mirror of
https://github.com/vimagick/dockerfiles.git
synced 2025-01-18 04:58:52 +02:00
add airflow
This commit is contained in:
parent
004e8de70e
commit
4bc3f1e40b
@ -31,8 +31,6 @@ A collection of delicious docker recipes.
|
||||
- [ ] libreswan
|
||||
- [ ] mitmproxy
|
||||
- [ ] nagios
|
||||
- [ ] nfs
|
||||
- [ ] openldap
|
||||
- [ ] openswan
|
||||
- [ ] postfix
|
||||
- [ ] pritunl
|
||||
@ -45,6 +43,7 @@ A collection of delicious docker recipes.
|
||||
|
||||
## Big Data
|
||||
|
||||
- [x] airflow
|
||||
- [x] kafka-arm
|
||||
- [x] kafka-manager
|
||||
- [x] presto
|
||||
@ -264,7 +263,6 @@ A collection of delicious docker recipes.
|
||||
- [x] confluentinc/cp-kafka-rest
|
||||
- [x] streamsets/datacollector
|
||||
- [x] cachethq/docker
|
||||
- [x] puckel/docker-airflow
|
||||
- [x] drone/drone
|
||||
- [x] drupal
|
||||
- [x] elastalert
|
||||
|
46
airflow/Dockerfile
Normal file
46
airflow/Dockerfile
Normal file
@ -0,0 +1,46 @@
|
||||
#
|
||||
# Dockerfile for airflow
|
||||
#
|
||||
|
||||
FROM python:3.7-alpine
|
||||
|
||||
ENV AIRFLOW_VERSION=1.10.5
|
||||
ENV AIRFLOW_EXTRAS=async,all_dbs,celery,crypto,devel_hadoop,jdbc,ldap,password,redis,s3,samba,slack,ssh,statsd
|
||||
ENV AIRFLOW_HOME=/opt/airflow
|
||||
ENV AIRFLOW_CONFIG=airflow.cfg
|
||||
|
||||
ARG FERNET_KEY=4XHGZH0dZ40iOv6z5cyfrXVg5qg3s_d06A7BFfbSsqA=
|
||||
ENV FERNET_KEY=${FERNET_KEY}
|
||||
|
||||
RUN set -xe \
|
||||
&& apk add --no-cache \
|
||||
build-base \
|
||||
cyrus-sasl-dev \
|
||||
freetds \
|
||||
freetds-dev \
|
||||
krb5-dev \
|
||||
libffi-dev \
|
||||
mariadb-dev \
|
||||
postgresql-dev \
|
||||
python3-dev \
|
||||
&& pip install cython numpy \
|
||||
&& pip install apache-airflow[${AIRFLOW_EXTRAS}]==${AIRFLOW_VERSION} \
|
||||
&& pip install "websocket-client<0.55.0,>=0.35" \
|
||||
&& apk del \
|
||||
build-base \
|
||||
cyrus-sasl-dev \
|
||||
freetds-dev \
|
||||
krb5-dev \
|
||||
libffi-dev \
|
||||
mariadb-dev \
|
||||
postgresql-dev \
|
||||
python3-dev \
|
||||
&& rm -rf /root/.cache/pip
|
||||
|
||||
WORKDIR ${AIRFLOW_HOME}
|
||||
VOLUME ${AIRFLOW_HOME}
|
||||
|
||||
EXPOSE 8080
|
||||
|
||||
ENTRYPOINT ["airflow"]
|
||||
CMD ["--help"]
|
@ -1,6 +1,8 @@
|
||||
airflow
|
||||
=======
|
||||
|
||||
![](https://airflow.apache.org/_images/pin_large.png)
|
||||
|
||||
## How It Works
|
||||
|
||||
```
|
||||
@ -20,13 +22,16 @@ airflow
|
||||
## Quick Start
|
||||
|
||||
```bash
|
||||
# On Master
|
||||
$ docker-compose up -d
|
||||
$ chmod 777 data/airflow/dags
|
||||
$ docker-compose exec webserver cp -r /usr/local/lib/python3.7/site-packages/airflow/example_dags dags
|
||||
$ python -c 'from cryptography.fernet import Fernet; print(Fernet.generate_key().decode())'
|
||||
4XHGZH0dZ40iOv6z5cyfrXVg5qg3s_d06A7BFfbSsqA=
|
||||
|
||||
# On Workers
|
||||
$ docker-compose up -d
|
||||
$ chmod 777 data/airflow/dags
|
||||
$ docker-compose exec worker cp -r /usr/local/lib/python3.7/site-packages/airflow/example_dags dags
|
||||
$ docker stack deploy -c docker-stack.yaml airflow
|
||||
$ docker service update --replicas-max-per-node=1 airflow_worker
|
||||
$ docker service update --replicas 3 airflow_worker
|
||||
|
||||
$ curl http://localhost:8080/
|
||||
$ curl http://localhost:5555/
|
||||
```
|
||||
|
||||
> :warning: This docker image was built with a static `FERNET_KEY` environment variable.
|
||||
> You should set another value to it in `docker-stack.yaml`.
|
||||
|
825
airflow/data/airflow.cfg
Normal file
825
airflow/data/airflow.cfg
Normal file
@ -0,0 +1,825 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Licensed to the Apache Software Foundation (ASF) under one
|
||||
# or more contributor license agreements. See the NOTICE file
|
||||
# distributed with this work for additional information
|
||||
# regarding copyright ownership. The ASF licenses this file
|
||||
# to you under the Apache License, Version 2.0 (the
|
||||
# "License"); you may not use this file except in compliance
|
||||
# with the License. You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing,
|
||||
# software distributed under the License is distributed on an
|
||||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
# KIND, either express or implied. See the License for the
|
||||
# specific language governing permissions and limitations
|
||||
# under the License.
|
||||
|
||||
|
||||
# This is the template for Airflow's default configuration. When Airflow is
|
||||
# imported, it looks for a configuration file at $AIRFLOW_HOME/airflow.cfg. If
|
||||
# it doesn't exist, Airflow uses this template to generate it by replacing
|
||||
# variables in curly braces with their global values from configuration.py.
|
||||
|
||||
# Users should not modify this file; they should customize the generated
|
||||
# airflow.cfg instead.
|
||||
|
||||
|
||||
# ----------------------- TEMPLATE BEGINS HERE -----------------------
|
||||
|
||||
[core]
|
||||
# The folder where your airflow pipelines live, most likely a
|
||||
# subfolder in a code repository
|
||||
# This path must be absolute
|
||||
dags_folder = {AIRFLOW_HOME}/dags
|
||||
|
||||
# The folder where airflow should store its log files
|
||||
# This path must be absolute
|
||||
base_log_folder = {AIRFLOW_HOME}/logs
|
||||
|
||||
# Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search.
