1
0
mirror of https://github.com/BurntSushi/ripgrep.git synced 2024-12-12 19:18:24 +02:00
ripgrep/crates/core/main.rs
Andrew Gallant 286de9564e cli: rejigger --version to include PCRE2 info
This adds info about whether PCRE2 is available or not to the output of
--version. Essentially, --version now subsumes --pcre2-version, although
we do retain the former because it (usefully) emits an exit code based
on whether PCRE2 is available or not.

Closes #2645
2023-11-25 15:03:53 -05:00

484 lines
18 KiB
Rust

/*!
The main entry point into ripgrep.
*/
use std::{io::Write, process::ExitCode};
use ignore::WalkState;
use crate::flags::{HiArgs, SearchMode};
#[macro_use]
mod messages;
mod flags;
mod haystack;
mod logger;
mod search;
// Since Rust no longer uses jemalloc by default, ripgrep will, by default,
// use the system allocator. On Linux, this would normally be glibc's
// allocator, which is pretty good. In particular, ripgrep does not have a
// particularly allocation heavy workload, so there really isn't much
// difference (for ripgrep's purposes) between glibc's allocator and jemalloc.
//
// However, when ripgrep is built with musl, this means ripgrep will use musl's
// allocator, which appears to be substantially worse. (musl's goal is not to
// have the fastest version of everything. Its goal is to be small and amenable
// to static compilation.) Even though ripgrep isn't particularly allocation
// heavy, musl's allocator appears to slow down ripgrep quite a bit. Therefore,
// when building with musl, we use jemalloc.
//
// We don't unconditionally use jemalloc because it can be nice to use the
// system's default allocator by default. Moreover, jemalloc seems to increase
// compilation times by a bit.
//
// Moreover, we only do this on 64-bit systems since jemalloc doesn't support
// i686.
#[cfg(all(target_env = "musl", target_pointer_width = "64"))]
#[global_allocator]
static ALLOC: jemallocator::Jemalloc = jemallocator::Jemalloc;
/// Then, as it was, then again it will be.
fn main() -> ExitCode {
match run(flags::parse()) {
Ok(code) => code,
Err(err) => {
// Look for a broken pipe error. In this case, we generally want
// to exit "gracefully" with a success exit code. This matches
// existing Unix convention. We need to handle this explicitly
// since the Rust runtime doesn't ask for PIPE signals, and thus
// we get an I/O error instead. Traditional C Unix applications
// quit by getting a PIPE signal that they don't handle, and thus
// the unhandled signal causes the process to unceremoniously
// terminate.
for cause in err.chain() {
if let Some(ioerr) = cause.downcast_ref::<std::io::Error>() {
if ioerr.kind() == std::io::ErrorKind::BrokenPipe {
return ExitCode::from(0);
}
}
}
eprintln_locked!("{:#}", err);
ExitCode::from(2)
}
}
}
/// The main entry point for ripgrep.
///
/// The given parse result determines ripgrep's behavior. The parse
/// result should be the result of parsing CLI arguments in a low level
/// representation, and then followed by an attempt to convert them into a
/// higher level representation. The higher level representation has some nicer
/// abstractions, for example, instead of representing the `-g/--glob` flag
/// as a `Vec<String>` (as in the low level representation), the globs are
/// converted into a single matcher.
fn run(result: crate::flags::ParseResult<HiArgs>) -> anyhow::Result<ExitCode> {
use crate::flags::{Mode, ParseResult};
let args = match result {
ParseResult::Err(err) => return Err(err),
ParseResult::Special(mode) => return special(mode),
ParseResult::Ok(args) => args,
};
let matched = match args.mode() {
Mode::Search(_) if !args.matches_possible() => false,
Mode::Search(mode) if args.threads() == 1 => search(&args, mode)?,
Mode::Search(mode) => search_parallel(&args, mode)?,
Mode::Files if args.threads() == 1 => files(&args)?,
Mode::Files => files_parallel(&args)?,
Mode::Types => return types(&args),
Mode::Generate(mode) => return generate(mode),
};
Ok(if matched && (args.quiet() || !messages::errored()) {
ExitCode::from(0)
} else if messages::errored() {
ExitCode::from(2)
} else {
ExitCode::from(1)
})
}
/// The top-level entry point for single-threaded search.
