per existing behavior).
fn counts(&self) -> (bool, bool) {
let count = self.is_present("count");
let count_matches = self.is_present("count-matches");
let invert_matches = self.is_present("invert-match");
let only_matching = self.is_present("only-matching");
if count_matches && invert_matches {
// Treat `-v --count-matches` as `-v -c`.
(true, false)
} else if count && only_matching {
// Treat `-c --only-matching` as `--count-matches`.
(false, true)
} else {
(count, count_matches)
}
}
/// Parse the dfa-size-limit argument option into a byte count.
fn dfa_size_limit(&self) -> Result<Option<usize>> {
let r = self.parse_human_readable_size("dfa-size-limit")?;
u64_to_usize("dfa-size-limit", r)
}
/// Returns the encoding mode to use.
///
/// This only returns an encoding if one is explicitly specified. Otherwise
/// if set to automatic, the Searcher will do BOM sniffing for UTF-16
/// and transcode seamlessly. If disabled, no BOM sniffing nor transcoding
/// will occur.
fn encoding(&self) -> Result<EncodingMode> {
if self.is_present("no-encoding") {
return Ok(EncodingMode::Auto);
}
let label = match self.value_of_lossy("encoding") {
None if self.pcre2_unicode() => "utf-8".to_string(),
None => return Ok(EncodingMode::Auto),
Some(label) => label,
};
if label == "auto" {
return Ok(EncodingMode::Auto);
} else if label == "none" {
return Ok(EncodingMode::Disabled);
}
Ok(EncodingMode::Some(Encoding::new(&label)?))
}
/// Return the file separator to use based on the CLI configuration.
fn file_separator(&self) -> Result<Option<Vec<u8>>> {
// File separators are only used for the standard grep-line format.
if self.output_kind() != OutputKind::Standard {
return Ok(None);
}
let (ctx_before, ctx_after) = self.contexts()?;
Ok(if self.heading() {
Some(b"".to_vec())
} else if ctx_before > 0 || ctx_after > 0 {
Some(self.context_separator().clone())
} else {
None
})
}
/// Returns true if and only if matches should be grouped with file name
/// headings.
fn heading(&self) -> bool {
if self.is_present("no-heading") || self.is_present("vimgrep") {
false
} else {
cli::is_tty_stdout()
|| self.is_present("heading")
|| self.is_present("pretty")
}
}
/// Returns true if and only if hidden files/directories should be
/// searched.
fn hidden(&self) -> bool {
self.is_present("hidden") || self.unrestricted_count() >= 2
}
/// Returns true if ignore files should be processed case insensitively.
fn ignore_file_case_insensitive(&self) -> bool {
self.is_present("ignore-file-case-insensitive")
}
/// Return all of the ignore file paths given on the command line.
fn ignore_paths(&self) -> Vec<PathBuf> {
let paths = match self.values_of_os("ignore-file") {
None => return vec![],
Some(paths) => paths,
};
paths.map(|p| Path::new(p).to_path_buf()).collect()
}
/// Returns true if and only if ripgrep is invoked in a way where it knows
/// it search exactly one thing.
fn is_one_search(&self, paths: &[PathBuf]) -> bool {
if paths.len() != 1 {
return false;
}
self.is_only_stdin(paths) || paths[0].is_file()
}
/// Returns true if and only if we're only searching a single thing and
/// that thing is stdin.
fn is_only_stdin(&self, paths: &[PathBuf]) -> bool {
paths == [Path::new("-")]
}
/// Returns true if and only if we should show line numbers.
fn line_number(&self, paths: &[PathBuf]) -> bool {
if self.output_kind() == OutputKind::Summary {
return false;
}
if self.is_present("no-line-number") {
return false;
}
if self.output_kind() == OutputKind::JSON {
return true;
}
// A few things can imply counting line numbers. In particular, we
// generally want to show line numbers by default when printing to a
// tty for human consumption, except for one interesting case: when
// we're only searching stdin. This makes pipelines work as expected.
(cli::is_tty_stdout() && !self.is_only_stdin(paths))
|| self.is_present("line-number")
|| self.is_present("column")
|| self.is_present("pretty")
|| self.is_present("vimgrep")
}
/// The maximum number of columns allowed on each line.