|
||||
# Users must supply an Airflow connection id that provides access to the storage
|
||||
# location. If remote_logging is set to true, see UPDATING.md for additional
|
||||
# configuration requirements.
|
||||
remote_logging = False
|
||||
remote_log_conn_id =
|
||||
remote_base_log_folder =
|
||||
encrypt_s3_logs = False
|
||||
|
||||
# Logging level
|
||||
logging_level = INFO
|
||||
fab_logging_level = WARN
|
||||
|
||||
# Logging class
|
||||
# Specify the class that will specify the logging configuration
|
||||
# This class has to be on the python classpath
|
||||
# logging_config_class = my.path.default_local_settings.LOGGING_CONFIG
|
||||
logging_config_class =
|
||||
|
||||
# Log format
|
||||
# Colour the logs when the controlling terminal is a TTY.
|
||||
colored_console_log = True
|
||||
colored_log_format = [%%(blue)s%%(asctime)s%%(reset)s] {{%%(blue)s%%(filename)s:%%(reset)s%%(lineno)d}} %%(log_color)s%%(levelname)s%%(reset)s - %%(log_color)s%%(message)s%%(reset)s
|
||||
colored_formatter_class = airflow.utils.log.colored_log.CustomTTYColoredFormatter
|
||||
|
||||
log_format = [%%(asctime)s] {{%%(filename)s:%%(lineno)d}} %%(levelname)s - %%(message)s
|
||||
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s
|
||||
|
||||
# Specify prefix pattern like mentioned below with stream handler TaskHandlerWithCustomFormatter
|
||||
# task_log_prefix_template = {{ti.dag_id}}-{{ti.task_id}}-{{execution_date}}-{{try_number}}
|
||||
task_log_prefix_template =
|
||||
|
||||
# Log filename format
|
||||
log_filename_template = {{{{ ti.dag_id }}}}/{{{{ ti.task_id }}}}/{{{{ ts }}}}/{{{{ try_number }}}}.log
|
||||
log_processor_filename_template = {{{{ filename }}}}.log
|
||||
dag_processor_manager_log_location = {AIRFLOW_HOME}/logs/dag_processor_manager/dag_processor_manager.log
