mirror of
https://github.com/BurntSushi/ripgrep.git
synced 2025-06-14 22:15:13 +02:00
refactor progress
This commit is contained in:
72
grep/src/lib.rs
Normal file
72
grep/src/lib.rs
Normal file
@ -0,0 +1,72 @@
|
||||
extern crate memchr;
|
||||
extern crate regex;
|
||||
extern crate regex_syntax as syntax;
|
||||
|
||||
use std::error;
|
||||
use std::fmt;
|
||||
use std::result;
|
||||
|
||||
pub use search::{Grep, GrepBuilder};
|
||||
|
||||
mod literals;
|
||||
mod nonl;
|
||||
mod search;
|
||||
|
||||
/// Result is a convenient type alias that fixes the type of the error to
|
||||
/// the `Error` type defined in this crate.
|
||||
pub type Result<T> = result::Result<T, Error>;
|
||||
|
||||
/// Error enumerates the list of possible error conditions when building or
|
||||
/// using a `Grep` line searcher.
|
||||
#[derive(Debug)]
|
||||
pub enum Error {
|
||||
/// An error from parsing or compiling a regex.
|
||||
Regex(regex::Error),
|
||||
/// This error occurs when an illegal literal was found in the regex
|
||||
/// pattern. For example, if the line terminator is `\n` and the regex
|
||||
/// pattern is `\w+\n\w+`, then the presence of `\n` will cause this error.
|
||||
LiteralNotAllowed(char),
|
||||
#[doc(hidden)]
|
||||
__Nonexhaustive,
|
||||
}
|
||||
|
||||
impl error::Error for Error {
|
||||
fn description(&self) -> &str {
|
||||
match *self {
|
||||
Error::Regex(ref err) => err.description(),
|
||||
Error::LiteralNotAllowed(_) => "use of forbidden literal",
|
||||
Error::__Nonexhaustive => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
fn cause(&self) -> Option<&error::Error> {
|
||||
match *self {
|
||||
Error::Regex(ref err) => err.cause(),
|
||||
_ => None,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl fmt::Display for Error {
|
||||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||||
match *self {
|
||||
Error::Regex(ref err) => err.fmt(f),
|
||||
Error::LiteralNotAllowed(chr) => {
|
||||
write!(f, "Literal '{}' not allowed.", chr)
|
||||
}
|
||||
Error::__Nonexhaustive => unreachable!(),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl From<regex::Error> for Error {
|
||||
fn from(err: regex::Error) -> Error {
|
||||
Error::Regex(err)
|
||||
}
|
||||
}
|
||||
|
||||
impl From<syntax::Error> for Error {
|
||||
fn from(err: syntax::Error) -> Error {
|
||||
Error::Regex(regex::Error::Syntax(err))
|
||||
}
|
||||
}
|
207
grep/src/literals.rs
Normal file
207
grep/src/literals.rs
Normal file
@ -0,0 +1,207 @@
|
||||
use std::cmp;
|
||||
use std::iter;
|
||||
|
||||
use regex::bytes::Regex;
|
||||
use syntax::{
|
||||
Expr, Literals, Lit,
|
||||
Repeater,
|
||||
};
|
||||
|
||||
#[derive(Debug)]
|
||||
pub struct LiteralSets {
|
||||
prefixes: Literals,
|
||||
suffixes: Literals,
|
||||
required: Literals,
|
||||
}
|
||||
|
||||
impl LiteralSets {
|
||||
pub fn create(expr: &Expr) -> Self {
|
||||
let mut required = Literals::empty();
|
||||
union_required(expr, &mut required);
|
||||
LiteralSets {
|
||||
prefixes: expr.prefixes(),
|
||||
suffixes: expr.suffixes(),
|
||||
required: required,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn to_regex(&self) -> Option<Regex> {
|
||||
if self.prefixes.all_complete() && !self.prefixes.is_empty() {
|
||||
// When this is true, the regex engine will do a literal scan.
|
||||
return None;
|
||||
}
|
||||
|
||||
// Out of inner required literals, prefixes and suffixes, which one
|
||||
// is the longest? We pick the longest to do fast literal scan under
|
||||
// the assumption that a longer literal will have a lower false
|
||||
// positive rate.
