mirror of
https://github.com/janeczku/calibre-web.git
synced 2025-01-26 05:27:24 +02:00
1010 lines
30 KiB
JavaScript
1010 lines
30 KiB
JavaScript
/**
|
|
* rarvm.js
|
|
*
|
|
* Licensed under the MIT License
|
|
*
|
|
* Copyright(c) 2017 Google Inc.
|
|
*/
|
|
|
|
/**
|
|
* CRC Implementation.
|
|
*/
|
|
const CRCTab = new Array(256).fill(0);
|
|
|
|
// Helper functions between signed and unsigned integers.
|
|
|
|
/**
|
|
* -1 becomes 0xffffffff
|
|
*/
|
|
function fromSigned32ToUnsigned32(val) {
|
|
return (val < 0) ? (val += 0x100000000) : val;
|
|
}
|
|
|
|
/**
|
|
* 0xffffffff becomes -1
|
|
*/
|
|
function fromUnsigned32ToSigned32(val) {
|
|
return (val >= 0x80000000) ? (val -= 0x100000000) : val;
|
|
}
|
|
|
|
/**
|
|
* -1 becomes 0xff
|
|
*/
|
|
function fromSigned8ToUnsigned8(val) {
|
|
return (val < 0) ? (val += 0x100) : val;
|
|
}
|
|
|
|
/**
|
|
* 0xff becomes -1
|
|
*/
|
|
function fromUnsigned8ToSigned8(val) {
|
|
return (val >= 0x80) ? (val -= 0x100) : val;
|
|
}
|
|
|
|
function InitCRC() {
|
|
for (let i = 0; i < 256; ++i) {
|
|
let c = i;
|
|
for (let j = 0; j < 8; ++j) {
|
|
// Read http://stackoverflow.com/questions/6798111/bitwise-operations-on-32-bit-unsigned-ints
|
|
// for the bitwise operator issue (JS interprets operands as 32-bit signed
|
|
// integers and we need to deal with unsigned ones here).
|
|
c = ((c & 1) ? ((c >>> 1) ^ 0xEDB88320) : (c >>> 1)) >>> 0;
|
|
}
|
|
CRCTab[i] = c;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param {number} startCRC
|
|
* @param {Uint8Array} arr
|
|
* @return {number}
|
|
*/
|
|
function CRC(startCRC, arr) {
|
|
if (CRCTab[1] == 0) {
|
|
InitCRC();
|
|
}
|
|
|
|
/*
|
|
#if defined(LITTLE_ENDIAN) && defined(PRESENT_INT32) && defined(ALLOW_NOT_ALIGNED_INT)
|
|
while (Size>0 && ((long)Data & 7))
|
|
{
|
|
StartCRC=CRCTab[(byte)(StartCRC^Data[0])]^(StartCRC>>8);
|
|
Size--;
|
|
Data++;
|
|
}
|
|
while (Size>=8)
|
|
{
|
|
StartCRC^=*(uint32 *)Data;
|
|
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
|
|
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
|
|
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
|
|
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
|
|
StartCRC^=*(uint32 *)(Data+4);
|
|
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
|
|
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
|
|
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
|
|
StartCRC=CRCTab[(byte)StartCRC]^(StartCRC>>8);
|
|
Data+=8;
|
|
Size-=8;
|
|
}
|
|
#endif
|
|
*/
|
|
|
|
for (let i = 0; i < arr.length; ++i) {
|
|
const byte = ((startCRC ^ arr[i]) >>> 0) & 0xff;
|
|
startCRC = (CRCTab[byte] ^ (startCRC >>> 8)) >>> 0;
|
|
}
|
|
|
|
return startCRC;
|
|
}
|
|
|
|
// ============================================================================================== //
|
|
|
|
|
|
/**
|
|
* RarVM Implementation.
|
|
*/
|
|
const VM_MEMSIZE = 0x40000;
|
|
const VM_MEMMASK = (VM_MEMSIZE - 1);
|
|
const VM_GLOBALMEMADDR = 0x3C000;
|
|
const VM_GLOBALMEMSIZE = 0x2000;
|
|
const VM_FIXEDGLOBALSIZE = 64;
|
|
const MAXWINSIZE = 0x400000;
|
|
const MAXWINMASK = (MAXWINSIZE - 1);
|
|
|
|
/**
|
|
*/
|
|
const VM_Commands = {
|
|
VM_MOV: 0,
|
|
VM_CMP: 1,
|
|
VM_ADD: 2,
|
|
VM_SUB: 3,
|
|
VM_JZ: 4,
|
|
VM_JNZ: 5,
|
|
VM_INC: 6,
|
|
VM_DEC: 7,
|
|
VM_JMP: 8,
|
|
VM_XOR: 9,
|
|
VM_AND: 10,
|
|
VM_OR: 11,
|
|
VM_TEST: 12,
|
|
VM_JS: 13,
|
|
VM_JNS: 14,
|
|
VM_JB: 15,
|
|
VM_JBE: 16,
|
|
VM_JA: 17,
|
|
VM_JAE: 18,
|
|
VM_PUSH: 19,
|
|
VM_POP: 20,
|
|
VM_CALL: 21,
|
|
VM_RET: 22,
|
|
VM_NOT: 23,
|
|
VM_SHL: 24,
|
|
VM_SHR: 25,
|
|
VM_SAR: 26,
|
|
VM_NEG: 27,
|
|
VM_PUSHA: 28,
|
|
VM_POPA: 29,
|
|
VM_PUSHF: 30,
|
|
VM_POPF: 31,
|
|
VM_MOVZX: 32,
|
|
VM_MOVSX: 33,
|
|
VM_XCHG: 34,
|
|
VM_MUL: 35,
|
|
VM_DIV: 36,
|
|
VM_ADC: 37,
|
|
VM_SBB: 38,
|
|
VM_PRINT: 39,
|
|
|
|
/*
|
|
#ifdef VM_OPTIMIZE
|
|
VM_MOVB, VM_MOVD, VM_CMPB, VM_CMPD,
|
|
|
|
VM_ADDB, VM_ADDD, VM_SUBB, VM_SUBD, VM_INCB, VM_INCD, VM_DECB, VM_DECD,
|
|
VM_NEGB, VM_NEGD,
|
|
#endif
|
|
*/
|
|
|
|
// TODO: This enum value would be much larger if VM_OPTIMIZE.