|
||||
|
||||
# Hostname by providing a path to a callable, which will resolve the hostname
|
||||
# The format is "package:function". For example,
|
||||
# default value "socket:getfqdn" means that result from getfqdn() of "socket" package will be used as hostname
|
||||
# No argument should be required in the function specified.
|
||||
# If using IP address as hostname is preferred, use value "airflow.utils.net:get_host_ip_address"
|
||||
hostname_callable = socket:getfqdn
|
||||
|
||||
# Default timezone in case supplied date times are naive
|
||||
# can be utc (default), system, or any IANA timezone string (e.g. Europe/Amsterdam)
|
||||
default_timezone = utc
|
||||
|
||||
# The executor class that airflow should use. Choices include
|
||||
# SequentialExecutor, LocalExecutor, CeleryExecutor, DaskExecutor, KubernetesExecutor
|
||||
executor = CeleryExecutor
|
||||
|
||||
# The SqlAlchemy connection string to the metadata database.
|
||||
# SqlAlchemy supports many different database engine, more information
|
||||
# their website
|
||||
sql_alchemy_conn = postgresql+psycopg2://airflow:airflow@postgres:5432/airflow
|
||||
|
||||
# The encoding for the databases
|
||||
sql_engine_encoding = utf-8
|
||||
|
||||
# If SqlAlchemy should pool database connections.
|
||||
sql_alchemy_pool_enabled = True
|
||||
|
||||
# The SqlAlchemy pool size is the maximum number of database connections
|
||||
# in the pool. 0 indicates no limit.
|
||||
sql_alchemy_pool_size = 5
|
||||
|
||||
# The maximum overflow size of the pool.
|
||||
# When the number of checked-out connections reaches the size set in pool_size,
|
||||
# additional connections will be returned up to this limit.
|
||||
# When those additional connections are returned to the pool, they are disconnected and discarded.
|
||||
# It follows then that the total number of simultaneous connections the pool will allow is pool_size + max_overflow,
|
||||
# and the total number of "sleeping" connections the pool will allow is pool_size.
|
||||
# max_overflow can be set to -1 to indicate no overflow limit;
|
||||
# no limit will be placed on the total number of concurrent connections. Defaults to 10.
|
||||
sql_alchemy_max_overflow = 10
|
||||
|
||||
# The SqlAlchemy pool recycle is the number of seconds a connection
|
||||
# can be idle in the pool before it is invalidated. This config does
|
||||
# not apply to sqlite. If the number of DB connections is ever exceeded,
|
||||
# a lower config value will allow the system to recover faster.
|
||||
sql_alchemy_pool_recycle = 1800
|
||||
|
||||
# Check connection at the start of each connection pool checkout.
|
||||
# Typically, this is a simple statement like “SELECT 1”.
|
||||
# More information here: https://docs.sqlalchemy.org/en/13/core/pooling.html#disconnect-handling-pessimistic
|
||||
sql_alchemy_pool_pre_ping = True
|
||||
|
||||
# The schema to use for the metadata database
|
||||
# SqlAlchemy supports databases with the concept of multiple schemas.
|
||||
sql_alchemy_schema =
|
||||
|
||||
# The amount of parallelism as a setting to the executor. This defines
|
||||
# the max number of task instances that should run simultaneously
|
||||
# on this airflow installation
|
||||
parallelism = 32
|
||||
|
||||
# The number of task instances allowed to run concurrently by the scheduler
|
||||
dag_concurrency = 16
|
||||
|
||||
# Are DAGs paused by default at creation
|
||||
dags_are_paused_at_creation = True
|
||||
|
||||
# The maximum number of active DAG runs per DAG
|
||||
max_active_runs_per_dag = 16
|
||||
|
||||
# Whether to load the examples that ship with Airflow. It's good to
|
||||
# get started, but you probably want to set this to False in a production
|
||||
# environment
|
||||
load_examples = False
|
||||
|
||||
# Where your Airflow plugins are stored
|
||||
plugins_folder = {AIRFLOW_HOME}/plugins
|
||||
|
||||
# Secret key to save connection passwords in the db
|
||||
fernet_key = {FERNET_KEY}
|
||||
|
||||
# Whether to disable pickling dags
|
||||
donot_pickle = True
|
||||
|
||||
# How long before timing out a python file import
|
||||
dagbag_import_timeout = 30
|
||||
|
||||
# How long before timing out a DagFileProcessor, which processes a dag file
|
||||
dag_file_processor_timeout = 50
|
||||
|
||||
# The class to use for running task instances in a subprocess
|
||||
task_runner = StandardTaskRunner
|
||||
|
||||
# If set, tasks without a `run_as_user` argument will be run with this user
|
||||
# Can be used to de-elevate a sudo user running Airflow when executing tasks
|
||||
default_impersonation =
|
||||
|
||||
# What security module to use (for example kerberos):
|
||||
security =
|
||||
|
||||
# If set to False enables some unsecure features like Charts and Ad Hoc Queries.
|
||||
# In 2.0 will default to True.
|
||||
secure_mode = False
|
||||
|
||||
# Turn unit test mode on (overwrites many configuration options with test
|
||||
# values at runtime)
|
||||
unit_test_mode = False
|
||||
|
||||
# Name of handler to read task instance logs.
|
||||
# Default to use task handler.
|
||||
task_log_reader = task
|
||||
|
||||
# Whether to enable pickling for xcom (note that this is insecure and allows for
|
||||
# RCE exploits). This will be deprecated in Airflow 2.0 (be forced to False).
|
||||
enable_xcom_pickling = True
|
||||
|
||||
# When a task is killed forcefully, this is the amount of time in seconds that
|
||||
# it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED
|
||||
killed_task_cleanup_time = 60
|
||||
|
||||
# Whether to override params with dag_run.conf. If you pass some key-value pairs through `airflow dags backfill -c` or
|
||||
# `airflow dags trigger -c`, the key-value pairs will override the existing ones in params.
|
||||
dag_run_conf_overrides_params = False
|
||||
|
||||
# Worker initialisation check to validate Metadata Database connection
|
||||
worker_precheck = False
|
||||
|
||||
# When discovering DAGs, ignore any files that don't contain the strings `DAG` and `airflow`.
|
||||
dag_discovery_safe_mode = True
|
||||
|
||||
# The number of retries each task is going to have by default. Can be overridden at dag or task level.
|
||||
default_task_retries = 0
|
||||
|
||||
|
||||
[cli]
|
||||
# In what way should the cli access the API. The LocalClient will use the
|
||||
# database directly, while the json_client will use the api running on the
|
||||
# webserver
|
||||
api_client = airflow.api.client.local_client
|
||||
|
||||
# If you set web_server_url_prefix, do NOT forget to append it here, ex:
|
||||
# endpoint_url = http://localhost:8080/myroot
|
||||
# So api will look like: http://localhost:8080/myroot/api/experimental/...
|
||||
endpoint_url = http://localhost:8080
|
||||
|
||||
[api]
|
||||
# How to authenticate users of the API
|
||||
auth_backend = airflow.api.auth.backend.default
|
||||
|
||||
[lineage]
|
||||
# what lineage backend to use
|
||||
backend =
|
||||
|
||||
[atlas]
|
||||
sasl_enabled = False
|
||||
host =
|
||||
port = 21000
|
||||
username =
|
||||
password =
|
||||
|
||||
[operators]
|
||||
# The default owner assigned to each new operator, unless
|
||||
# provided explicitly or passed via `default_args`
|
||||
default_owner = airflow
|
||||
default_cpus = 1
|
||||
default_ram = 512
|
||||
default_disk = 512
|
||||
default_gpus = 0
|
||||
|
||||
[hive]
|
||||
# Default mapreduce queue for HiveOperator tasks
|
||||
default_hive_mapred_queue =
|
||||
# Template for mapred_job_name in HiveOperator, supports the following named parameters:
|
||||
# hostname, dag_id, task_id, execution_date
|
||||
mapred_job_name_template = Airflow HiveOperator task for {{hostname}}.{{dag_id}}.{{task_id}}.{{execution_date}}
|
||||
|
||||
[webserver]
|
||||
# The base url of your website as airflow cannot guess what domain or
|
||||
# cname you are using. This is used in automated emails that
|
||||
# airflow sends to point links to the right web server
|
||||
base_url = http://localhost:8080
|
||||
|
||||
# The ip specified when starting the web server
|
||||
web_server_host = 0.0.0.0
|
||||
|
||||
# The port on which to run the web server
|
||||
web_server_port = 8080
|
||||
|
||||
# Paths to the SSL certificate and key for the web server. When both are
|
||||
# provided SSL will be enabled. This does not change the web server port.
|
||||
web_server_ssl_cert =
|
||||
web_server_ssl_key =
|
||||
|
||||
# Number of seconds the webserver waits before killing gunicorn master that doesn't respond
|
||||
web_server_master_timeout = 120
|
||||
|
||||
# Number of seconds the gunicorn webserver waits before timing out on a worker
|
||||
web_server_worker_timeout = 120
|
||||
|
||||
# Number of workers to refresh at a time. When set to 0, worker refresh is
|
||||
# disabled. When nonzero, airflow periodically refreshes webserver workers by
|
||||
# bringing up new ones and killing old ones.
|
||||
worker_refresh_batch_size = 1
|
||||
|
||||
# Number of seconds to wait before refreshing a batch of workers.
|
||||
worker_refresh_interval = 30
|
||||
|
||||
# Secret key used to run your flask app
|
||||
# It should be as random as possible
|
||||
secret_key = {SECRET_KEY}
|
||||
|
||||
# Number of workers to run the Gunicorn web server
|
||||
workers = 4
|
||||
|
||||
# The worker class gunicorn should use. Choices include
|
||||
# sync (default), eventlet, gevent
|
||||
worker_class = sync
|
||||
|
||||
# Log files for the gunicorn webserver. '-' means log to stderr.
|
||||
access_logfile = -
|
||||
error_logfile = -
|
||||
|
||||
# Expose the configuration file in the web server
|
||||
expose_config = False
|
||||
|
||||
# Default DAG view. Valid values are:
|
||||
# tree, graph, duration, gantt, landing_times
|
||||
dag_default_view = tree
|
||||
|
||||
# Default DAG orientation. Valid values are:
|
||||
# LR (Left->Right), TB (Top->Bottom), RL (Right->Left), BT (Bottom->Top)
|
||||
dag_orientation = LR
|
||||
|
||||
# Puts the webserver in demonstration mode; blurs the names of Operators for
|
||||
# privacy.
|
||||
demo_mode = False
|
||||
|
||||
# The amount of time (in secs) webserver will wait for initial handshake
|
||||
# while fetching logs from other worker machine
|
||||
log_fetch_timeout_sec = 5
|
||||
|
||||
# By default, the webserver shows paused DAGs. Flip this to hide paused
|
||||
# DAGs by default
|
||||
hide_paused_dags_by_default = False
|
||||
|
||||
# Consistent page size across all listing views in the UI
|
||||
page_size = 100
|
||||
|
||||
# Define the color of navigation bar
|
||||
navbar_color = #007A87
|
||||
|
||||
# Default dagrun to show in UI
|
||||
default_dag_run_display_number = 25
|
||||
|
||||
# Enable werkzeug `ProxyFix` middleware
|
||||
enable_proxy_fix = False
|
||||
|
||||
# Set secure flag on session cookie
|
||||
cookie_secure = False
|
||||
|
||||
# Set samesite policy on session cookie
|
||||
cookie_samesite =
|
||||
|
||||
# Default setting for wrap toggle on DAG code and TI log views.
|
||||
default_wrap = False
|
||||
|
||||
# Send anonymous user activity to your analytics tool
|
||||
# analytics_tool = # choose from google_analytics, segment, or metarouter
|
||||
# analytics_id = XXXXXXXXXXX
|
||||
|
||||
[email]
|
||||
email_backend = airflow.utils.email.send_email_smtp
|
||||
|
||||
|
||||
[smtp]
|
||||
# If you want airflow to send emails on retries, failure, and you want to use
|
||||
# the airflow.utils.email.send_email_smtp function, you have to configure an
|
||||
# smtp server here
|
||||
smtp_host = localhost
|
||||
smtp_starttls = True
|
||||
smtp_ssl = False
|
||||
# Uncomment and set the user/pass settings if you want to use SMTP AUTH
|
||||
# smtp_user = airflow
|
||||
# smtp_password = airflow
|
||||
smtp_port = 25
|
||||
smtp_mail_from = airflow@example.com
|
||||
|
||||
[sentry]
|
||||
# Sentry (https://docs.sentry.io) integration
|
||||
sentry_dsn =
|
||||
|
||||
|
||||
[celery]