|
||||
let pre_lcp = self.prefixes.longest_common_prefix();
|
||||
let pre_lcs = self.prefixes.longest_common_suffix();
|
||||
let suf_lcp = self.suffixes.longest_common_prefix();
|
||||
let suf_lcs = self.suffixes.longest_common_suffix();
|
||||
|
||||
let req_lits = self.required.literals();
|
||||
let req = match req_lits.iter().max_by_key(|lit| lit.len()) {
|
||||
None => &[],
|
||||
Some(req) => &***req,
|
||||
};
|
||||
|
||||
let mut lit = pre_lcp;
|
||||
if pre_lcs.len() > lit.len() {
|
||||
lit = pre_lcs;
|
||||
}
|
||||
if suf_lcp.len() > lit.len() {
|
||||
lit = suf_lcp;
|
||||
}
|
||||
if suf_lcs.len() > lit.len() {
|
||||
lit = suf_lcs;
|
||||
}
|
||||
if req.len() > lit.len() {
|
||||
lit = req;
|
||||
}
|
||||
if lit.is_empty() {
|
||||
None
|
||||
} else {
|
||||
// Literals always compile.
|
||||
Some(Regex::new(&bytes_to_regex(lit)).unwrap())
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn union_required(expr: &Expr, lits: &mut Literals) {
|
||||
use syntax::Expr::*;
|
||||
match *expr {
|
||||
Literal { ref chars, casei: false } => {
|
||||
let s: String = chars.iter().cloned().collect();
|
||||
lits.cross_add(s.as_bytes());
|
||||
}
|
||||
Literal { casei: true, .. } => {
|
||||
lits.cut();
|
||||
}
|
||||
LiteralBytes { ref bytes, casei: false } => {
|
||||
lits.cross_add(bytes);
|
||||
}
|
||||
LiteralBytes { casei: true, .. } => {
|
||||
lits.cut();
|
||||
}
|
||||
Class(_) => {
|
||||
lits.cut();
|
||||
}
|
||||
ClassBytes(_) => {
|
||||
lits.cut();
|
||||
}
|
||||
Group { ref e, .. } => {
|
||||
union_required(&**e, lits);
|
||||
}
|
||||
Repeat { r: Repeater::ZeroOrOne, .. } => lits.cut(),
|
||||
Repeat { r: Repeater::ZeroOrMore, .. } => lits.cut(),
|
||||
Repeat { ref e, r: Repeater::OneOrMore, .. } => {
|
||||
union_required(&**e, lits);
|
||||
lits.cut();
|
||||
}
|
||||
Repeat { ref e, r: Repeater::Range { min, max }, greedy } => {
|
||||
repeat_range_literals(
|
||||
&**e, min, max, greedy, lits, union_required);
|
||||
}
|
||||
Concat(ref es) if es.is_empty() => {}
|
||||
Concat(ref es) if es.len() == 1 => union_required(&es[0], lits),
|
||||
Concat(ref es) => {
|
||||
for e in es {
|
||||
let mut lits2 = lits.to_empty();
|
||||
union_required(e, &mut lits2);
|
||||
if lits2.is_empty() {
|
||||
lits.cut();
|
||||
continue;
|
||||
}
|
||||
if lits2.contains_empty() {
|
||||
lits.cut();
|
||||
}
|
||||
// if !lits.union(lits2) {
|
||||
if !lits.cross_product(&lits2) {
|
||||
// If this expression couldn't yield any literal that
|
||||
// could be extended, then we need to quit. Since we're
|
||||
// short-circuiting, we also need to freeze every member.
|
||||
lits.cut();
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
Alternate(ref es) => {
|
||||
alternate_literals(es, lits, union_required);
|
||||
}
|
||||
_ => lits.cut(),
|
||||
}
|
||||
}
|
||||
|
||||
fn repeat_range_literals<F: FnMut(&Expr, &mut Literals)>(
|
||||
e: &Expr,
|
||||
min: u32,
|
||||
max: Option<u32>,
|
||||
_greedy: bool,
|
||||
lits: &mut Literals,
|
||||
mut f: F,
|
||||
) {
|
||||
use syntax::Expr::*;
|
||||
|
||||
if min == 0 {
|
||||
// This is a bit conservative. If `max` is set, then we could
|
||||
// treat this as a finite set of alternations. For now, we
|
||||
// just treat it as `e*`.