|
|
VM_STANDARD: 40,
|
|
};
|
|
|
|
/**
|
|
*/
|
|
const VM_StandardFilters = {
|
|
VMSF_NONE: 0,
|
|
VMSF_E8: 1,
|
|
VMSF_E8E9: 2,
|
|
VMSF_ITANIUM: 3,
|
|
VMSF_RGB: 4,
|
|
VMSF_AUDIO: 5,
|
|
VMSF_DELTA: 6,
|
|
VMSF_UPCASE: 7,
|
|
};
|
|
|
|
/**
|
|
*/
|
|
const VM_Flags = {
|
|
VM_FC: 1,
|
|
VM_FZ: 2,
|
|
VM_FS: 0x80000000,
|
|
};
|
|
|
|
/**
|
|
*/
|
|
const VM_OpType = {
|
|
VM_OPREG: 0,
|
|
VM_OPINT: 1,
|
|
VM_OPREGMEM: 2,
|
|
VM_OPNONE: 3,
|
|
};
|
|
|
|
/**
|
|
* Finds the key that maps to a given value in an object. This function is useful in debugging
|
|
* variables that use the above enums.
|
|
* @param {Object} obj
|
|
* @param {number} val
|
|
* @return {string} The key/enum value as a string.
|
|
*/
|
|
function findKeyForValue(obj, val) {
|
|
for (let key in obj) {
|
|
if (obj[key] === val) {
|
|
return key;
|
|
}
|
|
}
|
|
return null;
|
|
}
|
|
|
|
function getDebugString(obj, val) {
|
|
let s = 'Unknown.';
|
|
if (obj === VM_Commands) {
|
|
s = 'VM_Commands.';
|
|
} else if (obj === VM_StandardFilters) {
|
|
s = 'VM_StandardFilters.';
|
|
} else if (obj === VM_Flags) {
|
|
s = 'VM_OpType.';
|
|
} else if (obj === VM_OpType) {
|
|
s = 'VM_OpType.';
|
|
}
|
|
|
|
return s + findKeyForValue(obj, val);
|
|
}
|
|
|
|
/**
|
|
*/
|
|
class VM_PreparedOperand {
|
|
constructor() {
|
|
/** @type {VM_OpType} */
|
|
this.Type;
|
|
|
|
/** @type {number} */
|
|
this.Data = 0;
|
|
|
|
/** @type {number} */
|
|
this.Base = 0;
|
|
|
|
// TODO: In C++ this is a uint*
|
|
/** @type {Array<number>} */
|
|
this.Addr = null;
|
|
};
|
|
|
|
/** @return {string} */
|
|
toString() {
|
|
if (this.Type === null) {
|
|
return 'Error: Type was null in VM_PreparedOperand';
|
|
}
|
|
return '{ '
|
|
+ 'Type: ' + getDebugString(VM_OpType, this.Type)
|
|
+ ', Data: ' + this.Data
|
|
+ ', Base: ' + this.Base
|
|
+ ' }';
|
|
}
|
|
}
|
|
|
|
/**
|
|
*/
|
|
class VM_PreparedCommand {
|
|
constructor() {
|
|
/** @type {VM_Commands} */
|
|
this.OpCode;
|
|
|
|
/** @type {boolean} */
|
|
this.ByteMode = false;
|
|
|
|
/** @type {VM_PreparedOperand} */
|
|
this.Op1 = new VM_PreparedOperand();
|
|
|
|
/** @type {VM_PreparedOperand} */
|
|
this.Op2 = new VM_PreparedOperand();
|
|
}
|
|
|
|
/** @return {string} */
|
|
toString(indent) {
|
|
if (this.OpCode === null) {
|
|
return 'Error: OpCode was null in VM_PreparedCommand';
|
|
}
|
|
indent = indent || '';
|
|
return indent + '{\n'
|
|
+ indent + ' OpCode: ' + getDebugString(VM_Commands, this.OpCode) + ',\n'
|
|
+ indent + ' ByteMode: ' + this.ByteMode + ',\n'
|
|
+ indent + ' Op1: ' + this.Op1.toString() + ',\n'
|
|
+ indent + ' Op2: ' + this.Op2.toString() + ',\n'
|
|
+ indent + '}';
|
|
}
|
|
}
|
|
|
|
/**
|
|
*/
|
|
class VM_PreparedProgram {
|
|
constructor() {
|
|
/** @type {Array<VM_PreparedCommand>} */
|
|
this.Cmd = [];
|
|
|
|
/** @type {Array<VM_PreparedCommand>} */
|
|
this.AltCmd = null;
|
|
|
|
/** @type {Uint8Array} */
|
|
this.GlobalData = new Uint8Array();
|
|
|
|
/** @type {Uint8Array} */
|
|
this.StaticData = new Uint8Array(); // static data contained in DB operators
|
|
|
|
/** @type {Uint32Array} */
|
|
this.InitR = new Uint32Array(7);
|
|
|
|
/**
|
|
* A pointer to bytes that have been filtered by a program.
