1
0
mirror of https://github.com/janvarev/Irene-Voice-Assistant.git synced 2025-11-26 22:50:58 +02:00
Files
Irene-Voice-Assistant/runvavosk.py

147 lines
4.9 KiB
Python

import argparse
import os
import queue
import sounddevice as sd
import vosk
import sys
import traceback
import json
from vacore import VACore
mic_blocked = False
# ------------------- vosk ------------------
if __name__ == "__main__":
q = queue.Queue()
def int_or_str(text):
"""Helper function for argument parsing."""
try:
return int(text)
except ValueError:
return text
def callback(indata, frames, time, status):
"""This is called (from a separate thread) for each audio block."""
if status:
print(status, file=sys.stderr)
if not mic_blocked:
q.put(bytes(indata))
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument(
'-l', '--list-devices', action='store_true',
help='show list of audio devices and exit')
args, remaining = parser.parse_known_args()
if args.list_devices:
print(sd.query_devices())
parser.exit(0)
parser = argparse.ArgumentParser(
description=__doc__,
formatter_class=argparse.RawDescriptionHelpFormatter,
parents=[parser])
parser.add_argument(
'-f', '--filename', type=str, metavar='FILENAME',
help='audio file to store recording to')
parser.add_argument(
'-m', '--model', type=str, metavar='MODEL_PATH',
help='Path to the model')
parser.add_argument(
'-d', '--device', type=int_or_str,
help='input device (numeric ID or substring)')
parser.add_argument(
'-r', '--samplerate', type=int, help='sampling rate')
args = parser.parse_args(remaining)
#args = {}
try:
if args.model is None:
args.model = "model"
if not os.path.exists(args.model):
print ("Please download a model for your language from https://alphacephei.com/vosk/models")
print ("and unpack as 'model' in the current folder.")
parser.exit(0)
if args.samplerate is None:
device_info = sd.query_devices(args.device, 'input')
# soundfile expects an int, sounddevice provides a float:
args.samplerate = int(device_info['default_samplerate'])
model = vosk.Model(args.model)
if args.filename:
dump_fn = open(args.filename, "wb")
else:
dump_fn = None
with sd.RawInputStream(samplerate=args.samplerate, blocksize = 8000, device=args.device, dtype='int16',
channels=1, callback=callback):
print('#' * 80)
print('Press Ctrl+C to stop the recording')
print('#' * 80)
rec = vosk.KaldiRecognizer(model, args.samplerate)
# initing core
core = VACore()
#core.init_plugin("core")
#core.init_plugins(["core"])
core.init_with_plugins()
#core.play_wav('timer/Sounds/Loud beep.wav')
while True:
data = q.get()
if rec.AcceptWaveform(data):
recognized_data = rec.Result()
#print("1",recognized_data)
#print(recognized_data)
recognized_data = json.loads(recognized_data)
#print(recognized_data)
voice_input_str = recognized_data["text"]
if voice_input_str != "":
#print("Input: ",voice_input)
if core.logPolicy == "all":
print("Input: ",voice_input_str)
try:
voice_input = voice_input_str.split(" ")
#callname = voice_input[0]
for ind in range(len(voice_input)):
callname = voice_input[ind]
if callname in core.voiceAssNames: # найдено имя ассистента
if core.logPolicy == "cmd":
print("Input (cmd): ",voice_input_str)
mic_blocked = True
command_options = " ".join([str(input_part) for input_part in voice_input[(ind+1):len(voice_input)]])
core.execute_next(command_options, None)
break
except Exception as err:
print(traceback.format_exc())
mic_blocked = False
else:
#print("2",rec.PartialResult())
pass
core._update_timers()
if dump_fn is not None:
dump_fn.write(data)
except KeyboardInterrupt:
print('\nDone')
parser.exit(0)
except Exception as e:
parser.exit(type(e).__name__ + ': ' + str(e))