|
||||
# This section only applies if you are using the CeleryExecutor in
|
||||
# [core] section above
|
||||
|
||||
# The app name that will be used by celery
|
||||
celery_app_name = airflow.executors.celery_executor
|
||||
|
||||
# The concurrency that will be used when starting workers with the
|
||||
# "airflow worker" command. This defines the number of task instances that
|
||||
# a worker will take, so size up your workers based on the resources on
|
||||
# your worker box and the nature of your tasks
|
||||
worker_concurrency = 16
|
||||
|
||||
# The maximum and minimum concurrency that will be used when starting workers with the
|
||||
# "airflow worker" command (always keep minimum processes, but grow to maximum if necessary).
|
||||
# Note the value should be "max_concurrency,min_concurrency"
|
||||
# Pick these numbers based on resources on worker box and the nature of the task.
|
||||
# If autoscale option is available, worker_concurrency will be ignored.
|
||||
# http://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html#cmdoption-celery-worker-autoscale
|
||||
# worker_autoscale = 16,12
|
||||
|
||||
# When you start an airflow worker, airflow starts a tiny web server
|
||||
# subprocess to serve the workers local log files to the airflow main
|
||||
# web server, who then builds pages and sends them to users. This defines
|
||||
# the port on which the logs are served. It needs to be unused, and open
|
||||
# visible from the main web server to connect into the workers.
|
||||
worker_log_server_port = 8793
|
||||
|
||||
# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
|
||||
# a sqlalchemy database. Refer to the Celery documentation for more
|
||||
# information.
|
||||
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#broker-settings
|
||||
broker_url = redis://redis:6379/1
|
||||
|
||||
# The Celery result_backend. When a job finishes, it needs to update the
|
||||
# metadata of the job. Therefore it will post a message on a message bus,
|
||||
# or insert it into a database (depending of the backend)
|
||||
# This status is used by the scheduler to update the state of the task
|
||||
# The use of a database is highly recommended
|
||||
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-result-backend-settings
|
||||
result_backend = db+postgresql://airflow:airflow@postgres/airflow
|
||||
|
||||
# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
|
||||
# it `airflow flower`. This defines the IP that Celery Flower runs on
|
||||
flower_host = 0.0.0.0
|
||||
|
||||
# The root URL for Flower
|
||||
# Ex: flower_url_prefix = /flower
|
||||
flower_url_prefix =
|
||||
|
||||
# This defines the port that Celery Flower runs on
|
||||
flower_port = 5555
|
||||
|
||||
# Securing Flower with Basic Authentication
|
||||
# Accepts user:password pairs separated by a comma
|
||||
# Example: flower_basic_auth = user1:password1,user2:password2
|
||||
flower_basic_auth =
|
||||
|
||||
# Default queue that tasks get assigned to and that worker listen on.
|
||||
default_queue = default
|
||||
|
||||
# How many processes CeleryExecutor uses to sync task state.
|
||||
# 0 means to use max(1, number of cores - 1) processes.
|
||||
sync_parallelism = 0
|
||||
|
||||
# Import path for celery configuration options
|
||||
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG
|
||||
|
||||
# In case of using SSL
|
||||
ssl_active = False
|
||||
ssl_key =
|
||||
ssl_cert =
|
||||
ssl_cacert =
|
||||
|
||||
# Celery Pool implementation.
|
||||
# Choices include: prefork (default), eventlet, gevent or solo.
|
||||
# See:
|
||||
# https://docs.celeryproject.org/en/latest/userguide/workers.html#concurrency
|
||||
# https://docs.celeryproject.org/en/latest/userguide/concurrency/eventlet.html
|
||||
pool = prefork
|
||||
|
||||
[celery_broker_transport_options]
|
||||
# This section is for specifying options which can be passed to the
|
||||
# underlying celery broker transport. See:
|
||||
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_transport_options
|
||||
|
||||
# The visibility timeout defines the number of seconds to wait for the worker
|
||||
# to acknowledge the task before the message is redelivered to another worker.
|
||||
# Make sure to increase the visibility timeout to match the time of the longest
|
||||
# ETA you're planning to use.
|
||||
#
|
||||
# visibility_timeout is only supported for Redis and SQS celery brokers.
|
||||
# See:
|
||||
# http://docs.celeryproject.org/en/master/userguide/configuration.html#std:setting-broker_transport_options
|
||||
#
|
||||
#visibility_timeout = 21600
|
||||
|
||||
[dask]
|
||||
# This section only applies if you are using the DaskExecutor in
|
||||
# [core] section above
|
||||
|
||||
# The IP address and port of the Dask cluster's scheduler.
|
||||
cluster_address = 127.0.0.1:8786
|
||||
# TLS/ SSL settings to access a secured Dask scheduler.
|
||||
tls_ca =
|
||||
tls_cert =
|
||||
tls_key =
|
||||
|
||||
|
||||
[scheduler]