|
||||
lits.cut();
|
||||
} else {
|
||||
let n = cmp::min(lits.limit_size(), min as usize);
|
||||
let es = iter::repeat(e.clone()).take(n).collect();
|
||||
f(&Concat(es), lits);
|
||||
if n < min as usize {
|
||||
lits.cut();
|
||||
}
|
||||
if max.map_or(true, |max| min < max) {
|
||||
lits.cut();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn alternate_literals<F: FnMut(&Expr, &mut Literals)>(
|
||||
es: &[Expr],
|
||||
lits: &mut Literals,
|
||||
mut f: F,
|
||||
) {
|
||||
let mut lits2 = lits.to_empty();
|
||||
for e in es {
|
||||
let mut lits3 = lits.to_empty();
|
||||
lits3.set_limit_size(lits.limit_size() / 5);
|
||||
f(e, &mut lits3);
|
||||
if lits3.is_empty() || !lits2.union(lits3) {
|
||||
// If we couldn't find suffixes for *any* of the
|
||||
// alternates, then the entire alternation has to be thrown
|
||||
// away and any existing members must be frozen. Similarly,
|
||||
// if the union couldn't complete, stop and freeze.
|
||||
lits.cut();
|
||||
return;
|
||||
}
|
||||
}
|
||||
// All we do at the moment is look for prefixes and suffixes. If both
|
||||
// are empty, then we report nothing. We should be able to do better than
|
||||
// this, but we'll need something more expressive than just a "set of
|
||||
// literals."
|
||||
let lcp = lits2.longest_common_prefix();
|
||||
let lcs = lits2.longest_common_suffix();
|
||||
if !lcp.is_empty() {
|
||||
lits.cross_add(lcp);
|
||||
}
|
||||
lits.cut();
|
||||
if !lcs.is_empty() {
|
||||
lits.add(Lit::empty());
|
||||
lits.add(Lit::new(lcs.to_vec()));
|
||||
}
|
||||
}
|
||||
|
||||
/// Converts an arbitrary sequence of bytes to a literal suitable for building
|
||||
/// a regular expression.
|
||||
fn bytes_to_regex(bs: &[u8]) -> String {
|
||||
let mut s = String::with_capacity(bs.len());
|
||||
for &b in bs {
|
||||
s.push_str(&format!("\\x{:02x}", b));
|
||||
}
|
||||
s
|
||||
}
|
65
grep/src/nonl.rs
Normal file
65
grep/src/nonl.rs
Normal file
@ -0,0 +1,65 @@
|
||||
use syntax::Expr;
|
||||
|
||||
use {Error, Result};
|
||||
|
||||
/// Returns a new expression that is guaranteed to never match the given
|
||||
/// ASCII character.
|
||||
///
|
||||
/// If the expression contains the literal byte, then an error is returned.
|
||||
///
|
||||
/// If `byte` is not an ASCII character (i.e., greater than `0x7F`), then this
|
||||
/// function panics.