///
/// If `0` is provided, then this returns `None`.
fn max_columns(&self) -> Result<Option<u64>> {
Ok(self.usize_of_nonzero("max-columns")?.map(|n| n as u64))
}
/// Returns true if and only if a preview should be shown for lines that
/// exceed the maximum column limit.
fn max_column_preview(&self) -> bool {
self.is_present("max-column-preview")
}
/// The maximum number of matches permitted.
fn max_count(&self) -> Result<Option<u64>> {
Ok(self.usize_of("max-count")?.map(|n| n as u64))
}
/// Parses the max-filesize argument option into a byte count.
fn max_file_size(&self) -> Result<Option<u64>> {
self.parse_human_readable_size("max-filesize")
}
/// Returns whether we should attempt to use memory maps or not.
fn mmap_choice(&self, paths: &[PathBuf]) -> MmapChoice {
// SAFETY: Memory maps are difficult to impossible to encapsulate
// safely in a portable way that doesn't simultaneously negate some of
// the benfits of using memory maps. For ripgrep's use, we never mutate
// a memory map and generally never store the contents of memory map
// in a data structure that depends on immutability. Generally
// speaking, the worst thing that can happen is a SIGBUS (if the
// underlying file is truncated while reading it), which will cause
// ripgrep to abort. This reasoning should be treated as suspect.
let maybe = unsafe { MmapChoice::auto() };
let never = MmapChoice::never();
if self.is_present("no-mmap") {
never
} else if self.is_present("mmap") {
maybe
} else if paths.len() <= 10 && paths.iter().all(|p| p.is_file()) {
// If we're only searching a few paths and all of them are
// files, then memory maps are probably faster.
maybe
} else {
never
}
}
/// Returns true if ignore files should be ignored.
fn no_ignore(&self) -> bool {
self.is_present("no-ignore") || self.unrestricted_count() >= 1
}
/// Returns true if .ignore files should be ignored.
fn no_ignore_dot(&self) -> bool {
self.is_present("no-ignore-dot") || self.no_ignore()
}
/// Returns true if global ignore files should be ignored.
fn no_ignore_global(&self) -> bool {
self.is_present("no-ignore-global") || self.no_ignore()
}
/// Returns true if parent ignore files should be ignored.
fn no_ignore_parent(&self) -> bool {
self.is_present("no-ignore-parent") || self.no_ignore()
}
/// Returns true if VCS ignore files should be ignored.
fn no_ignore_vcs(&self) -> bool {
self.is_present("no-ignore-vcs") || self.no_ignore()
}
/// Determine the type of output we should produce.
fn output_kind(&self) -> OutputKind {
if self.is_present("quiet") {
// While we don't technically print results (or aggregate results)
// in quiet mode, we still support the --stats flag, and those
// stats are computed by the Summary printer for now.
return OutputKind::Summary;
} else if self.is_present("json") {
return OutputKind::JSON;
}
let (count, count_matches) = self.counts();
let summary =
count
|| count_matches
|| self.is_present("files-with-matches")
|| self.is_present("files-without-match");
if summary {
OutputKind::Summary
} else {
OutputKind::Standard
}
}
/// Builds the set of glob overrides from the command line flags.
fn overrides(&self) -> Result<Override> {
let mut builder = OverrideBuilder::new(env::current_dir()?);
for glob in self.values_of_lossy_vec("glob") {
builder.add(&glob)?;
}
// This only enables case insensitivity for subsequent globs.
builder.case_insensitive(true).unwrap();
for glob in self.values_of_lossy_vec("iglob") {
builder.add(&glob)?;
}
Ok(builder.build()?)
}
/// Return all file paths that ripgrep should search.
///
/// If no paths were given, then this returns an empty list.
fn paths(&self) -> Vec<PathBuf> {
let mut paths: Vec<PathBuf> = match self.values_of_os("path") {
None => vec![],
Some(paths) => paths.map(|p| Path::new(p).to_path_buf()).collect(),
};
// If --file, --files or --regexp is given, then the first path is
// always in `pattern`.
if self.is_present("file")
|| self.is_present("files")
|| self.is_present("regexp")
{
if let Some(path) = self.value_of_os("pattern") {
paths.insert(0, Path::new(path).to_path_buf());
}
}
paths
}
/// Return the default path that ripgrep should search. This should only
/// be used when ripgrep is not otherwise given at least one file path
/// as a positional argument.
fn path_default(&self) -> PathBuf {
let file_is_stdin = self.values_of_os("file")
.map_or(false, |mut files| files.any(|f| f == "-"));
let search_cwd =
!cli::is_readable_stdin()
|| (self.is_present("file") && file_is_stdin)
|| self.is_present("files")
|| self.is_present("type-list")
|| self.is_present("pcre2-version");
if search_cwd {
Path::new("./").to_path_buf()
} else {
Path::new("-").to_path_buf()
}
}
/// Returns the unescaped path separator as a single byte, if one exists.