|
|
* @type {Uint8Array}
|
|
*/
|
|
this.FilteredData = null;
|
|
}
|
|
|
|
/** @return {string} */
|
|
toString() {
|
|
let s = '{\n Cmd: [\n';
|
|
for (let i = 0; i < this.Cmd.length; ++i) {
|
|
s += this.Cmd[i].toString(' ') + ',\n';
|
|
}
|
|
s += '],\n';
|
|
// TODO: Dump GlobalData, StaticData, InitR?
|
|
s += ' }\n';
|
|
return s;
|
|
}
|
|
}
|
|
|
|
/**
|
|
*/
|
|
class UnpackFilter {
|
|
constructor() {
|
|
/** @type {number} */
|
|
this.BlockStart = 0;
|
|
|
|
/** @type {number} */
|
|
this.BlockLength = 0;
|
|
|
|
/** @type {number} */
|
|
this.ExecCount = 0;
|
|
|
|
/** @type {boolean} */
|
|
this.NextWindow = false;
|
|
|
|
// position of parent filter in Filters array used as prototype for filter
|
|
// in PrgStack array. Not defined for filters in Filters array.
|
|
/** @type {number} */
|
|
this.ParentFilter = null;
|
|
|
|
/** @type {VM_PreparedProgram} */
|
|
this.Prg = new VM_PreparedProgram();
|
|
}
|
|
}
|
|
|
|
const VMCF_OP0 = 0;
|
|
const VMCF_OP1 = 1;
|
|
const VMCF_OP2 = 2;
|
|
const VMCF_OPMASK = 3;
|
|
const VMCF_BYTEMODE = 4;
|
|
const VMCF_JUMP = 8;
|
|
const VMCF_PROC = 16;
|
|
const VMCF_USEFLAGS = 32;
|
|
const VMCF_CHFLAGS = 64;
|
|
|
|
const VM_CmdFlags = [
|
|
/* VM_MOV */ VMCF_OP2 | VMCF_BYTEMODE ,
|
|
/* VM_CMP */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_ADD */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_SUB */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_JZ */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
|
|
/* VM_JNZ */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
|
|
/* VM_INC */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_DEC */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_JMP */ VMCF_OP1 | VMCF_JUMP ,
|
|
/* VM_XOR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_AND */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_OR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_TEST */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_JS */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
|
|
/* VM_JNS */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
|
|
/* VM_JB */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
|
|
/* VM_JBE */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
|
|
/* VM_JA */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
|
|
/* VM_JAE */ VMCF_OP1 | VMCF_JUMP | VMCF_USEFLAGS ,
|
|
/* VM_PUSH */ VMCF_OP1 ,
|
|
/* VM_POP */ VMCF_OP1 ,
|
|
/* VM_CALL */ VMCF_OP1 | VMCF_PROC ,
|
|
/* VM_RET */ VMCF_OP0 | VMCF_PROC ,
|
|
/* VM_NOT */ VMCF_OP1 | VMCF_BYTEMODE ,
|
|
/* VM_SHL */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_SHR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_SAR */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_NEG */ VMCF_OP1 | VMCF_BYTEMODE | VMCF_CHFLAGS ,
|
|
/* VM_PUSHA */ VMCF_OP0 ,
|
|
/* VM_POPA */ VMCF_OP0 ,
|
|
/* VM_PUSHF */ VMCF_OP0 | VMCF_USEFLAGS ,
|
|
/* VM_POPF */ VMCF_OP0 | VMCF_CHFLAGS ,
|
|
/* VM_MOVZX */ VMCF_OP2 ,
|
|
/* VM_MOVSX */ VMCF_OP2 ,
|
|
/* VM_XCHG */ VMCF_OP2 | VMCF_BYTEMODE ,
|
|
/* VM_MUL */ VMCF_OP2 | VMCF_BYTEMODE ,
|
|
/* VM_DIV */ VMCF_OP2 | VMCF_BYTEMODE ,
|
|
/* VM_ADC */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_USEFLAGS | VMCF_CHFLAGS ,
|
|
/* VM_SBB */ VMCF_OP2 | VMCF_BYTEMODE | VMCF_USEFLAGS | VMCF_CHFLAGS ,
|
|
/* VM_PRINT */ VMCF_OP0 ,
|
|
];
|
|
|
|
|
|
/**
|
|
*/
|
|
class StandardFilterSignature {
|
|
/**
|
|
* @param {number} length
|
|
* @param {number} crc
|
|
* @param {VM_StandardFilters} type
|
|
*/
|
|
constructor(length, crc, type) {
|
|
/** @type {number} */
|
|
this.Length = length;
|
|
|
|
/** @type {number} */
|
|
this.CRC = crc;
|
|
|
|
/** @type {VM_StandardFilters} */
|
|
this.Type = type;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @type {Array<StandardFilterSignature>}