|
||||
# Task instances listen for external kill signal (when you clear tasks
|
||||
# from the CLI or the UI), this defines the frequency at which they should
|
||||
# listen (in seconds).
|
||||
job_heartbeat_sec = 5
|
||||
|
||||
# The scheduler constantly tries to trigger new tasks (look at the
|
||||
# scheduler section in the docs for more information). This defines
|
||||
# how often the scheduler should run (in seconds).
|
||||
scheduler_heartbeat_sec = 5
|
||||
|
||||
# The number of times to try to schedule each DAG file
|
||||
# -1 indicates unlimited number
|
||||
num_runs = -1
|
||||
|
||||
# The number of seconds to wait between consecutive DAG file processing
|
||||
processor_poll_interval = 1
|
||||
|
||||
# after how much time (seconds) a new DAGs should be picked up from the filesystem
|
||||
min_file_process_interval = 0
|
||||
|
||||
# How often (in seconds) to scan the DAGs directory for new files. Default to 5 minutes.
|
||||
dag_dir_list_interval = 300
|
||||
|
||||
# How often should stats be printed to the logs
|
||||
print_stats_interval = 30
|
||||
|
||||
# If the last scheduler heartbeat happened more than scheduler_health_check_threshold ago (in seconds),
|
||||
# scheduler is considered unhealthy.
|
||||
# This is used by the health check in the "/health" endpoint
|
||||
scheduler_health_check_threshold = 30
|
||||
|
||||
child_process_log_directory = {AIRFLOW_HOME}/logs/scheduler
|
||||
|
||||
# Local task jobs periodically heartbeat to the DB. If the job has
|
||||
# not heartbeat in this many seconds, the scheduler will mark the
|
||||
# associated task instance as failed and will re-schedule the task.
|
||||
scheduler_zombie_task_threshold = 300
|
||||
|
||||
# Turn off scheduler catchup by setting this to False.
|
||||
# Default behavior is unchanged and
|
||||
# Command Line Backfills still work, but the scheduler
|
||||
# will not do scheduler catchup if this is False,
|
||||
# however it can be set on a per DAG basis in the
|
||||
# DAG definition (catchup)
|
||||
catchup_by_default = True
|
||||
|
||||
# This changes the batch size of queries in the scheduling main loop.
|
||||
# If this is too high, SQL query performance may be impacted by one
|
||||
# or more of the following:
|
||||
# - reversion to full table scan
|
||||
# - complexity of query predicate
|
||||
# - excessive locking
|
||||
#
|
||||
# Additionally, you may hit the maximum allowable query length for your db.
|
||||
#
|
||||
# Set this to 0 for no limit (not advised)
|
||||
max_tis_per_query = 512
|
||||
|
||||
# Statsd (https://github.com/etsy/statsd) integration settings
|
||||
statsd_on = False
|
||||
statsd_host = localhost
|
||||
statsd_port = 8125
|
||||
statsd_prefix = airflow
|
||||
|
||||
# If you want to avoid send all the available metrics to StatsD,
|
||||
# you can configure an allow list of prefixes to send only the metrics that
|
||||
# start with the elements of the list (e.g: scheduler,executor,dagrun)
|
||||
statsd_allow_list =
|
||||
|
||||
# The scheduler can run multiple threads in parallel to schedule dags.
|
||||
# This defines how many threads will run.
|
||||
max_threads = 2
|
||||
|
||||
authenticate = False
|
||||
|
||||
# Turn off scheduler use of cron intervals by setting this to False.
|
||||
# DAGs submitted manually in the web UI or with trigger_dag will still run.
|
||||
use_job_schedule = True
|
||||
|
||||
[ldap]
|
||||
# set this to ldaps://<your.ldap.server>:<port>
|
||||
uri =
|
||||
user_filter = objectClass=*
|
||||
user_name_attr = uid
|
||||
group_member_attr = memberOf
|
||||
superuser_filter =
|
||||
data_profiler_filter =
|
||||
bind_user = cn=Manager,dc=example,dc=com
|
||||
bind_password = insecure
|
||||
basedn = dc=example,dc=com
|
||||
cacert = /etc/ca/ldap_ca.crt
|
||||
search_scope = LEVEL
|
||||
|
||||
# This setting allows the use of LDAP servers that either return a
|
||||
# broken schema, or do not return a schema.
|
||||
ignore_malformed_schema = False
|
||||
|
||||
[kerberos]
|
||||
ccache = /tmp/airflow_krb5_ccache
|
||||
# gets augmented with fqdn
|
||||
principal = airflow
|
||||
reinit_frequency = 3600
|
||||
kinit_path = kinit
|
||||
keytab = airflow.keytab
|
||||
|
||||
|
||||
[github_enterprise]
|
||||
api_rev = v3
|
||||
|
||||
[admin]
|
||||
# UI to hide sensitive variable fields when set to True
|
||||
hide_sensitive_variable_fields = True
|
||||
|
||||
[elasticsearch]
|
||||
# Elasticsearch host
|
||||
host =
|
||||
# Format of the log_id, which is used to query for a given tasks logs
|
||||
log_id_template = {{dag_id}}-{{task_id}}-{{execution_date}}-{{try_number}}
|
||||
# Used to mark the end of a log stream for a task
|
||||
end_of_log_mark = end_of_log
|
||||
# Qualified URL for an elasticsearch frontend (like Kibana) with a template argument for log_id
|
||||
# Code will construct log_id using the log_id template from the argument above.
|
||||
# NOTE: The code will prefix the https:// automatically, don't include that here.
|
||||
frontend =
|
||||
# Write the task logs to the stdout of the worker, rather than the default files
|
||||
write_stdout = False
|
||||
# Instead of the default log formatter, write the log lines as JSON
|
||||
json_format = False
|
||||
# Log fields to also attach to the json output, if enabled
|
||||
json_fields = asctime, filename, lineno, levelname, message
|
||||
|
||||
[elasticsearch_configs]
|
||||
|
||||
use_ssl = False
|
||||
verify_certs = True
|
||||
|
||||
[kubernetes]