///
/// This recursively steps through the file list (current directory by default)
/// and searches each file sequentially.
fn search(args: &HiArgs, mode: SearchMode) -> anyhow::Result<bool> {
let started_at = std::time::Instant::now();
let haystack_builder = args.haystack_builder();
let unsorted = args
.walk_builder()?
.build()
.filter_map(|result| haystack_builder.build_from_result(result));
let haystacks = args.sort(unsorted);
let mut matched = false;
let mut searched = false;
let mut stats = args.stats();
let mut searcher = args.search_worker(
args.matcher()?,
args.searcher()?,
args.printer(mode, args.stdout()),
)?;
for haystack in haystacks {
searched = true;
let search_result = match searcher.search(&haystack) {
Ok(search_result) => search_result,
// A broken pipe means graceful termination.
Err(err) if err.kind() == std::io::ErrorKind::BrokenPipe => break,
Err(err) => {
err_message!("{}: {}", haystack.path().display(), err);
continue;
}
};
matched = matched || search_result.has_match();
if let Some(ref mut stats) = stats {
*stats += search_result.stats().unwrap();
}
if matched && args.quit_after_match() {
break;
}
}
if args.has_implicit_path() && !searched {
eprint_nothing_searched();
}
if let Some(ref stats) = stats {
let wtr = searcher.printer().get_mut();
let _ = print_stats(mode, stats, started_at, wtr);
}
Ok(matched)
}
/// The top-level entry point for multi-threaded search.
///
/// The parallelism is itself achieved by the recursive directory traversal.
/// All we need to do is feed it a worker for performing a search on each file.
///
/// Requesting a sorted output from ripgrep (such as with `--sort path`) will
/// automatically disable parallelism and hence sorting is not handled here.
fn search_parallel(args: &HiArgs, mode: SearchMode) -> anyhow::Result<bool> {
use std::sync::atomic::{AtomicBool, Ordering};
let started_at = std::time::Instant::now();
let haystack_builder = args.haystack_builder();
let bufwtr = args.buffer_writer();
let stats = args.stats().map(std::sync::Mutex::new);
let matched = AtomicBool::new(false);
let searched = AtomicBool::new(false);
let mut searcher = args.search_worker(
args.matcher()?,
args.searcher()?,
args.printer(mode, bufwtr.buffer()),
)?;
args.walk_builder()?.build_parallel().run(|| {
let bufwtr = &bufwtr;
let stats = &stats;
let matched = &matched;
let searched = &searched;
let haystack_builder = &haystack_builder;
let mut searcher = searcher.clone();
Box::new(move |result| {
let haystack = match haystack_builder.build_from_result(result) {
Some(haystack) => haystack,
None => return WalkState::Continue,
};
searched.store(true, Ordering::SeqCst);
searcher.printer().get_mut().clear();
let search_result = match searcher.search(&haystack) {
Ok(search_result) => search_result,
Err(err) => {
err_message!("{}: {}", haystack.path().display(), err);
return WalkState::Continue;
}
};
if search_result.has_match() {
matched.store(true, Ordering::SeqCst);
}
if let Some(ref locked_stats) = *stats {
let mut stats = locked_stats.lock().unwrap();
*stats += search_result.stats().unwrap();
}
if let Err(err) = bufwtr.print(searcher.printer().get_mut()) {
// A broken pipe means graceful termination.
if err.kind() == std::io::ErrorKind::BrokenPipe {
return WalkState::Quit;
}
// Otherwise, we continue on our merry way.
err_message!("{}: {}", haystack.path().display(), err);
}
if matched.load(Ordering::SeqCst) && args.quit_after_match() {
WalkState::Quit
} else {
WalkState::Continue
}
})
});
if args.has_implicit_path() && !searched.load(Ordering::SeqCst) {
eprint_nothing_searched();
}
if let Some(ref locked_stats) = stats {
let stats = locked_stats.lock().unwrap();
let mut wtr = searcher.printer().get_mut();
let _ = print_stats(mode, &stats, started_at, &mut wtr);
let _ = bufwtr.print(&mut wtr);
}
Ok(matched.load(Ordering::SeqCst))
}
/// The top-level entry point for file listing without searching.