|
|
*/
|
|
const StdList = [
|
|
new StandardFilterSignature(53, 0xad576887, VM_StandardFilters.VMSF_E8),
|
|
new StandardFilterSignature(57, 0x3cd7e57e, VM_StandardFilters.VMSF_E8E9),
|
|
new StandardFilterSignature(120, 0x3769893f, VM_StandardFilters.VMSF_ITANIUM),
|
|
new StandardFilterSignature(29, 0x0e06077d, VM_StandardFilters.VMSF_DELTA),
|
|
new StandardFilterSignature(149, 0x1c2c5dc8, VM_StandardFilters.VMSF_RGB),
|
|
new StandardFilterSignature(216, 0xbc85e701, VM_StandardFilters.VMSF_AUDIO),
|
|
new StandardFilterSignature(40, 0x46b9c560, VM_StandardFilters.VMSF_UPCASE),
|
|
];
|
|
|
|
/**
|
|
* @constructor
|
|
*/
|
|
class RarVM {
|
|
constructor() {
|
|
/** @private {Uint8Array} */
|
|
this.mem_ = null;
|
|
|
|
/** @private {Uint32Array<number>} */
|
|
this.R_ = new Uint32Array(8);
|
|
|
|
/** @private {number} */
|
|
this.flags_ = 0;
|
|
}
|
|
|
|
/**
|
|
* Initializes the memory of the VM.
|
|
*/
|
|
init() {
|
|
if (!this.mem_) {
|
|
this.mem_ = new Uint8Array(VM_MEMSIZE);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param {Uint8Array} code
|
|
* @return {VM_StandardFilters}
|
|
*/
|
|
isStandardFilter(code) {
|
|
const codeCRC = (CRC(0xffffffff, code, code.length) ^ 0xffffffff) >>> 0;
|
|
for (let i = 0; i < StdList.length; ++i) {
|
|
if (StdList[i].CRC == codeCRC && StdList[i].Length == code.length)
|
|
return StdList[i].Type;
|
|
}
|
|
|
|
return VM_StandardFilters.VMSF_NONE;
|
|
}
|
|
|
|
/**
|
|
* @param {VM_PreparedOperand} op
|
|
* @param {boolean} byteMode
|
|
* @param {bitjs.io.BitStream} bstream A rtl bit stream.
|
|
*/
|
|
decodeArg(op, byteMode, bstream) {
|
|
const data = bstream.peekBits(16);
|
|
if (data & 0x8000) {
|
|
op.Type = VM_OpType.VM_OPREG; // Operand is register (R[0]..R[7])
|
|
bstream.readBits(1); // 1 flag bit and...
|
|
op.Data = bstream.readBits(3); // ... 3 register number bits
|
|
op.Addr = [this.R_[op.Data]] // TODO &R[Op.Data] // Register address
|
|
} else {
|
|
if ((data & 0xc000) == 0) {
|
|
op.Type = VM_OpType.VM_OPINT; // Operand is integer
|
|
bstream.readBits(2); // 2 flag bits
|
|
if (byteMode) {
|
|
op.Data = bstream.readBits(8); // Byte integer.
|
|
} else {
|
|
op.Data = RarVM.readData(bstream); // 32 bit integer.
|
|
}
|
|
} else {
|
|
// Operand is data addressed by register data, base address or both.
|
|
op.Type = VM_OpType.VM_OPREGMEM;
|
|
if ((data & 0x2000) == 0) {
|
|
bstream.readBits(3); // 3 flag bits
|
|
// Base address is zero, just use the address from register.
|
|
op.Data = bstream.readBits(3); // (Data>>10)&7
|
|
op.Addr = [this.R_[op.Data]]; // TODO &R[op.Data]
|
|
op.Base = 0;
|
|
} else {
|
|
bstream.readBits(4); // 4 flag bits
|
|
if ((data & 0x1000) == 0) {
|
|
// Use both register and base address.
|
|
op.Data = bstream.readBits(3);
|
|
op.Addr = [this.R_[op.Data]]; // TODO &R[op.Data]
|
|
} else {
|
|
// Use base address only. Access memory by fixed address.
|
|
op.Data = 0;
|
|
}
|
|
op.Base = RarVM.readData(bstream); // Read base address.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param {VM_PreparedProgram} prg
|
|
*/
|
|
execute(prg) {
|
|
this.R_.set(prg.InitR);
|
|
|
|
const globalSize = Math.min(prg.GlobalData.length, VM_GLOBALMEMSIZE);
|
|
if (globalSize) {
|
|
this.mem_.set(prg.GlobalData.subarray(0, globalSize), VM_GLOBALMEMADDR);
|
|
}
|
|
|
|
const staticSize = Math.min(prg.StaticData.length, VM_GLOBALMEMSIZE - globalSize);
|
|
if (staticSize) {
|
|
this.mem_.set(prg.StaticData.subarray(0, staticSize), VM_GLOBALMEMADDR + globalSize);
|
|
}
|
|
|
|
this.R_[7] = VM_MEMSIZE;
|
|
this.flags_ = 0;
|
|
|
|
const preparedCodes = prg.AltCmd ? prg.AltCmd : prg.Cmd;
|
|
if (prg.Cmd.length > 0 && !this.executeCode(preparedCodes)) {
|
|
// Invalid VM program. Let's replace it with 'return' command.