|
||||
# The repository, tag and imagePullPolicy of the Kubernetes Image for the Worker to Run
|
||||
worker_container_repository =
|
||||
worker_container_tag =
|
||||
worker_container_image_pull_policy = IfNotPresent
|
||||
|
||||
# If True (default), worker pods will be deleted upon termination
|
||||
delete_worker_pods = True
|
||||
|
||||
# Number of Kubernetes Worker Pod creation calls per scheduler loop
|
||||
worker_pods_creation_batch_size = 1
|
||||
|
||||
# The Kubernetes namespace where airflow workers should be created. Defaults to `default`
|
||||
namespace = default
|
||||
|
||||
# The name of the Kubernetes ConfigMap Containing the Airflow Configuration (this file)
|
||||
airflow_configmap =
|
||||
|
||||
# For docker image already contains DAGs, this is set to `True`, and the worker will search for dags in dags_folder,
|
||||
# otherwise use git sync or dags volume claim to mount DAGs
|
||||
dags_in_image = False
|
||||
|
||||
# For either git sync or volume mounted DAGs, the worker will look in this subpath for DAGs
|
||||
dags_volume_subpath =
|
||||
|
||||
# For DAGs mounted via a volume claim (mutually exclusive with git-sync and host path)
|
||||
dags_volume_claim =
|
||||
|
||||
# For volume mounted logs, the worker will look in this subpath for logs
|
||||
logs_volume_subpath =
|
||||
|
||||
# A shared volume claim for the logs
|
||||
logs_volume_claim =
|
||||
|
||||
# For DAGs mounted via a hostPath volume (mutually exclusive with volume claim and git-sync)
|
||||
# Useful in local environment, discouraged in production
|
||||
dags_volume_host =
|
||||
|
||||
# A hostPath volume for the logs
|
||||
# Useful in local environment, discouraged in production
|
||||
logs_volume_host =
|
||||
|
||||
# A list of configMapsRefs to envFrom. If more than one configMap is
|
||||
# specified, provide a comma separated list: configmap_a,configmap_b
|
||||
env_from_configmap_ref =
|
||||
|
||||
# A list of secretRefs to envFrom. If more than one secret is
|
||||
# specified, provide a comma separated list: secret_a,secret_b
|
||||
env_from_secret_ref =
|
||||
|
||||
# Git credentials and repository for DAGs mounted via Git (mutually exclusive with volume claim)
|
||||
git_repo =
|
||||
git_branch =
|
||||
git_subpath =
|
||||
# Use git_user and git_password for user authentication or git_ssh_key_secret_name and git_ssh_key_secret_key
|
||||
# for SSH authentication
|
||||
git_user =
|
||||
git_password =
|
||||
git_sync_root = /git
|
||||
git_sync_dest = repo
|
||||
# Mount point of the volume if git-sync is being used.
|
||||
# i.e. {AIRFLOW_HOME}/dags
|
||||
git_dags_folder_mount_point =
|
||||
|
||||
# To get Git-sync SSH authentication set up follow this format
|
||||
#
|
||||
# airflow-secrets.yaml:
|
||||
# ---
|
||||
# apiVersion: v1
|
||||
# kind: Secret
|
||||
# metadata:
|
||||
# name: airflow-secrets
|
||||
# data:
|
||||
# # key needs to be gitSshKey
|
||||
# gitSshKey: <base64_encoded_data>
|
||||
# ---
|
||||
# airflow-configmap.yaml:
|
||||
# apiVersion: v1
|
||||
# kind: ConfigMap
|
||||
# metadata:
|
||||
# name: airflow-configmap
|
||||
# data:
|
||||
# known_hosts: |
|
||||
# github.com ssh-rsa <...>
|
||||
# airflow.cfg: |
|
||||
# ...
|
||||
#
|
||||
# git_ssh_key_secret_name = airflow-secrets
|
||||
# git_ssh_known_hosts_configmap_name = airflow-configmap
|
||||
git_ssh_key_secret_name =
|
||||
git_ssh_known_hosts_configmap_name =
|
||||
|
||||
# To give the git_sync init container credentials via a secret, create a secret
|
||||
# with two fields: GIT_SYNC_USERNAME and GIT_SYNC_PASSWORD (example below) and
|
||||
# add `git_sync_credentials_secret = <secret_name>` to your airflow config under the kubernetes section
|
||||
#
|
||||
# Secret Example:
|
||||
# apiVersion: v1
|
||||
# kind: Secret
|
||||
# metadata:
|
||||
# name: git-credentials
|
||||
# data:
|
||||
# GIT_SYNC_USERNAME: <base64_encoded_git_username>
|
||||
# GIT_SYNC_PASSWORD: <base64_encoded_git_password>
|
||||
git_sync_credentials_secret =
|
||||
|
||||
# For cloning DAGs from git repositories into volumes: https://github.com/kubernetes/git-sync
|
||||
git_sync_container_repository = k8s.gcr.io/git-sync
|
||||
git_sync_container_tag = v3.1.1
|
||||
git_sync_init_container_name = git-sync-clone
|
||||
git_sync_run_as_user = 65533
|
||||
|
||||
# The name of the Kubernetes service account to be associated with airflow workers, if any.
|
||||
# Service accounts are required for workers that require access to secrets or cluster resources.
|
||||
# See the Kubernetes RBAC documentation for more:
|
||||
# https://kubernetes.io/docs/admin/authorization/rbac/
|
||||
worker_service_account_name =
|
||||
|
||||
# Any image pull secrets to be given to worker pods, If more than one secret is
|
||||
# required, provide a comma separated list: secret_a,secret_b
|
||||
image_pull_secrets =
|
||||
|
||||
# GCP Service Account Keys to be provided to tasks run on Kubernetes Executors
|
||||
# Should be supplied in the format: key-name-1:key-path-1,key-name-2:key-path-2
|
||||
gcp_service_account_keys =
|
||||
|
||||
# Use the service account kubernetes gives to pods to connect to kubernetes cluster.
|
||||
# It's intended for clients that expect to be running inside a pod running on kubernetes.
|
||||
# It will raise an exception if called from a process not running in a kubernetes environment.
|
||||
in_cluster = True
|
||||
|
||||
# When running with in_cluster=False change the default cluster_context or config_file
|
||||
# options to Kubernetes client. Leave blank these to use default behaviour like `kubectl` has.
|
||||
# cluster_context =
|
||||
# config_file =
|
||||
|
||||
|
||||
# Affinity configuration as a single line formatted JSON object.
|
||||
# See the affinity model for top-level key names (e.g. `nodeAffinity`, etc.):
|
||||
# https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.12/#affinity-v1-core
|
||||
affinity =
|
||||
|
||||
# A list of toleration objects as a single line formatted JSON array
|
||||
# See:
|
||||
# https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.12/#toleration-v1-core
|
||||
tolerations =
|
||||
|
||||
# **kwargs parameters to pass while calling a kubernetes client core_v1_api methods from Kubernetes Executor
|
||||
# provided as a single line formatted JSON dictionary string.
|
||||
# List of supported params in **kwargs are similar for all core_v1_apis, hence a single config variable for all apis
|
||||
# See:
|
||||
# https://raw.githubusercontent.com/kubernetes-client/python/master/kubernetes/client/apis/core_v1_api.py
|
||||
kube_client_request_args =
|
||||
|
||||
# Worker pods security context options
|
||||
# See:
|
||||
# https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
|
||||
|
||||
# Specifies the uid to run the first process of the worker pods containers as
|
||||
run_as_user =
|
||||
|
||||
# Specifies a gid to associate with all containers in the worker pods
|
||||
# if using a git_ssh_key_secret_name use an fs_group
|
||||
# that allows for the key to be read, e.g. 65533
|
||||
fs_group =
|
||||
|
||||
# Annotations configuration as a single line formatted JSON object.
|
||||
# See the naming convention in:
|
||||
# https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
|
||||
worker_annotations =
|
||||
|
||||
|
||||
[kubernetes_node_selectors]
|
||||
# The Key-value pairs to be given to worker pods.
|
||||
# The worker pods will be scheduled to the nodes of the specified key-value pairs.
|
||||
# Should be supplied in the format: key = value
|
||||
|
||||
[kubernetes_environment_variables]
|
||||
# The scheduler sets the following environment variables into your workers. You may define as
|
||||
# many environment variables as needed and the kubernetes launcher will set them in the launched workers.
|
||||
# Environment variables in this section are defined as follows
|
||||
# <environment_variable_key> = <environment_variable_value>
|
||||
#
|
||||
# For example if you wanted to set an environment variable with value `prod` and key
|
||||
# `ENVIRONMENT` you would follow the following format:
|
||||
# ENVIRONMENT = prod
|
||||
#
|
||||
# Additionally you may override worker airflow settings with the AIRFLOW__<SECTION>__<KEY>
|
||||
# formatting as supported by airflow normally.
|
||||
|
||||
[kubernetes_secrets]
|
||||
# The scheduler mounts the following secrets into your workers as they are launched by the
|
||||
# scheduler. You may define as many secrets as needed and the kubernetes launcher will parse the
|
||||
# defined secrets and mount them as secret environment variables in the launched workers.
|
||||
# Secrets in this section are defined as follows
|
||||
# <environment_variable_mount> = <kubernetes_secret_object>=<kubernetes_secret_key>
|
||||
#
|
||||
# For example if you wanted to mount a kubernetes secret key named `postgres_password` from the
|
||||
# kubernetes secret object `airflow-secret` as the environment variable `POSTGRES_PASSWORD` into
|
||||
# your workers you would follow the following format:
|
||||
# POSTGRES_PASSWORD = airflow-secret=postgres_credentials
|
||||
#
|
||||
# Additionally you may override worker airflow settings with the AIRFLOW__<SECTION>__<KEY>
|
||||
# formatting as supported by airflow normally.
|
||||
|
||||
[kubernetes_labels]
|
||||
# The Key-value pairs to be given to worker pods.
|
||||
# The worker pods will be given these static labels, as well as some additional dynamic labels
|
||||
# to identify the task.
|
||||
# Should be supplied in the format: key = value
|
0
airflow/data/dags/.gitkeep
Normal file
0
airflow/data/dags/.gitkeep
Normal file
0
airflow/data/dags/__init__.py
Normal file
0
airflow/data/dags/__init__.py
Normal file
104
airflow/data/dags/tutorial.py
Normal file
104
airflow/data/dags/tutorial.py
Normal file
@ -0,0 +1,104 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Licensed to the Apache Software Foundation (ASF) under one
