1
0
mirror of https://github.com/janeczku/calibre-web.git synced 2025-01-10 04:19:00 +02:00
calibre-web/vendor/jinja2/optimizer.py
2016-04-27 17:47:31 +02:00

69 lines
2.2 KiB
Python

# -*- coding: utf-8 -*-
"""
jinja2.optimizer
~~~~~~~~~~~~~~~~
The jinja optimizer is currently trying to constant fold a few expressions
and modify the AST in place so that it should be easier to evaluate it.
Because the AST does not contain all the scoping information and the
compiler has to find that out, we cannot do all the optimizations we
want. For example loop unrolling doesn't work because unrolled loops would
have a different scoping.
The solution would be a second syntax tree that has the scoping rules stored.
:copyright: (c) 2010 by the Jinja Team.
:license: BSD.
"""
from jinja2 import nodes
from jinja2.visitor import NodeTransformer
def optimize(node, environment):
"""The context hint can be used to perform an static optimization
based on the context given."""
optimizer = Optimizer(environment)
return optimizer.visit(node)
class Optimizer(NodeTransformer):
def __init__(self, environment):
self.environment = environment
def visit_If(self, node):
"""Eliminate dead code."""
# do not optimize ifs that have a block inside so that it doesn't
# break super().
if node.find(nodes.Block) is not None:
return self.generic_visit(node)
try:
val = self.visit(node.test).as_const()
except nodes.Impossible:
return self.generic_visit(node)
if val:
body = node.body
else:
body = node.else_
result = []
for node in body:
result.extend(self.visit_list(node))
return result
def fold(self, node):
"""Do constant folding."""
node = self.generic_visit(node)
try:
return nodes.Const.from_untrusted(node.as_const(),
lineno=node.lineno,
environment=self.environment)
except nodes.Impossible:
return node
visit_Add = visit_Sub = visit_Mul = visit_Div = visit_FloorDiv = \
visit_Pow = visit_Mod = visit_And = visit_Or = visit_Pos = visit_Neg = \
visit_Not = visit_Compare = visit_Getitem = visit_Getattr = visit_Call = \
visit_Filter = visit_Test = visit_CondExpr = fold
del fold