|
|
preparedCode.OpCode = VM_Commands.VM_RET;
|
|
}
|
|
|
|
const dataView = new DataView(this.mem_.buffer, VM_GLOBALMEMADDR);
|
|
let newBlockPos = dataView.getUint32(0x20, true /* little endian */) & VM_MEMMASK;
|
|
const newBlockSize = dataView.getUint32(0x1c, true /* little endian */) & VM_MEMMASK;
|
|
if (newBlockPos + newBlockSize >= VM_MEMSIZE) {
|
|
newBlockPos = newBlockSize = 0;
|
|
}
|
|
prg.FilteredData = this.mem_.subarray(newBlockPos, newBlockPos + newBlockSize);
|
|
|
|
prg.GlobalData = new Uint8Array(0);
|
|
|
|
const dataSize = Math.min(dataView.getUint32(0x30), (VM_GLOBALMEMSIZE - VM_FIXEDGLOBALSIZE));
|
|
if (dataSize != 0) {
|
|
const len = dataSize + VM_FIXEDGLOBALSIZE;
|
|
prg.GlobalData = new Uint8Array(len);
|
|
prg.GlobalData.set(mem.subarray(VM_GLOBALMEMADDR, VM_GLOBALMEMADDR + len));
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param {Array<VM_PreparedCommand>} preparedCodes
|
|
* @return {boolean}
|
|
*/
|
|
executeCode(preparedCodes) {
|
|
let codeIndex = 0;
|
|
let cmd = preparedCodes[codeIndex];
|
|
// TODO: Why is this an infinite loop instead of just returning
|
|
// when a VM_RET is hit?
|
|
while (1) {
|
|
switch (cmd.OpCode) {
|
|
case VM_Commands.VM_RET:
|
|
if (this.R_[7] >= VM_MEMSIZE) {
|
|
return true;
|
|
}
|
|
//SET_IP(GET_VALUE(false,(uint *)&Mem[R[7] & VM_MEMMASK]));
|
|
this.R_[7] += 4;
|
|
continue;
|
|
|
|
case VM_Commands.VM_STANDARD:
|
|
this.executeStandardFilter(cmd.Op1.Data);
|
|
break;
|
|
|
|
default:
|
|
console.error('RarVM OpCode not supported: ' + getDebugString(VM_Commands, cmd.OpCode));
|
|
break;
|
|
} // switch (cmd.OpCode)
|
|
codeIndex++;
|
|
cmd = preparedCodes[codeIndex];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param {number} filterType
|
|
*/
|
|
executeStandardFilter(filterType) {
|
|
switch (filterType) {
|
|
case VM_StandardFilters.VMSF_RGB: {
|
|
const dataSize = this.R_[4];
|
|
const width = this.R_[0] - 3;
|
|
const posR = this.R_[1];
|
|
const Channels = 3;
|
|
let srcOffset = 0;
|
|
let destOffset = dataSize;
|
|
|
|
// byte *SrcData=Mem,*DestData=SrcData+DataSize;
|
|
// SET_VALUE(false,&Mem[VM_GLOBALMEMADDR+0x20],DataSize);
|
|
const dataView = new DataView(this.mem_.buffer, VM_GLOBALMEMADDR /* offset */);
|
|
dataView.setUint32(0x20 /* byte offset */,
|
|
dataSize /* value */,
|
|
true /* little endian */);
|
|
|
|
if (dataSize >= (VM_GLOBALMEMADDR / 2) || posR < 0) {
|
|
break;
|
|
}
|
|
|
|
for (let curChannel = 0; curChannel < Channels; ++curChannel) {
|
|
let prevByte=0;
|
|
|
|
for (let i = curChannel; i < dataSize; i += Channels) {
|
|
let predicted;
|
|
const upperPos = i - width;
|
|
if (upperPos >= 3) {
|
|
const upperByte = this.mem_[destOffset + upperPos];
|
|
const upperLeftByte = this.mem_[destOffset + upperPos - 3];
|
|
predicted = prevByte + upperByte - upperLeftByte;
|
|
|
|
const pa = Math.abs(predicted - prevByte);
|
|
const pb = Math.abs(predicted - upperByte);
|
|
const pc = Math.abs(predicted - upperLeftByte);
|
|
if (pa <= pb && pa <= pc) {
|
|
predicted = prevByte;
|
|
} else if (pb <= pc) {
|
|
predicted = upperByte;
|
|
} else {
|
|
predicted = upperLeftByte;
|
|
}
|
|
} else {
|
|
predicted = prevByte;
|
|
}
|
|
//DestData[I]=PrevByte=(byte)(Predicted-*(SrcData++));
|
|
prevByte = (predicted - this.mem_[srcOffset++]) & 0xff;
|
|
this.mem_[destOffset + i] = prevByte;
|
|
}
|
|
}
|
|
for (let i = posR, border = dataSize - 2; i < border; i += 3) {
|
|
const g = this.mem_[destOffset + i + 1];
|
|
this.mem_[destOffset + i] += g;
|
|
this.mem_[destOffset + i + 2] += g;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
// The C++ version of this standard filter uses an odd mixture of
|
|
// signed and unsigned integers, bytes and various casts. Careful!
