This was a subtle bug, but the big picture was that the smart case
information wasn't being carried through to the literal extraction in
some cases. When this happened, it was possible to get back an incomplete
set of literals, which would therefore miss some valid matches.
The fix to this is to actually parse the regex and determine whether
smart case applies before doing anything else. It's a little extra work,
but parsing is pretty fast.
Fixes#199
This PR introduces a new sub-crate, `ignore`, which primarily provides a
fast recursive directory iterator that respects ignore files like
gitignore and other configurable filtering rules based on globs or even
file types.
This results in a substantial source of complexity moved out of ripgrep's
core and into a reusable component that others can now (hopefully)
benefit from.
While much of the ignore code carried over from ripgrep's core, a
substantial portion of it was rewritten with the following goals in
mind:
1. Reuse matchers built from gitignore files across directory iteration.
2. Design the matcher data structure to be amenable for parallelizing
directory iteration. (Indeed, writing the parallel iterator is the
next step.)
Fixes#9, #44, #45
If we do, this results in extracting `foofoofoo` from `(\wfoo){3}`,
which is wrong. This does prevent us from extracting `foofoofoo` from
`foo{3}`, which is unfortunate, but we miss plenty of other stuff too.
Literal extracting needs a good rethink (all the way down into the regex
engine).
Fixes#93
The specific issue is that -w causes the regex to be wrapped in Unicode
word boundaries. Regrettably, Unicode word boundaries are the one thing
our regex engine can't handle well in the presence of non-ASCII text. We
work around its slowness by stripping word boundaries in some
circumstances, and using the resulting expression as a way to produce match
candidates that are then verified by the full original regex.
This doesn't fix all cases, but it should fix all cases where -w is used.
In particular, if we had an inner literal and were doing a case insensitive
search, then the literals are dropped because we previously only allowed
a single inner literal to have an effect. Now we allow alternations of
inner literals, but still don't quite take full advantage.
We really need functionality like this when memory maps aren't suitable,
either because they're too slow or because they just aren't available (like
for reading stdin). However, this particular approach was completely bunk.
Namely, the interface was all wrong. The caller needs to maintain some kind
of control over the search buffers for special output features (like
contexts or inverted matching), but this interface as written doesn't
support that kind of pattern at all.
So... back to the drawing board.