This was a subtle bug, but the big picture was that the smart case
information wasn't being carried through to the literal extraction in
some cases. When this happened, it was possible to get back an incomplete
set of literals, which would therefore miss some valid matches.
The fix to this is to actually parse the regex and determine whether
smart case applies before doing anything else. It's a little extra work,
but parsing is pretty fast.
Fixes#199
This was probably a transcription error when moving the ignore matcher
code out of ripgrep core. Specifically, the override glob matcher should
not ignore directories if they don't match.
Fixes#206
This PR introduces a new sub-crate, `ignore`, which primarily provides a
fast recursive directory iterator that respects ignore files like
gitignore and other configurable filtering rules based on globs or even
file types.
This results in a substantial source of complexity moved out of ripgrep's
core and into a reusable component that others can now (hopefully)
benefit from.
While much of the ignore code carried over from ripgrep's core, a
substantial portion of it was rewritten with the following goals in
mind:
1. Reuse matchers built from gitignore files across directory iteration.
2. Design the matcher data structure to be amenable for parallelizing
directory iteration. (Indeed, writing the parallel iterator is the
next step.)
Fixes#9, #44, #45
This particular bug was triggered whenever a search was run in a directory
with a parent directory that contains a relevant .gitignore file. In
particular, before matching against a parent directory's gitignore rules,
a path's leading `./` was not stripped, which results in errant matching.
We now make sure `./` is stripped.
Fixes#184.
The bug fix was in expression pretty printing. ripgrep parses the regex
into an AST and may do some modifications to it, which requires the
ability to go from string -> AST -> string' -> AST' where string == string'
implies AST == AST'.
Also, add a regression test for the specific regex that tripped the bug.
Fixes#156.
This commit completes the initial move of glob matching to an external
crate, including fixing up cross platform support, polishing the
external crate for others to use and fixing a number of bugs in the
process.
Fixes#87, #127, #131
This commit goes a long way toward refactoring glob sets so that the
code is easier to maintain going forward. In particular, it makes the
literal optimizations that glob sets used a lot more structured and much
easier to extend. Tests have also been modified to include glob sets.
There's still a bit of polish work left to do before a release.
This also fixes the immediate issue where large gitignore files were
causing ripgrep to slow way down. While we don't technically fix it for
good, we're a lot better about reducing the number of regexes we
compile. In particular, if a gitignore file contains thousands of
patterns that can't be matched more simply using literals, then ripgrep
will slow down again. We could fix this for good by avoiding RegexSet if
the number of regexes grows too large.
Fixes#134.
This was a result of misinterpreting a feature in grep where NUL bytes
are replaced with \n. The primary reason for doing this is to avoid
excessive memory usage on truly binary data. However, grep only does this
when searching binary files as if they were binary, and which only reports
whether the file matched or not. When grep is told to search binary data
as text (the -a/--text flag), then it doesn't do any replacement so we
shouldn't either.
In general, this makes sense, because the user is essentially asserting
that a particular file that looks like binary is actually text. In that
case, we shouldn't try to replace any NUL bytes.
ripgrep doesn't actually support searching binary data for whether it
matches or not, so we don't actually need the replace_buf function.
However, it does seem like a potentially useful feature.
If we do, this results in extracting `foofoofoo` from `(\wfoo){3}`,
which is wrong. This does prevent us from extracting `foofoofoo` from
`foo{3}`, which is unfortunate, but we miss plenty of other stuff too.
Literal extracting needs a good rethink (all the way down into the regex
engine).
Fixes#93
Closes#26.
Acts like --count but emits only the paths of files with matches,
suitable for piping to xargs. Both mmap and no-mmap searches terminate
after the first match is found. Documentation updated and tests added.
A standard glob of `foo/**` will match `foo`, but gitignore semantics
specify that `foo/**` should only match the contents of `foo` and not
`foo` itself. We capture those semantics by translating `foo/**` to
`foo/**/*`.
Fixes#30.
This is kind of a ticky-tack change. I do think ./ as a prefix is
reasonable default, *but* we strip ./ when showing search results, so it
does make sense to be consistent.
Fixes#21.
If a gitignore file in a *parent* directory is used, then it must be
matched relative to the directory it's in. ripgrep wasn't actually
adhering to this rule. Consider an example:
.gitignore
src
llvm
foo
Where `.gitignore` contains `/llvm/` and `foo` contains `test`. When
running `rg test` at the top-level directory, `foo` is correctly searched.
If you `cd` into `src` and re-run the same search, `foo` is ignored because
the `/llvm/` pattern is interpreted with respect to the current working
directory, which is wrong. The problem is that the path of `llvm` is
`./llvm`, which makes it look like it should match.
We fix this by rebuilding the directory path of each file when traversing
gitignores in parent directories. This does come with a small performance
hit.
Fixes#25.
We were erroneously neglecting to prefix a pattern like `foo/`
with `**/` (to make `**/foo/`) because it had a slash in it. In fact, the
only reason to neglect a **/ prefix is if the pattern already starts
with **/, or if the pattern is absolute.
Fixes#16, #49, #50, #65
I don't like having multiple flags do the same thing, but -u, -uu and -uuu
are much easier to remember, particularly with -uuu meaning "search
everything."
We do this by avoiding using a RegexSet (*sigh*). In particular, file
type matching has much simpler semantics than gitignore files, so we don't
actually need to care which file type matched. Therefore, we can get away
with a single regex with a giant alternation.