///
/// This recursively steps through the file list (current directory by default)
/// and prints each path sequentially using a single thread.
fn files(args: &HiArgs) -> anyhow::Result<bool> {
let haystack_builder = args.haystack_builder();
let unsorted = args
.walk_builder()?
.build()
.filter_map(|result| haystack_builder.build_from_result(result));
let haystacks = args.sort(unsorted);
let mut matched = false;
let mut path_printer = args.path_printer_builder().build(args.stdout());
for haystack in haystacks {
matched = true;
if args.quit_after_match() {
break;
}
if let Err(err) = path_printer.write(haystack.path()) {
// A broken pipe means graceful termination.
if err.kind() == std::io::ErrorKind::BrokenPipe {
break;
}
// Otherwise, we have some other error that's preventing us from
// writing to stdout, so we should bubble it up.
return Err(err.into());
}
}
Ok(matched)
}
/// The top-level entry point for multi-threaded file listing without
/// searching.
///
/// This recursively steps through the file list (current directory by default)
/// and prints each path sequentially using multiple threads.
///
/// Requesting a sorted output from ripgrep (such as with `--sort path`) will
/// automatically disable parallelism and hence sorting is not handled here.
fn files_parallel(args: &HiArgs) -> anyhow::Result<bool> {
use std::{
sync::{
atomic::{AtomicBool, Ordering},
mpsc,
},
thread,
};
let haystack_builder = args.haystack_builder();
let mut path_printer = args.path_printer_builder().build(args.stdout());
let matched = AtomicBool::new(false);
let (tx, rx) = mpsc::channel::<crate::haystack::Haystack>();
// We spawn a single printing thread to make sure we don't tear writes.
// We use a channel here under the presumption that it's probably faster
// than using a mutex in the worker threads below, but this has never been
// seriously litigated.
let print_thread = thread::spawn(move || -> std::io::Result<()> {
for haystack in rx.iter() {
path_printer.write(haystack.path())?;
}
Ok(())
});
args.walk_builder()?.build_parallel().run(|| {
let haystack_builder = &haystack_builder;
let matched = &matched;
let tx = tx.clone();
Box::new(move |result| {
let haystack = match haystack_builder.build_from_result(result) {
Some(haystack) => haystack,
None => return WalkState::Continue,
};
matched.store(true, Ordering::SeqCst);
if args.quit_after_match() {
WalkState::Quit
} else {
match tx.send(haystack) {
Ok(_) => WalkState::Continue,
Err(_) => WalkState::Quit,
}
}
})
});
drop(tx);
if let Err(err) = print_thread.join().unwrap() {
// A broken pipe means graceful termination, so fall through.
// Otherwise, something bad happened while writing to stdout, so bubble
// it up.
if err.kind() != std::io::ErrorKind::BrokenPipe {
return Err(err.into());
}
}
Ok(matched.load(Ordering::SeqCst))
}
/// The top-level entry point for `--type-list`.
fn types(args: &HiArgs) -> anyhow::Result<ExitCode> {
let mut count = 0;
let mut stdout = args.stdout();
for def in args.types().definitions() {
count += 1;
stdout.write_all(def.name().as_bytes())?;
stdout.write_all(b": ")?;
let mut first = true;
for glob in def.globs() {
if !first {
stdout.write_all(b", ")?;
}
stdout.write_all(glob.as_bytes())?;
first = false;
}
stdout.write_all(b"\n")?;
}
Ok(ExitCode::from(if count == 0 { 1 } else { 0 }))
}
/// Implements ripgrep's "generate" modes.
///
/// These modes correspond to generating some kind of ancillary data related
/// to ripgrep. At present, this includes ripgrep's man page (in roff format)
/// and supported shell completions.
fn generate(mode: crate::flags::GenerateMode) -> anyhow::Result<ExitCode> {
use crate::flags::GenerateMode;
let output = match mode {
GenerateMode::Man => flags::generate_man_page(),
GenerateMode::CompleteBash => flags::generate_complete_bash(),
GenerateMode::CompleteZsh => flags::generate_complete_zsh(),
GenerateMode::CompleteFish => flags::generate_complete_fish(),
GenerateMode::CompletePowerShell => {
flags::generate_complete_powershell()
}
};
writeln!(std::io::stdout(), "{}", output.trim_end())?;
Ok(ExitCode::from(0))
}
/// Implements ripgrep's "special" modes.