|
||||
pub fn remove(expr: Expr, byte: u8) -> Result<Expr> {
|
||||
use syntax::Expr::*;
|
||||
assert!(byte <= 0x7F);
|
||||
let chr = byte as char;
|
||||
assert!(chr.len_utf8() == 1);
|
||||
|
||||
Ok(match expr {
|
||||
Literal { chars, casei } => {
|
||||
if chars.iter().position(|&c| c == chr).is_some() {
|
||||
return Err(Error::LiteralNotAllowed(chr));
|
||||
}
|
||||
Literal { chars: chars, casei: casei }
|
||||
}
|
||||
LiteralBytes { bytes, casei } => {
|
||||
if bytes.iter().position(|&b| b == byte).is_some() {
|
||||
return Err(Error::LiteralNotAllowed(chr));
|
||||
}
|
||||
LiteralBytes { bytes: bytes, casei: casei }
|
||||
}
|
||||
AnyChar => AnyCharNoNL,
|
||||
AnyByte => AnyByteNoNL,
|
||||
Class(mut cls) => {
|
||||
cls.remove(chr);
|
||||
Class(cls)
|
||||
}
|
||||
ClassBytes(mut cls) => {
|
||||
cls.remove(byte);
|
||||
ClassBytes(cls)
|
||||
}
|
||||
Group { e, i, name } => {
|
||||
Group {
|
||||
e: Box::new(try!(remove(*e, byte))),
|
||||
i: i,
|
||||
name: name,
|
||||
}
|
||||
}
|
||||
Repeat { e, r, greedy } => {
|
||||
Repeat {
|
||||
e: Box::new(try!(remove(*e, byte))),
|
||||
r: r,
|
||||
greedy: greedy,
|
||||
}
|
||||
}
|
||||
Concat(exprs) => {
|
||||
Concat(try!(
|
||||
exprs.into_iter().map(|e| remove(e, byte)).collect()))
|
||||
}
|
||||
Alternate(exprs) => {
|
||||
Alternate(try!(
|
||||
exprs.into_iter().map(|e| remove(e, byte)).collect()))
|
||||
}
|
||||
e => e,
|
||||
})
|
||||
}
|
307
grep/src/search.rs
Normal file
307
grep/src/search.rs
Normal file
@ -0,0 +1,307 @@
|
||||
use std::io;
|
||||
|
||||
use memchr::{memchr, memrchr};
|
||||
use regex::bytes::{Regex, RegexBuilder};
|
||||
use syntax;
|
||||
|
||||
use literals::LiteralSets;
|
||||
use nonl;
|
||||
use Result;
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct Grep {
|
||||
re: Regex,
|
||||
required: Option<Regex>,
|
||||
opts: Options,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
pub struct GrepBuilder {
|
||||
pattern: String,
|
||||
opts: Options,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug)]
|
||||
struct Options {
|
||||
case_insensitive: bool,
|
||||
lines: bool,
|
||||
locations: bool,
|
||||
line_terminator: u8,
|
||||
size_limit: usize,
|
||||
dfa_size_limit: usize,
|
||||
}
|
||||
|
||||
impl Default for Options {
|
||||
fn default() -> Options {
|
||||
Options {
|
||||
case_insensitive: false,
|
||||
lines: false,
|
||||
locations: false,
|
||||
line_terminator: b'\n',
|
||||
size_limit: 10 * (1 << 20),
|
||||
dfa_size_limit: 10 * (1 << 20),
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl GrepBuilder {
|
||||
/// Create a new builder for line searching.
|
||||
///
|
||||
/// The pattern given should be a regular expression. The precise syntax
|
||||
/// supported is documented on the regex crate.
|
||||
pub fn new(pattern: &str) -> GrepBuilder {
|
||||
GrepBuilder {
|
||||
pattern: pattern.to_string(),
|
||||
opts: Options::default(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Sets whether line numbers are reported for each match.
|
||||
///
|
||||
/// When enabled (disabled by default), every matching line is tagged with
|
||||
/// its corresponding line number accoring to the line terminator that is
|
||||
/// set. Note that this requires extra processing which can slow down
|
||||
/// search.
|
||||
pub fn line_numbers(mut self, yes: bool) -> GrepBuilder {
|
||||
self.opts.lines = yes;
|
||||
self
|
||||
}
|
||||
|
||||
/// Set whether precise match locations are reported for each matching
|
||||
/// line.
|
||||
///
|
||||
/// When enabled (disabled by default), every match of the regex on each
|
||||
/// matchling line is reported via byte offsets. Note that this requires
|
||||
/// extra processing which can slow down search.
|
||||
pub fn locations(mut self, yes: bool) -> GrepBuilder {
|
||||
self.opts.locations = yes;
|
||||
self
|
||||
}
|
||||
|
||||
/// Set the line terminator.
|
||||
///
|
||||
/// The line terminator can be any ASCII character and serves to delineate
|
||||
/// the match boundaries in the text searched.
|
||||
///
|
||||
/// This panics if `ascii_byte` is greater than `0x7F` (i.e., not ASCII).