|
||||
# or more contributor license agreements. See the NOTICE file
|
||||
# distributed with this work for additional information
|
||||
# regarding copyright ownership. The ASF licenses this file
|
||||
# to you under the Apache License, Version 2.0 (the
|
||||
# "License"); you may not use this file except in compliance
|
||||
# with the License. You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing,
|
||||
# software distributed under the License is distributed on an
|
||||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
# KIND, either express or implied. See the License for the
|
||||
# specific language governing permissions and limitations
|
||||
# under the License.
|
||||
|
||||
"""
|
||||
### Tutorial Documentation
|
||||
Documentation that goes along with the Airflow tutorial located
|
||||
[here](https://airflow.apache.org/tutorial.html)
|
||||
"""
|
||||
from datetime import timedelta
|
||||
|
||||
import airflow
|
||||
from airflow import DAG
|
||||
from airflow.operators.bash_operator import BashOperator
|
||||
|
||||
# These args will get passed on to each operator
|
||||
# You can override them on a per-task basis during operator initialization
|
||||
default_args = {
|
||||
'owner': 'Airflow',
|
||||
'depends_on_past': False,
|
||||
'start_date': airflow.utils.dates.days_ago(2),
|
||||
'email': ['airflow@example.com'],
|
||||
'email_on_failure': False,
|
||||
'email_on_retry': False,
|
||||
'retries': 1,
|
||||
'retry_delay': timedelta(minutes=5),
|
||||
# 'queue': 'bash_queue',
|
||||
# 'pool': 'backfill',
|
||||
# 'priority_weight': 10,
|
||||
# 'end_date': datetime(2016, 1, 1),
|
||||
# 'wait_for_downstream': False,
|
||||
# 'dag': dag,
|
||||
# 'sla': timedelta(hours=2),
|
||||
# 'execution_timeout': timedelta(seconds=300),
|
||||
# 'on_failure_callback': some_function,
|
||||
# 'on_success_callback': some_other_function,
|
||||
# 'on_retry_callback': another_function,
|
||||
# 'sla_miss_callback': yet_another_function,
|
||||
# 'trigger_rule': 'all_success'
|
||||
}
|
||||
|
||||
dag = DAG(
|
||||
'tutorial',
|
||||
default_args=default_args,
|
||||
description='A simple tutorial DAG',
|
||||
schedule_interval=timedelta(days=1),
|
||||
)
|
||||
|
||||
# t1, t2 and t3 are examples of tasks created by instantiating operators
|
||||
t1 = BashOperator(
|
||||
task_id='print_date',
|
||||
bash_command='date',
|
||||
dag=dag,
|
||||
)
|
||||
|
||||
t1.doc_md = """\
|
||||
#### Task Documentation
|
||||
You can document your task using the attributes `doc_md` (markdown),
|
||||
`doc` (plain text), `doc_rst`, `doc_json`, `doc_yaml` which gets
|
||||
rendered in the UI's Task Instance Details page.
|
||||
![img](http://montcs.bloomu.edu/~bobmon/Semesters/2012-01/491/import%20soul.png)
|
||||
"""
|
||||
|
||||
dag.doc_md = __doc__
|
||||
|
||||
t2 = BashOperator(
|
||||
task_id='sleep',
|
||||
depends_on_past=False,
|
||||
bash_command='sleep 5',
|
||||
dag=dag,
|
||||
)
|
||||
|
||||
templated_command = """
|
||||
{% for i in range(5) %}
|
||||
echo "{{ ds }}"
|
||||
echo "{{ macros.ds_add(ds, 7)}}"
|
||||
echo "{{ params.my_param }}"
|
||||
{% endfor %}
|
||||
"""
|
||||
|
||||
t3 = BashOperator(
|
||||
task_id='templated',
|
||||
depends_on_past=False,
|
||||
bash_command=templated_command,
|
||||
params={'my_param': 'Parameter I passed in'},
|
||||
dag=dag,
|
||||
)
|
||||
|
||||
t1 >> [t2, t3]
|
825
airflow/data/default_airflow.cfg
Normal file
825
airflow/data/default_airflow.cfg
Normal file
@ -0,0 +1,825 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# Licensed to the Apache Software Foundation (ASF) under one
|
||||
# or more contributor license agreements. See the NOTICE file
|
||||
# distributed with this work for additional information
|
||||
# regarding copyright ownership. The ASF licenses this file
|
||||
# to you under the Apache License, Version 2.0 (the
|
||||
# "License"); you may not use this file except in compliance
|
||||
# with the License. You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing,
|
||||
# software distributed under the License is distributed on an
|
||||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
||||
# KIND, either express or implied. See the License for the
|
||||
# specific language governing permissions and limitations
|
||||
# under the License.
|
||||
|
||||
|
||||
# This is the template for Airflow's default configuration. When Airflow is
|
||||
# imported, it looks for a configuration file at $AIRFLOW_HOME/airflow.cfg. If
|
||||
# it doesn't exist, Airflow uses this template to generate it by replacing
|
||||
# variables in curly braces with their global values from configuration.py.
|
||||
|
||||
# Users should not modify this file; they should customize the generated
|
||||
# airflow.cfg instead.
|
||||
|
||||
|
||||
# ----------------------- TEMPLATE BEGINS HERE -----------------------
|
||||
|
||||
[core]
|
||||
# The folder where your airflow pipelines live, most likely a
|
||||
# subfolder in a code repository
|
||||
# This path must be absolute
|
||||
dags_folder = {AIRFLOW_HOME}/dags
|
||||
|
||||
# The folder where airflow should store its log files
|
||||
# This path must be absolute
|
||||
base_log_folder = {AIRFLOW_HOME}/logs
|
||||
|
||||
# Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search.