///
/// A special mode is one that generally short-circuits most (not all) of
/// ripgrep's initialization logic and skips right to this routine. The
/// special modes essentially consist of printing help and version output. The
/// idea behind the short circuiting is to ensure there is as little as possible
/// (within reason) that would prevent ripgrep from emitting help output.
///
/// For example, part of the initialization logic that is skipped (among
/// other things) is accessing the current working directory. If that fails,
/// ripgrep emits an error. We don't want to emit an error if it fails and
/// the user requested version or help information.
fn special(mode: crate::flags::SpecialMode) -> anyhow::Result<ExitCode> {
use crate::flags::SpecialMode;
let mut exit = ExitCode::from(0);
let output = match mode {
SpecialMode::HelpShort => flags::generate_help_short(),
SpecialMode::HelpLong => flags::generate_help_long(),
SpecialMode::VersionShort => flags::generate_version_short(),
SpecialMode::VersionLong => flags::generate_version_long(),
// --pcre2-version is a little special because it emits an error
// exit code if this build of ripgrep doesn't support PCRE2.
SpecialMode::VersionPCRE2 => {
let (output, available) = flags::generate_version_pcre2();
if !available {
exit = ExitCode::from(1);
}
output
}
};
writeln!(std::io::stdout(), "{}", output.trim_end())?;
Ok(exit)
}
/// Prints a heuristic error messages when nothing is searched.
///
/// This can happen if an applicable ignore file has one or more rules that
/// are too broad and cause ripgrep to ignore everything.
///
/// We only show this error message when the user does *not* provide an
/// explicit path to search. This is because the message can otherwise be
/// noisy, e.g., when it is intended that there is nothing to search.
fn eprint_nothing_searched() {
err_message!(
"No files were searched, which means ripgrep probably \
applied a filter you didn't expect.\n\
Running with --debug will show why files are being skipped."
);
}
/// Prints the statistics given to the writer given.
///
/// The search mode given determines whether the stats should be printed in
/// a plain text format or in a JSON format.
///
/// The `started` time should be the time at which ripgrep started working.
///
/// If an error occurs while writing, then writing stops and the error is
/// returned. Note that callers should probably ignore this errror, since
/// whether stats fail to print or not generally shouldn't cause ripgrep to
/// enter into an "error" state. And usually the only way for this to fail is
/// if writing to stdout itself fails.
fn print_stats<W: Write>(
mode: SearchMode,
stats: &grep::printer::Stats,
started: std::time::Instant,
mut wtr: W,
) -> std::io::Result<()> {
let elapsed = std::time::Instant::now().duration_since(started);
if matches!(mode, SearchMode::JSON) {
// We specifically match the format laid out by the JSON printer in
// the grep-printer crate. We simply "extend" it with the 'summary'
// message type.
serde_json::to_writer(
&mut wtr,
&serde_json::json!({
"type": "summary",
"data": {
"stats": stats,
"elapsed_total": {
"secs": elapsed.as_secs(),
"nanos": elapsed.subsec_nanos(),
"human": format!("{:0.6}s", elapsed.as_secs_f64()),
},
}
}),
)?;
write!(wtr, "\n")
} else {
write!(
wtr,
"
{matches} matches
{lines} matched lines
{searches_with_match} files contained matches
{searches} files searched
{bytes_printed} bytes printed
{bytes_searched} bytes searched
{search_time:0.6} seconds spent searching
{process_time:0.6} seconds
",
matches = stats.matches(),
lines = stats.matched_lines(),
searches_with_match = stats.searches_with_match(),
searches = stats.searches(),
bytes_printed = stats.bytes_printed(),
bytes_searched = stats.bytes_searched(),
search_time = stats.elapsed().as_secs_f64(),
process_time = elapsed.as_secs_f64(),
)
}
}