|
||||
pub fn line_terminator(mut self, ascii_byte: u8) -> GrepBuilder {
|
||||
assert!(ascii_byte <= 0x7F);
|
||||
self.opts.line_terminator = ascii_byte;
|
||||
self
|
||||
}
|
||||
|
||||
/// Set the case sensitive flag (`i`) on the regex.
|
||||
pub fn case_insensitive(mut self, yes: bool) -> GrepBuilder {
|
||||
self.opts.case_insensitive = yes;
|
||||
self
|
||||
}
|
||||
|
||||
/// Set the approximate size limit of the compiled regular expression.
|
||||
///
|
||||
/// This roughly corresponds to the number of bytes occupied by a
|
||||
/// single compiled program. If the program exceeds this number, then a
|
||||
/// compilation error is returned.
|
||||
pub fn size_limit(mut self, limit: usize) -> GrepBuilder {
|
||||
self.opts.size_limit = limit;
|
||||
self
|
||||
}
|
||||
|
||||
/// Set the approximate size of the cache used by the DFA.
|
||||
///
|
||||
/// This roughly corresponds to the number of bytes that the DFA will use
|
||||
/// while searching.
|
||||
///
|
||||
/// Note that this is a per thread limit. There is no way to set a global
|
||||
/// limit. In particular, if a regex is used from multiple threads
|
||||
/// simulanteously, then each thread may use up to the number of bytes
|
||||
/// specified here.
|
||||
pub fn dfa_size_limit(mut self, limit: usize) -> GrepBuilder {
|
||||
self.opts.dfa_size_limit = limit;
|
||||
self
|
||||
}
|
||||
|
||||
/// Create a line searcher.
|
||||
///
|
||||
/// If there was a problem parsing or compiling the regex with the given
|
||||
/// options, then an error is returned.
|
||||
pub fn create(self) -> Result<Grep> {
|
||||
let expr = try!(self.parse());
|
||||
let literals = LiteralSets::create(&expr);
|
||||
let re = try!(
|
||||
RegexBuilder::new(&expr.to_string())
|
||||
.case_insensitive(self.opts.case_insensitive)
|
||||
.multi_line(true)
|
||||
.unicode(true)
|
||||
.size_limit(self.opts.size_limit)
|
||||
.dfa_size_limit(self.opts.dfa_size_limit)
|
||||
.compile()
|
||||
);
|
||||
Ok(Grep {
|
||||
re: re,
|
||||
required: literals.to_regex(),
|
||||
opts: self.opts,
|
||||
})
|
||||
}
|
||||
|
||||
/// Parses the underlying pattern and ensures the pattern can never match
|
||||
/// the line terminator.
|
||||
fn parse(&self) -> Result<syntax::Expr> {
|
||||
let expr =
|
||||
try!(syntax::ExprBuilder::new()
|
||||
.allow_bytes(true)
|
||||
.unicode(true)
|
||||
.parse(&self.pattern));
|
||||
Ok(try!(nonl::remove(expr, self.opts.line_terminator)))
|
||||
}
|
||||
}
|
||||
|
||||
impl Grep {
|
||||
pub fn iter<'b, 's>(&'s self, buf: &'b [u8]) -> Iter<'b, 's> {
|
||||
Iter {
|
||||
searcher: self,
|
||||
buf: buf,
|
||||
start: 0,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn read_match(
|
||||
&self,
|
||||
mat: &mut Match,
|
||||
buf: &[u8],
|
||||
mut start: usize,
|
||||
) -> bool {
|
||||
if start >= buf.len() {
|
||||
return false;
|
||||
}
|
||||
if let Some(ref req) = self.required {
|
||||
while start < buf.len() {
|
||||
let e = match req.shortest_match(&buf[start..]) {
|
||||
None => return false,
|
||||
Some(e) => start + e,
|
||||
};
|
||||
let (prevnl, nextnl) = self.find_line(buf, e, e);
|
||||
match self.re.shortest_match(&buf[prevnl..nextnl]) {
|
||||
None => {
|
||||
start = nextnl + 1;
|
||||
continue;
|
||||
}
|
||||
Some(_) => {
|
||||
self.fill_match(mat, prevnl, nextnl);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
false
|
||||
} else {
|
||||
let e = match self.re.shortest_match(&buf[start..]) {
|
||||
None => return false,
|
||||
Some(e) => start + e,
|
||||
};
|
||||
let (s, e) = self.find_line(buf, e, e);
|
||||
self.fill_match(mat, s, e);
|
||||
true
|
||||
}
|
||||
}
|
||||
|
||||
fn fill_match(&self, mat: &mut Match, start: usize, end: usize) {
|
||||
mat.start = start;
|
||||
mat.end = end;
|
||||
}
|
||||
|
||||
fn find_line(&self, buf: &[u8], s: usize, e: usize) -> (usize, usize) {
|
||||
(self.find_line_start(buf, s), self.find_line_end(buf, e))
|
||||
}
|
||||
|
||||
fn find_line_start(&self, buf: &[u8], pos: usize) -> usize {
|
||||
memrchr(self.opts.line_terminator, &buf[0..pos]).map_or(0, |i| i + 1)
|
||||
}
|
||||
|
||||
fn find_line_end(&self, buf: &[u8], pos: usize) -> usize {
|
||||
memchr(self.opts.line_terminator, &buf[pos..])
