Previously, ripgrep core was responsible for escaping regex patterns and
implementing the --line-regexp flag. This commit moves that
responsibility down into the matchers such that ripgrep just needs to
hand the patterns it gets off to the matcher builder. The builder will
then take care of escaping and all that.
This was done to make pattern construction completely owned by the
matcher builders. With the arrival regex-automata, this means we can
move to the HIR very quickly and then never move back to the concrete
syntax. We can then build our regex directly from the HIR. This overall
can save quite a bit of time, especially when searching for large
dictionaries.
We still aren't quite as fast as GNU grep when searching something on
the scale of /usr/share/dict/words, but we are basically within spitting
distance. Prior to this, we were about an order of magnitude slower.
This architecture in particular lets us write a pretty simple fast path
that avoids AST parsing and HIR translation entirely: the case where one
is just searching for a literal. In that case, we can hand construct the
HIR directly.
0.2.4 updates to PCRE2 10.42 and has a few other nice changes. For
example, when `utf` is enabled, the crate will always set the
PCRE2_MATCH_INVALID_UTF option. That means we no longer need to do
transcoding or UTF-8 validity checks.
Because of this, we actually get to remove one of the two uses of
`unsafe` in ripgrep's `main` program.
(This also updates a couple other dependencies for convenience.)
This leaves the grep-regex crate in tatters. Pretty much the entire
thing needs to be re-worked. The upshot is that it should result in some
big simplifications. I hope.
The idea here is to drop down and actually use regex-automata 0.3
instead of the regex crate itself.
It turns out that the vimgrep format really only wants one line per
match, even when that match spans multiple lines.
We continue to support the previous behavior (print all lines in a
match) in the `grep-printer` crate. We add a new option to enable the
"only print the first line" behavior, and unconditionally enable it in
ripgrep. We can do that because the option has no effect in single-line
mode, since, well, in that case matches are guaranteed to span one line
anyway.
Fixes#1866
These flags permit configuring the bytes used to delimit fields in match
or context lines, where "fields" are things like the file path, line
number, column number and the match/context itself.
Fixes#1842, Closes#1871
This was once part of ripgrep, but at some point, was unintentionally
removed. The value of this warning is that since ripgrep tries to be
"smart" by default, it can be surprising if it doesn't search certain
things. This warning covers the case when ripgrep searches *nothing*,
which happens somewhat more frequently than you might expect. e.g., If
you're searching within an ignore directory.
Note that for now, we only print this message when the user has not
supplied any explicit paths. It's not clear that we want to print this
otherwise, and in particular, it seems that the message shows up too
eagerly. e.g., 'rg foo does-not-exist' will both print an error about
'does-not-exist' not existing, *and* the message about no files being
searched, which seems annoying in this case. We can always refine this
logic later.
Fixes#1404, Closes#1762
This fixes a bug only present on Windows that would permit someone to
execute an arbitrary program if they crafted an appropriate directory
tree. Namely, if someone put an executable named 'xz.exe' in the root of
a directory tree and one ran 'rg -z foo' from the root of that tree,
then the 'xz.exe' executable in that tree would execute if there are any
'xz' files anywhere in the tree.
The root cause of this problem is that 'CreateProcess' on Windows will
implicitly look in the current working directory for an executable when
it is given a relative path to a program. Rust's standard library allows
this behavior to occur, so we work around it here. We work around it by
explicitly resolving programs like 'xz' via 'PATH'. That way, we only
ever pass an absolute path to 'CreateProcess', which avoids the implicit
behavior of checking the current working directory.
This fix doesn't apply to non-Windows systems as it is believed to only
impact Windows. In theory, the bug could apply on Unix if '.' is in
one's PATH, but at that point, you reap what you sow.
While the extent to which this is a security problem isn't clear, I
think users generally expect to be able to download or clone
repositories from the Internet and run ripgrep on them without fear of
anything too awful happening. Being able to execute an arbitrary program
probably violates that expectation. Therefore, CVE-2021-3013[1] was
created for this issue.
We apply the same logic to the --pre command, since the --pre command is
likely in a user's config file and it would be surprising for something
that the user is searching to modify which preprocessor command is used.
The --pre and -z/--search-zip flags are the only two ways that ripgrep
will invoke external programs, so this should cover any possible
exploitable cases of this bug.
[1] - https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-3013
The purpose of this flag is to force ripgrep to ignore all --ignore-file
flags (whether they come before or after --no-ignore-files).
This flag can be overridden with --ignore-files.
Fixes#1466
This permits switching between the different regex engine modes that
ripgrep supports. The purpose of this flag is to make it easier to
extend ripgrep with additional regex engines.
Closes#1488, Closes#1502
This is in preparation for adding a new --engine flag which is intended
to eventually supplant --auto-hybrid-regex.
While there are no immediate plans to add more regex engines to ripgrep,
this is intended to make it easier to maintain a patch to ripgrep with
an additional regex engine. See #1488 for more details.
The top-level listing was just getting a bit too long for my taste. So
put all of the code in one directory and shrink the large top-level mess
to a small top-level mess.
NOTE: This commit only contains renames. The subsequent commit will
actually make ripgrep build again. We do it this way with the naive hope
that this will make it easier for git history to track the renames.
Sigh.