///
/// If the provided path separator is more than a single byte, then an
/// error is returned.
fn path_separator(&self) -> Result<Option<u8>> {
let sep = match self.value_of_os("path-separator") {
None => return Ok(None),
Some(sep) => cli::unescape_os(&sep),
};
if sep.is_empty() {
Ok(None)
} else if sep.len() > 1 {
Err(From::from(format!(
"A path separator must be exactly one byte, but \
the given separator is {} bytes: {}\n\
In some shells on Windows '/' is automatically \
expanded. Use '//' instead.",
sep.len(),
cli::escape(&sep),
)))
} else {
Ok(Some(sep[0]))
}
}
/// Returns the byte that should be used to terminate paths.
///
/// Typically, this is only set to `\x00` when the --null flag is provided,
/// and `None` otherwise.
fn path_terminator(&self) -> Option<u8> {
if self.is_present("null") {
Some(b'\x00')
} else {
None
}
}
/// Get a sequence of all available patterns from the command line.
/// This includes reading the -e/--regexp and -f/--file flags.
///
/// Note that if -F/--fixed-strings is set, then all patterns will be
/// escaped. If -x/--line-regexp is set, then all patterns are surrounded
/// by `^...$`. Other things, such as --word-regexp, are handled by the
/// regex matcher itself.
///
/// If any pattern is invalid UTF-8, then an error is returned.
fn patterns(&self) -> Result<Vec<String>> {
if self.is_present("files") || self.is_present("type-list") {
return Ok(vec![]);
}
let mut pats = vec![];
match self.values_of_os("regexp") {
None => {
if self.values_of_os("file").is_none() {
if let Some(os_pat) = self.value_of_os("pattern") {
pats.push(self.pattern_from_os_str(os_pat)?);
}
}
}
Some(os_pats) => {
for os_pat in os_pats {
pats.push(self.pattern_from_os_str(os_pat)?);
}
}
}
if let Some(paths) = self.values_of_os("file") {
for path in paths {
if path == "-" {
pats.extend(cli::patterns_from_stdin()?
.into_iter()
.map(|p| self.pattern_from_string(p))
);
} else {
pats.extend(cli::patterns_from_path(path)?
.into_iter()
.map(|p| self.pattern_from_string(p))
);
}
}
}
Ok(pats)
}
/// Returns a pattern that is guaranteed to produce an empty regular
/// expression that is valid in any position.
fn pattern_empty(&self) -> String {
// This would normally just be an empty string, which works on its
// own, but if the patterns are joined in a set of alternations, then
// you wind up with `foo|`, which is currently invalid in Rust's regex
// engine.
"(?:z{0})*".to_string()
}
/// Converts an OsStr pattern to a String pattern. The pattern is escaped
/// if -F/--fixed-strings is set.
///
/// If the pattern is not valid UTF-8, then an error is returned.
fn pattern_from_os_str(&self, pat: &OsStr) -> Result<String> {
let s = cli::pattern_from_os(pat)?;
Ok(self.pattern_from_str(s))
}
/// Converts a &str pattern to a String pattern. The pattern is escaped
/// if -F/--fixed-strings is set.
fn pattern_from_str(&self, pat: &str) -> String {
self.pattern_from_string(pat.to_string())
}
/// Applies additional processing on the given pattern if necessary
/// (such as escaping meta characters or turning it into a line regex).
fn pattern_from_string(&self, pat: String) -> String {
let pat = self.pattern_line(self.pattern_literal(pat));
if pat.is_empty() {
self.pattern_empty()
} else {
pat
}
}
/// Returns the given pattern as a line pattern if the -x/--line-regexp
/// flag is set. Otherwise, the pattern is returned unchanged.
fn pattern_line(&self, pat: String) -> String {
if self.is_present("line-regexp") {
format!(r"^(?:{})$", pat)
} else {
pat
}
}
/// Returns the given pattern as a literal pattern if the
/// -F/--fixed-strings flag is set. Otherwise, the pattern is returned
/// unchanged.
fn pattern_literal(&self, pat: String) -> String {
if self.is_present("fixed-strings") {
regex::escape(&pat)
} else {
pat
}
}
/// Returns the preprocessor command if one was specified.
fn preprocessor(&self) -> Option<PathBuf> {
let path = match self.value_of_os("pre") {
None => return None,
Some(path) => path,
};
if path.is_empty() {
return None;
}
Some(Path::new(path).to_path_buf())
}
/// Builds the set of globs for filtering files to apply to the --pre
/// flag. If no --pre-globs are available, then this always returns an
/// empty set of globs.
fn preprocessor_globs(&self) -> Result<Override> {
let mut builder = OverrideBuilder::new(env::current_dir()?);
for glob in self.values_of_lossy_vec("pre-glob") {
builder.add(&glob)?;
}
Ok(builder.build()?)