|
||||
.map_or(buf.len(), |i| pos + i)
|
||||
}
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Default, Eq, PartialEq)]
|
||||
pub struct Match {
|
||||
start: usize,
|
||||
end: usize,
|
||||
line: Option<usize>,
|
||||
locations: Vec<(usize, usize)>,
|
||||
}
|
||||
|
||||
impl Match {
|
||||
pub fn new() -> Match {
|
||||
Match::default()
|
||||
}
|
||||
|
||||
/// Return the starting byte offset of the line that matched.
|
||||
#[inline]
|
||||
pub fn start(&self) -> usize {
|
||||
self.start
|
||||
}
|
||||
|
||||
/// Return the ending byte offset of the line that matched.
|
||||
#[inline]
|
||||
pub fn end(&self) -> usize {
|
||||
self.end
|
||||
}
|
||||
|
||||
/// Return the line number that this match corresponds to.
|
||||
///
|
||||
/// Note that this is `None` if line numbers aren't being computed. Line
|
||||
/// number tracking can be enabled using `GrepBuilder`.
|
||||
#[inline]
|
||||
pub fn line(&self) -> Option<usize> {
|
||||
self.line
|
||||
}
|
||||
|
||||
/// Return the exact start and end locations (in byte offsets) of every
|
||||
/// regex match in this line.
|
||||
///
|
||||
/// Note that this always returns an empty slice if exact locations aren't
|
||||
/// computed. Exact location tracking can be enabled using `GrepBuilder`.
|
||||
#[inline]
|
||||
pub fn locations(&self) -> &[(usize, usize)] {
|
||||
&self.locations
|
||||
}
|
||||
}
|
||||
|
||||
pub struct Iter<'b, 's> {
|
||||
searcher: &'s Grep,
|
||||
buf: &'b [u8],
|
||||
start: usize,
|
||||
}
|
||||
|
||||
impl<'b, 's> Iterator for Iter<'b, 's> {
|
||||
type Item = Match;
|
||||
|
||||
fn next(&mut self) -> Option<Match> {
|
||||
let mut mat = Match::default();
|
||||
if !self.searcher.read_match(&mut mat, self.buf, self.start) {
|
||||
self.start = self.buf.len();
|
||||
return None;
|
||||
}
|
||||
self.start = mat.end + 1;
|
||||
Some(mat)
|
||||
}
|
||||
}
|
||||
|
||||
pub struct GrepBuffered<'g, B> {
|
||||
grep: &'g Grep,
|
||||
buf: B,
|
||||
start: usize,
|
||||
}
|
||||
|
||||
impl<'g, B: BufRead> GrepBuffered {
|
||||
pub fn read_match(
|
||||
&self,
|
||||
mat: &mut Match,
|
||||
) -> io::Result<bool> {
|
||||
let buf = try!(self.buf.fill_buf());
|
||||
if buf.is_empty() {
|
||||
return Ok(false);
|
||||
}
|
||||
Ok(false)
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user