|
|
case VM_StandardFilters.VMSF_AUDIO: {
|
|
const dataSize = this.R_[4];
|
|
const channels = this.R_[0];
|
|
let srcOffset = 0;
|
|
let destOffset = dataSize;
|
|
|
|
//SET_VALUE(false,&Mem[VM_GLOBALMEMADDR+0x20],DataSize);
|
|
const dataView = new DataView(this.mem_.buffer, VM_GLOBALMEMADDR);
|
|
dataView.setUint32(0x20 /* byte offset */,
|
|
dataSize /* value */,
|
|
true /* little endian */);
|
|
|
|
if (dataSize >= VM_GLOBALMEMADDR / 2) {
|
|
break;
|
|
}
|
|
|
|
for (let curChannel = 0; curChannel < channels; ++curChannel) {
|
|
let prevByte = 0; // uint
|
|
let prevDelta = 0; // uint
|
|
let dif = [0, 0, 0, 0, 0, 0, 0];
|
|
let d1 = 0, d2 = 0, d3; // ints
|
|
let k1 = 0, k2 = 0, k3 = 0; // ints
|
|
|
|
for (var i = curChannel, byteCount = 0;
|
|
i < dataSize;
|
|
i += channels, ++byteCount) {
|
|
d3 = d2;
|
|
d2 = fromUnsigned32ToSigned32(prevDelta - d1);
|
|
d1 = fromUnsigned32ToSigned32(prevDelta);
|
|
|
|
let predicted = fromSigned32ToUnsigned32(8*prevByte + k1*d1 + k2*d2 + k3*d3); // uint
|
|
predicted = (predicted >>> 3) & 0xff;
|
|
|
|
let curByte = this.mem_[srcOffset++]; // uint
|
|
|
|
// Predicted-=CurByte;
|
|
predicted = fromSigned32ToUnsigned32(predicted - curByte);
|
|
this.mem_[destOffset + i] = (predicted & 0xff);
|
|
|
|
// PrevDelta=(signed char)(Predicted-PrevByte);
|
|
// where Predicted, PrevByte, PrevDelta are all unsigned int (32)
|
|
// casting this subtraction to a (signed char) is kind of invalid
|
|
// but it does the following:
|
|
// - do the subtraction
|
|
// - get the bottom 8 bits of the result
|
|
// - if it was >= 0x80, then the value is negative (subtract 0x100)
|
|
// - if the value is now negative, add 0x100000000 to make unsigned
|
|
//
|
|
// Example:
|
|
// predicted = 101
|
|
// prevByte = 4294967158
|
|
// (predicted - prevByte) = -4294967057
|
|
// take lower 8 bits: 1110 1111 = 239
|
|
// since > 127, subtract 256 = -17
|
|
// since < 0, add 0x100000000 = 4294967279
|
|
prevDelta = fromSigned32ToUnsigned32(
|
|
fromUnsigned8ToSigned8((predicted - prevByte) & 0xff));
|
|
prevByte = predicted;
|
|
|
|
// int D=((signed char)CurByte)<<3;
|
|
let curByteAsSignedChar = fromUnsigned8ToSigned8(curByte); // signed char
|
|
let d = (curByteAsSignedChar << 3);
|
|
|
|
dif[0] += Math.abs(d);
|
|
dif[1] += Math.abs(d-d1);
|
|
dif[2] += Math.abs(d+d1);
|
|
dif[3] += Math.abs(d-d2);
|
|
dif[4] += Math.abs(d+d2);
|
|
dif[5] += Math.abs(d-d3);
|
|
dif[6] += Math.abs(d+d3);
|
|
|
|
if ((byteCount & 0x1f) == 0) {
|
|
let minDif = dif[0], numMinDif = 0;
|
|
dif[0] = 0;
|
|
for (let j = 1; j < 7; ++j) {
|
|
if (dif[j] < minDif) {
|
|
minDif = dif[j];
|
|
numMinDif = j;
|
|
}
|
|
dif[j] = 0;
|
|
}
|
|
switch (numMinDif) {
|
|
case 1: if (k1>=-16) k1--; break;
|
|
case 2: if (k1 < 16) k1++; break;
|
|
case 3: if (k2>=-16) k2--; break;
|
|
case 4: if (k2 < 16) k2++; break;
|
|
case 5: if (k3>=-16) k3--; break;
|
|
case 6: if (k3 < 16) k3++; break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case VM_StandardFilters.VMSF_DELTA: {
|
|
const dataSize = this.R_[4];
|
|
const channels = this.R_[0];
|
|
let srcPos = 0;
|
|
const border = dataSize * 2;
|
|
|
|
//SET_VALUE(false,&Mem[VM_GLOBALMEMADDR+0x20],DataSize);
|
|
const dataView = new DataView(this.mem_.buffer, VM_GLOBALMEMADDR);
|
|
dataView.setUint32(0x20 /* byte offset */,
|
|
dataSize /* value */,
|
|
true /* little endian */);
|
|
|
|
if (dataSize >= VM_GLOBALMEMADDR / 2) {
|
|
break;
|
|
}
|
|
|
|
// Bytes from same channels are grouped to continual data blocks,
|
|
// so we need to place them back to their interleaving positions.
