This feature causes nothing but problems and is frequently broken. The
only optimization it was enabling were SIMD optimizations for
transcoding. In particular, for UTF-16 transcoding. This is performed by
the [`encoding_rs`](https://github.com/hsivonen/encoding_rs) crate,
which specifically uses unstable portable SIMD APIs instead of the
stable non-portable SIMD APIs.
SIMD optimizations that apply to search have long been making use of
stable APIs, and are automatically enabled when your target supports
them. This is, IMO, the correct user experience and one that
`encoding_rs` refuses to support. I'm done dealing with it, so
transcoding will only use scalar code until the SIMD optimizations in
`encoding_rs` work on stable. (This doesn't mean that `encoding_rs` has
to change. This could also be fixed by stabilizing `std::simd`.)
Fixes#2748
The idea is to build ripgrep with as much optimization as possible.
This makes compilation times absolutely obscene. They jump from <10
seconds to 30+ seconds on my i9-12900K. I don't even want to know how
long CI would take with these.
I tried some ad hoc benchmarks and could not notice any meaningful
improvement with the LTO binary versus the normal release profile.
Because of that, I still don't think it's worth bloating the release
cycle times.
Ref #1225
Previously, we were running 'cargo deb' locally. But the release process
is a little simpler now thanks to GitHub Actions and the 'gh' tool, so I
felt comfortable putting the 'deb' generation in CI.
Now the only real manual part of release asset creation is the M2
release, but that should hopefully be automated once GitHub makes Apple
silicon runners available for free.
ripgrep began it's life with docopt for argument parsing. Then it moved
to Clap and stayed there for a number of years. Clap has served ripgrep
well, and it probably could continue to serve ripgrep well, but I ended
up deciding to move off of it.
Why?
The first time I had the thought of moving off of Clap was during the
2->3->4 transition. I thought the 3.x and 4.x releases were great, but
for me, it ended up moving a little too quickly. Since the release of
4.x was telegraphed around when 3.x came out, I decided to just hold off
and wait to migrate to 4.x instead of doing a 3.x migration followed
shortly by another 4.x migration. Of course, I just never ended up doing
the migration at all. I never got around to it and there just wasn't a
compelling reason for me to upgrade. While I never investigated it, I
saw an upgrade as a non-trivial amount of work in part because I didn't
encapsulate the usage of Clap enough.
The above is just what got me started thinking about it. It wasn't
enough to get me to move off of it on its own. What ended up pushing me
over the edge was a combination of factors:
* As mentioned above, I didn't want to run on the migration treadmill.
This has proven to not be much of an issue, but at the time of the
2->3->4 releases, I didn't know how long Clap 4.x would be out before a
5.x would come out.
* The release of lexopt[1] caught my eye. IMO, that crate demonstrates
exactly how something new can arrive on the scene and just thoroughly
solve a problem minimalistically. It has the docs, the reasoning, the
simple API, the tests and good judgment. It gets all the weird corner
cases right that Clap also gets right (and is part of why I was
originally attracted to Clap).
* I have an overall desire to reduce the size of my dependency tree. In
part because a smaller dependency tree tends to correlate with better
compile times, but also in part because it reduces my reliance and trust
on others. It lets me be the "master" of ripgrep's destiny by reducing
the amount of behavior that is the result of someone else's decision
(whether good or bad).
* I perceived that Clap solves a more general problem than what I
actually need solved. Despite the vast number of flags that ripgrep has,
its requirements are actually pretty simple. We just need simple
switches and flags that support one value. No multi-value flags. No
sub-commands. And probably a lot of other functionality that Clap has
that makes it so flexible for so many different use cases. (I'm being
hand wavy on the last point.)
With all that said, perhaps most importantly, the future of ripgrep
possibly demands a more flexible CLI argument parser. In today's world,
I would really like, for example, flags like `--type` and `--type-not`
to be able to accumulate their repeated values into a single sequence
while respecting the order they appear on the CLI. For example, prior
to this migration, `rg regex-automata -Tlock -ttoml` would not return
results in `Cargo.lock` in this repository because the `-Tlock` always
took priority even though `-ttoml` appeared after it. But with this
migration, `-ttoml` now correctly overrides `-Tlock`. We would like to
do similar things for `-g/--glob` and `--iglob` and potentially even
now introduce a `-G/--glob-not` flag instead of requiring users to use
`!` to negate a glob. (Which I had done originally to work-around this
problem.) And some day, I'd like to add some kind of boolean matching to
ripgrep perhaps similar to how `git grep` does it. (Although I haven't
thought too carefully on a design yet.) In order to do that, I perceive
it would be difficult to implement correctly in Clap.
I believe that this last point is possible to implement correctly in
Clap 2.x, although it is awkward to do so. I have not looked closely
enough at the Clap 4.x API to know whether it's still possible there. In
any case, these were enough reasons to move off of Clap and own more of
the argument parsing process myself.
This did require a few things:
* I had to write my own logic for how arguments are combined into one
single state object. Of course, I wanted this. This was part of the
upside. But it's still code I didn't have to write for Clap.
* I had to write my own shell completion generator.
* I had to write my own `-h/--help` output generator.
* I also had to write my own man page generator. Well, I had to do this
with Clap 2.x too, although my understanding is that Clap 4.x supports
this. With that said, without having tried it, my guess is that I
probably wouldn't have liked the output it generated because I
ultimately had to write most of the roff by hand myself to get the man
page I wanted. (This also had the benefit of dropping the build
dependency on asciidoc/asciidoctor.)
While this is definitely a fair bit of extra work, it overall only cost
me a couple days. IMO, that's a good trade off given that this code is
unlikely to change again in any substantial way. And it should also
allow for more flexible semantics going forward.
Fixes#884, Fixes#1648, Fixes#1701, Fixes#1814, Fixes#1966
[1]: https://docs.rs/lexopt/0.3.0/lexopt/index.html
This commit adds `anyhow` as a dependency and switches over to it from
Box<dyn Error>.
It actually looks like I've kept all of my errors rather shallow, such
that we don't get a huge benefit from anyhow at present. But now that
anyhow is in use, I expect to use its "context" feature more going
forward.
Previously, ripgrep core was responsible for escaping regex patterns and
implementing the --line-regexp flag. This commit moves that
responsibility down into the matchers such that ripgrep just needs to
hand the patterns it gets off to the matcher builder. The builder will
then take care of escaping and all that.
This was done to make pattern construction completely owned by the
matcher builders. With the arrival regex-automata, this means we can
move to the HIR very quickly and then never move back to the concrete
syntax. We can then build our regex directly from the HIR. This overall
can save quite a bit of time, especially when searching for large
dictionaries.
We still aren't quite as fast as GNU grep when searching something on
the scale of /usr/share/dict/words, but we are basically within spitting
distance. Prior to this, we were about an order of magnitude slower.
This architecture in particular lets us write a pretty simple fast path
that avoids AST parsing and HIR translation entirely: the case where one
is just searching for a literal. In that case, we can hand construct the
HIR directly.
This leaves the grep-regex crate in tatters. Pretty much the entire
thing needs to be re-worked. The upshot is that it should result in some
big simplifications. I hope.
The idea here is to drop down and actually use regex-automata 0.3
instead of the regex crate itself.
... and don't replace them with anything because crates.io does not
support GitHub Actions yet. But it's almost there:
https://github.com/rust-lang/crates.io/pull/1838
Thanks @atouchet for noticing this.
The transient failures appear to be persisting and they are quite
difficult to debug. So include a full directory listing in the output of
every test failure.