}
/// Parse the regex-size-limit argument option into a byte count.
fn regex_size_limit(&self) -> Result<Option<usize>> {
let r = self.parse_human_readable_size("regex-size-limit")?;
u64_to_usize("regex-size-limit", r)
}
/// Returns the replacement string as UTF-8 bytes if it exists.
fn replacement(&self) -> Option<Vec<u8>> {
self.value_of_lossy("replace").map(|s| s.into_bytes())
}
/// Returns the sorting criteria based on command line parameters.
fn sort_by(&self) -> Result<SortBy> {
// For backcompat, continue supporting deprecated --sort-files flag.
if self.is_present("sort-files") {
return Ok(SortBy::asc(SortByKind::Path));
}
let sortby = match self.value_of_lossy("sort") {
None => match self.value_of_lossy("sortr") {
None => return Ok(SortBy::none()),
Some(choice) => SortBy::desc(SortByKind::new(&choice)),
}
Some(choice) => SortBy::asc(SortByKind::new(&choice)),
};
Ok(sortby)
}
/// Returns true if and only if aggregate statistics for a search should
/// be tracked.
///
/// Generally, this is only enabled when explicitly requested by in the
/// command line arguments via the --stats flag, but this can also be
/// enabled implicity via the output format, e.g., for JSON Lines.
fn stats(&self) -> bool {
self.output_kind() == OutputKind::JSON || self.is_present("stats")
}
/// When the output format is `Summary`, this returns the type of summary
/// output to show.
///
/// This returns `None` if the output format is not `Summary`.
fn summary_kind(&self) -> Option<SummaryKind> {
let (count, count_matches) = self.counts();
if self.is_present("quiet") {
Some(SummaryKind::Quiet)
} else if count_matches {
Some(SummaryKind::CountMatches)
} else if count {
Some(SummaryKind::Count)
} else if self.is_present("files-with-matches") {
Some(SummaryKind::PathWithMatch)
} else if self.is_present("files-without-match") {
Some(SummaryKind::PathWithoutMatch)
} else {
None
}
}
/// Return the number of threads that should be used for parallelism.
fn threads(&self) -> Result<usize> {
if self.sort_by()?.kind != SortByKind::None {
return Ok(1);
}
2018-01-01 16:22:35 +02:00
let threads = self.usize_of("threads")?.unwrap_or(0);
Ok(if threads == 0 {
cmp::min(12, num_cpus::get())
} else {
threads
})
}
/// Builds a file type matcher from the command line flags.
fn types(&self) -> Result<Types> {
let mut builder = TypesBuilder::new();
builder.add_defaults();
for ty in self.values_of_lossy_vec("type-clear") {
builder.clear(&ty);
}
for def in self.values_of_lossy_vec("type-add") {
builder.add_def(&def)?;
}
for ty in self.values_of_lossy_vec("type") {
builder.select(&ty);
}
for ty in self.values_of_lossy_vec("type-not") {
builder.negate(&ty);
}
builder.build().map_err(From::from)
}
/// Returns the number of times the `unrestricted` flag is provided.
fn unrestricted_count(&self) -> u64 {
self.occurrences_of("unrestricted")
}
/// Returns true if and only if PCRE2's Unicode mode should be enabled.
fn pcre2_unicode(&self) -> bool {
// PCRE2 Unicode is enabled by default, so only disable it when told
// to do so explicitly.
self.is_present("pcre2") && !self.is_present("no-pcre2-unicode")
}
/// Returns true if and only if file names containing each match should
/// be emitted.
fn with_filename(&self, paths: &[PathBuf]) -> bool {
if self.is_present("no-filename") {
false
} else {
self.is_present("with-filename")
|| self.is_present("vimgrep")
|| paths.len() > 1
|| paths.get(0).map_or(false, |p| p.is_dir())
}
}
}
/// Lower level generic helper methods for teasing values out of clap.
impl ArgMatches {
/// Like values_of_lossy, but returns an empty vec if the flag is not
/// present.
fn values_of_lossy_vec(&self, name: &str) -> Vec<String> {
self.values_of_lossy(name).unwrap_or_else(Vec::new)
}
/// Safely reads an arg value with the given name, and if it's present,
/// tries to parse it as a usize value.