|
|
for (let curChannel = 0; curChannel < channels; ++curChannel) {
|
|
let prevByte = 0;
|
|
for (let destPos = dataSize + curChannel; destPos < border; destPos += channels) {
|
|
prevByte = (prevByte - this.mem_[srcPos++]) & 0xff;
|
|
this.mem_[destPos] = prevByte;
|
|
}
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
console.error('RarVM Standard Filter not supported: ' + getDebugString(VM_StandardFilters, filterType));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @param {Uint8Array} code
|
|
* @param {VM_PreparedProgram} prg
|
|
*/
|
|
prepare(code, prg) {
|
|
let codeSize = code.length;
|
|
|
|
//InitBitInput();
|
|
//memcpy(InBuf,Code,Min(CodeSize,BitInput::MAX_SIZE));
|
|
const bstream = new bitjs.io.BitStream(code.buffer, true /* rtl */);
|
|
|
|
// Calculate the single byte XOR checksum to check validity of VM code.
|
|
let xorSum = 0;
|
|
for (let i = 1; i < codeSize; ++i) {
|
|
xorSum ^= code[i];
|
|
}
|
|
|
|
bstream.readBits(8);
|
|
|
|
prg.Cmd = []; // TODO: Is this right? I don't see it being done in rarvm.cpp.
|
|
|
|
// VM code is valid if equal.
|
|
if (xorSum == code[0]) {
|
|
const filterType = this.isStandardFilter(code);
|
|
if (filterType != VM_StandardFilters.VMSF_NONE) {
|
|
// VM code is found among standard filters.
|
|
const curCmd = new VM_PreparedCommand();
|
|
prg.Cmd.push(curCmd);
|
|
|
|
curCmd.OpCode = VM_Commands.VM_STANDARD;
|
|
curCmd.Op1.Data = filterType;
|
|
// TODO: Addr=&CurCmd->Op1.Data
|
|
curCmd.Op1.Addr = [curCmd.Op1.Data];
|
|
curCmd.Op2.Addr = [null]; // &CurCmd->Op2.Data;
|
|
curCmd.Op1.Type = VM_OpType.VM_OPNONE;
|
|
curCmd.Op2.Type = VM_OpType.VM_OPNONE;
|
|
codeSize = 0;
|
|
}
|
|
|
|
const dataFlag = bstream.readBits(1);
|
|
|
|
// Read static data contained in DB operators. This data cannot be
|
|
// changed, it is a part of VM code, not a filter parameter.
|
|
|
|
if (dataFlag & 0x8000) {
|
|
const dataSize = RarVM.readData(bstream) + 1;
|
|
// TODO: This accesses the byte pointer of the bstream directly. Is that ok?
|
|
for (let i = 0; i < bstream.bytePtr < codeSize && i < dataSize; ++i) {
|
|
// Append a byte to the program's static data.
|
|
const newStaticData = new Uint8Array(prg.StaticData.length + 1);
|
|
newStaticData.set(prg.StaticData);
|
|
newStaticData[newStaticData.length - 1] = bstream.readBits(8);
|
|
prg.StaticData = newStaticData;
|
|
}
|
|
}
|
|
|
|
while (bstream.bytePtr < codeSize) {
|
|
const curCmd = new VM_PreparedCommand();
|
|
prg.Cmd.push(curCmd); // Prg->Cmd.Add(1)
|
|
const flag = bstream.peekBits(1);
|
|
if (!flag) { // (Data&0x8000)==0
|
|
curCmd.OpCode = bstream.readBits(4);
|
|
} else {
|
|
curCmd.OpCode = (bstream.readBits(6) - 24);
|
|
}
|
|
|
|
if (VM_CmdFlags[curCmd.OpCode] & VMCF_BYTEMODE) {
|
|
curCmd.ByteMode = (bstream.readBits(1) != 0);
|
|
} else {
|
|
curCmd.ByteMode = 0;
|
|
}
|
|
curCmd.Op1.Type = VM_OpType.VM_OPNONE;
|
|
curCmd.Op2.Type = VM_OpType.VM_OPNONE;
|
|
const opNum = (VM_CmdFlags[curCmd.OpCode] & VMCF_OPMASK);
|
|
curCmd.Op1.Addr = null;
|
|
curCmd.Op2.Addr = null;
|
|
if (opNum > 0) {
|
|
this.decodeArg(curCmd.Op1, curCmd.ByteMode, bstream); // reading the first operand
|
|
if (opNum == 2) {
|
|
this.decodeArg(curCmd.Op2, curCmd.ByteMode, bstream); // reading the second operand
|
|
} else {
|
|
if (curCmd.Op1.Type == VM_OpType.VM_OPINT && (VM_CmdFlags[curCmd.OpCode] & (VMCF_JUMP|VMCF_PROC))) {
|
|
// Calculating jump distance.