///
/// If the number is zero, then it is considered absent and `None` is
/// returned.
fn usize_of_nonzero(&self, name: &str) -> Result<Option<usize>> {
let n = match self.usize_of(name)? {
None => return Ok(None),
Some(n) => n,
};
Ok(if n == 0 {
None
} else {
Some(n)
})
}
/// Safely reads an arg value with the given name, and if it's present,
/// tries to parse it as a usize value.
fn usize_of(&self, name: &str) -> Result<Option<usize>> {
match self.value_of_lossy(name) {
None => Ok(None),
Some(v) => v.parse().map(Some).map_err(From::from),
}
}
/// Parses an argument of the form `[0-9]+(KMG)?`.
///
/// If the aforementioned format is not recognized, then this returns an
/// error.
fn parse_human_readable_size(
&self,
arg_name: &str,
) -> Result<Option<u64>> {
let size = match self.value_of_lossy(arg_name) {
None => return Ok(None),
Some(size) => size,
};
Ok(Some(cli::parse_human_readable_size(&size)?))
}
}
/// The following methods mostly dispatch to the underlying clap methods
/// directly. Methods that would otherwise get a single value will fetch all
/// values and return the last one. (Clap returns the first one.) We only
/// define the ones we need.
impl ArgMatches {
fn is_present(&self, name: &str) -> bool {
self.0.is_present(name)
}
fn occurrences_of(&self, name: &str) -> u64 {
self.0.occurrences_of(name)
}
fn value_of_lossy(&self, name: &str) -> Option<String> {
self.0.value_of_lossy(name).map(|s| s.into_owned())
}
fn values_of_lossy(&self, name: &str) -> Option<Vec<String>> {
self.0.values_of_lossy(name)
}
fn value_of_os(&self, name: &str) -> Option<&OsStr> {
self.0.value_of_os(name)
}
fn values_of_os(&self, name: &str) -> Option<clap::OsValues> {
self.0.values_of_os(name)
}
}
/// Inspect an error resulting from building a Rust regex matcher, and if it's
/// believed to correspond to a syntax error that PCRE2 could handle, then
/// add a message to suggest the use of -P/--pcre2.
#[cfg(feature = "pcre2")]
fn suggest_pcre2(msg: String) -> String {
if !msg.contains("backreferences") && !msg.contains("look-around") {
msg
} else {
format!("{}
Consider enabling PCRE2 with the --pcre2 flag, which can handle backreferences
and look-around.", msg)
}
}
fn suggest_multiline(msg: String) -> String {
if msg.contains("the literal") && msg.contains("not allowed") {
format!("{}
Consider enabling multiline mode with the --multiline flag (or -U for short).
When multiline mode is enabled, new line characters can be matched.", msg)
} else {
msg
}
}
/// Convert the result of parsing a human readable file size to a `usize`,
/// failing if the type does not fit.
fn u64_to_usize(
arg_name: &str,
value: Option<u64>,
) -> Result<Option<usize>> {
use std::usize;
let value = match value {
None => return Ok(None),
Some(value) => value,
};
if value <= usize::MAX as u64 {
Ok(Some(value as usize))
} else {
Err(From::from(format!("number too large for {}", arg_name)))
}
}
/// Builds a comparator for sorting two files according to a system time
/// extracted from the file's metadata.
///
/// If there was a problem extracting the metadata or if the time is not
/// available, then both entries compare equal.
fn sort_by_metadata_time<G>(
p1: &Path,
p2: &Path,
reverse: bool,
get_time: G,
) -> cmp::Ordering
where G: Fn(&fs::Metadata) -> io::Result<SystemTime>
{
let t1 = match p1.metadata().and_then(|md| get_time(&md)) {
Ok(t) => t,
Err(_) => return cmp::Ordering::Equal,
};
let t2 = match p2.metadata().and_then(|md| get_time(&md)) {
Ok(t) => t,
Err(_) => return cmp::Ordering::Equal,
};
if reverse {
t1.cmp(&t2).reverse()
} else {
t1.cmp(&t2)
}
}
/// Returns a clap matches object if the given arguments parse successfully.
///
/// Otherwise, if an error occurred, then it is returned unless the error
/// corresponds to a `--help` or `--version` request. In which case, the
/// corresponding output is printed and the current process is exited
/// successfully.
fn clap_matches<I, T>(
args: I,
) -> Result<clap::ArgMatches<'static>>
where I: IntoIterator<Item=T>,
T: Into<OsString> + Clone
{
let err = match app::app().get_matches_from_safe(args) {
Ok(matches) => return Ok(matches),
Err(err) => err,
};
if err.use_stderr() {
return Err(err.into());
}
// Explicitly ignore any error returned by write!. The most likely error
// at this point is a broken pipe error, in which case, we want to ignore
// it and exit quietly.
//
// (This is the point of this helper function. clap's functionality for
// doing this will panic on a broken pipe error.)
let _ = write!(io::stdout(), "{}", err);
process::exit(0);
}