|
|
let distance = curCmd.Op1.Data;
|
|
if (distance >= 256) {
|
|
distance -= 256;
|
|
} else {
|
|
if (distance >= 136) {
|
|
distance -= 264;
|
|
} else {
|
|
if (distance >= 16) {
|
|
distance -= 8;
|
|
} else {
|
|
if (distance >= 8) {
|
|
distance -= 16;
|
|
}
|
|
}
|
|
}
|
|
distance += prg.Cmd.length;
|
|
}
|
|
curCmd.Op1.Data = distance;
|
|
}
|
|
}
|
|
} // if (OpNum>0)
|
|
} // while ((uint)InAddr<CodeSize)
|
|
} // if (XorSum==Code[0])
|
|
|
|
const curCmd = new VM_PreparedCommand();
|
|
prg.Cmd.push(curCmd);
|
|
curCmd.OpCode = VM_Commands.VM_RET;
|
|
// TODO: Addr=&CurCmd->Op1.Data
|
|
curCmd.Op1.Addr = [curCmd.Op1.Data];
|
|
curCmd.Op2.Addr = [curCmd.Op2.Data];
|
|
curCmd.Op1.Type = VM_OpType.VM_OPNONE;
|
|
curCmd.Op2.Type = VM_OpType.VM_OPNONE;
|
|
|
|
// If operand 'Addr' field has not been set by DecodeArg calls above,
|
|
// let's set it to point to operand 'Data' field. It is necessary for
|
|
// VM_OPINT type operands (usual integers) or maybe if something was
|
|
// not set properly for other operands. 'Addr' field is required
|
|
// for quicker addressing of operand data.
|
|
for (let i = 0; i < prg.Cmd.length; ++i) {
|
|
const cmd = prg.Cmd[i];
|
|
if (cmd.Op1.Addr == null) {
|
|
cmd.Op1.Addr = [cmd.Op1.Data];
|
|
}
|
|
if (cmd.Op2.Addr == null) {
|
|
cmd.Op2.Addr = [cmd.Op2.Data];
|
|
}
|
|
}
|
|
|
|
/*
|
|
#ifdef VM_OPTIMIZE
|
|
if (CodeSize!=0)
|
|
Optimize(Prg);
|
|
#endif
|
|
*/
|
|
}
|
|
|
|
/**
|
|
* @param {Uint8Array} arr The byte array to set a value in.
|
|
* @param {number} value The unsigned 32-bit value to set.
|
|
* @param {number} offset Offset into arr to start setting the value, defaults to 0.
|
|
*/
|
|
setLowEndianValue(arr, value, offset) {
|
|
const i = offset || 0;
|
|
arr[i] = value & 0xff;
|
|
arr[i + 1] = (value >>> 8) & 0xff;
|
|
arr[i + 2] = (value >>> 16) & 0xff;
|
|
arr[i + 3] = (value >>> 24) & 0xff;
|
|
}
|
|
|
|
/**
|
|
* Sets a number of bytes of the VM memory at the given position from a
|
|
* source buffer of bytes.
|
|
* @param {number} pos The position in the VM memory to start writing to.
|
|
* @param {Uint8Array} buffer The source buffer of bytes.
|
|
* @param {number} dataSize The number of bytes to set.
|
|
*/
|
|
setMemory(pos, buffer, dataSize) {
|
|
if (pos < VM_MEMSIZE) {
|
|
const numBytes = Math.min(dataSize, VM_MEMSIZE - pos);
|
|
for (let i = 0; i < numBytes; ++i) {
|
|
this.mem_[pos + i] = buffer[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Static function that reads in the next set of bits for the VM
|
|
* (might return 4, 8, 16 or 32 bits).
|
|
* @param {bitjs.io.BitStream} bstream A RTL bit stream.
|
|
* @return {number} The value of the bits read.
|
|
*/
|
|
static readData(bstream) {
|
|
// Read in the first 2 bits.
|
|
const flags = bstream.readBits(2);
|
|
switch (flags) { // Data&0xc000
|
|
// Return the next 4 bits.
|
|
case 0:
|
|
return bstream.readBits(4); // (Data>>10)&0xf
|
|
|
|
case 1: // 0x4000
|
|
// 0x3c00 => 0011 1100 0000 0000
|
|
if (bstream.peekBits(4) == 0) { // (Data&0x3c00)==0
|
|
// Skip the 4 zero bits.
|
|
bstream.readBits(4);
|
|
// Read in the next 8 and pad with 1s to 32 bits.
|
|
return (0xffffff00 | bstream.readBits(8)) >>> 0; // ((Data>>2)&0xff)
|
|
}
|
|
|
|
// Else, read in the next 8.
|
|
return bstream.readBits(8);
|
|
|
|
// Read in the next 16.
|
|
case 2: // 0x8000
|
|
const val = bstream.getBits();
|
|
bstream.readBits(16);
|
|
return val; //bstream.readBits(16);
|
|
|
|
// case 3
|
|
default:
|
|
return (bstream.readBits(16) << 16) | bstream.readBits(16);
|
|
}
|
|
}
|
|
}
|
|
|
|
// ============================================================================================== //
|