|
||||
# Users must supply an Airflow connection id that provides access to the storage
|
||||
# location. If remote_logging is set to true, see UPDATING.md for additional
|
||||
# configuration requirements.
|
||||
remote_logging = False
|
||||
remote_log_conn_id =
|
||||
remote_base_log_folder =
|
||||
encrypt_s3_logs = False
|
||||
|
||||
# Logging level
|
||||
logging_level = INFO
|
||||
fab_logging_level = WARN
|
||||
|
||||
# Logging class
|
||||
# Specify the class that will specify the logging configuration
|
||||
# This class has to be on the python classpath
|
||||
# logging_config_class = my.path.default_local_settings.LOGGING_CONFIG
|
||||
logging_config_class =
|
||||
|
||||
# Log format
|
||||
# Colour the logs when the controlling terminal is a TTY.
|
||||
colored_console_log = True
|
||||
colored_log_format = [%%(blue)s%%(asctime)s%%(reset)s] {{%%(blue)s%%(filename)s:%%(reset)s%%(lineno)d}} %%(log_color)s%%(levelname)s%%(reset)s - %%(log_color)s%%(message)s%%(reset)s
|
||||
colored_formatter_class = airflow.utils.log.colored_log.CustomTTYColoredFormatter
|
||||
|
||||
log_format = [%%(asctime)s] {{%%(filename)s:%%(lineno)d}} %%(levelname)s - %%(message)s
|
||||
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s
|
||||
|
||||
# Specify prefix pattern like mentioned below with stream handler TaskHandlerWithCustomFormatter
|
||||
# task_log_prefix_template = {{ti.dag_id}}-{{ti.task_id}}-{{execution_date}}-{{try_number}}
|
||||
task_log_prefix_template =
|
||||
|
||||
# Log filename format
|
||||
log_filename_template = {{{{ ti.dag_id }}}}/{{{{ ti.task_id }}}}/{{{{ ts }}}}/{{{{ try_number }}}}.log
|
||||
log_processor_filename_template = {{{{ filename }}}}.log
|
||||
dag_processor_manager_log_location = {AIRFLOW_HOME}/logs/dag_processor_manager/dag_processor_manager.log
|
||||
|
||||
# Hostname by providing a path to a callable, which will resolve the hostname
|
||||
# The format is "package:function". For example,
|
||||
# default value "socket:getfqdn" means that result from getfqdn() of "socket" package will be used as hostname
|
||||
# No argument should be required in the function specified.
|
||||
# If using IP address as hostname is preferred, use value "airflow.utils.net:get_host_ip_address"
|
||||
hostname_callable = socket:getfqdn
|
||||
|
||||
# Default timezone in case supplied date times are naive
|
||||
# can be utc (default), system, or any IANA timezone string (e.g. Europe/Amsterdam)
|
||||
default_timezone = utc
|
||||
|
||||
# The executor class that airflow should use. Choices include
|
||||
# SequentialExecutor, LocalExecutor, CeleryExecutor, DaskExecutor, KubernetesExecutor
|
||||
executor = SequentialExecutor
|
||||
|
||||
# The SqlAlchemy connection string to the metadata database.
|
||||
# SqlAlchemy supports many different database engine, more information
|
||||
# their website
|
||||
sql_alchemy_conn = sqlite:///{AIRFLOW_HOME}/airflow.db
|
||||
|
||||
# The encoding for the databases
|
||||
sql_engine_encoding = utf-8
|
||||
|
||||
# If SqlAlchemy should pool database connections.
|
||||
sql_alchemy_pool_enabled = True
|
||||
|
||||
# The SqlAlchemy pool size is the maximum number of database connections
|
||||
# in the pool. 0 indicates no limit.
|
||||
sql_alchemy_pool_size = 5
|
||||
|
||||
# The maximum overflow size of the pool.
|
||||
# When the number of checked-out connections reaches the size set in pool_size,
|
||||
# additional connections will be returned up to this limit.
|
||||
# When those additional connections are returned to the pool, they are disconnected and discarded.
|
||||
# It follows then that the total number of simultaneous connections the pool will allow is pool_size + max_overflow,
|
||||
# and the total number of "sleeping" connections the pool will allow is pool_size.
|
||||
# max_overflow can be set to -1 to indicate no overflow limit;
|
||||
# no limit will be placed on the total number of concurrent connections. Defaults to 10.
|
||||
sql_alchemy_max_overflow = 10
|
||||
|
||||
# The SqlAlchemy pool recycle is the number of seconds a connection
|
||||
# can be idle in the pool before it is invalidated. This config does
|
||||
# not apply to sqlite. If the number of DB connections is ever exceeded,
|
||||
# a lower config value will allow the system to recover faster.
|
||||
sql_alchemy_pool_recycle = 1800
|
||||
|
||||
# Check connection at the start of each connection pool checkout.
|
||||
# Typically, this is a simple statement like “SELECT 1”.
|
||||
# More information here: https://docs.sqlalchemy.org/en/13/core/pooling.html#disconnect-handling-pessimistic
|
||||
sql_alchemy_pool_pre_ping = True
|
||||
|
||||
# The schema to use for the metadata database
|
||||
# SqlAlchemy supports databases with the concept of multiple schemas.
|
||||
sql_alchemy_schema =
|
||||
|
||||
# The amount of parallelism as a setting to the executor. This defines
|
||||
# the max number of task instances that should run simultaneously
|
||||
# on this airflow installation
|
||||
parallelism = 32
|
||||
|
||||
# The number of task instances allowed to run concurrently by the scheduler
|
||||
dag_concurrency = 16
|
||||
|
||||
# Are DAGs paused by default at creation
|
||||
dags_are_paused_at_creation = True
|
||||
|
||||
# The maximum number of active DAG runs per DAG
|
||||
max_active_runs_per_dag = 16
|
||||
|
||||
# Whether to load the examples that ship with Airflow. It's good to
|
||||
# get started, but you probably want to set this to False in a production
|
||||
# environment
|
||||
load_examples = True
|
||||
|
||||
# Where your Airflow plugins are stored
|
||||
plugins_folder = {AIRFLOW_HOME}/plugins
|
||||
|
||||
# Secret key to save connection passwords in the db
|
||||
fernet_key = {FERNET_KEY}
|
||||
|
||||
# Whether to disable pickling dags
|
||||
donot_pickle = True
|
||||
|
||||
# How long before timing out a python file import
|
||||
dagbag_import_timeout = 30
|
||||
|
||||
# How long before timing out a DagFileProcessor, which processes a dag file
|
||||
dag_file_processor_timeout = 50
|
||||
|
||||
# The class to use for running task instances in a subprocess
|
||||
task_runner = StandardTaskRunner
|
||||
|
||||
# If set, tasks without a `run_as_user` argument will be run with this user
|
||||
# Can be used to de-elevate a sudo user running Airflow when executing tasks
|
||||
default_impersonation =
|
||||
|
||||
# What security module to use (for example kerberos):
|
||||
security =
|
||||
|
||||
# If set to False enables some unsecure features like Charts and Ad Hoc Queries.
|
||||
# In 2.0 will default to True.
|
||||
secure_mode = False
|
||||
|
||||
# Turn unit test mode on (overwrites many configuration options with test
|
||||
# values at runtime)
|
||||
unit_test_mode = False
|
||||
|
||||
# Name of handler to read task instance logs.
|
||||
# Default to use task handler.
|
||||
task_log_reader = task
|
||||
|
||||
# Whether to enable pickling for xcom (note that this is insecure and allows for
|
||||
# RCE exploits). This will be deprecated in Airflow 2.0 (be forced to False).
|
||||
enable_xcom_pickling = True
|
||||
|
||||
# When a task is killed forcefully, this is the amount of time in seconds that
|
||||
# it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED
|
||||
killed_task_cleanup_time = 60
|
||||
|
||||
# Whether to override params with dag_run.conf. If you pass some key-value pairs through `airflow dags backfill -c` or
|
||||
# `airflow dags trigger -c`, the key-value pairs will override the existing ones in params.
|
||||
dag_run_conf_overrides_params = False
|
||||
|
||||
# Worker initialisation check to validate Metadata Database connection
|
||||
worker_precheck = False
|
||||
|
||||
# When discovering DAGs, ignore any files that don't contain the strings `DAG` and `airflow`.
|
||||
dag_discovery_safe_mode = True
|
||||
|
||||
# The number of retries each task is going to have by default. Can be overridden at dag or task level.
|
||||
default_task_retries = 0
|
||||
|
||||
|
||||
[cli]
|
||||
# In what way should the cli access the API. The LocalClient will use the
|
||||
# database directly, while the json_client will use the api running on the
|
||||
# webserver
|
||||
api_client = airflow.api.client.local_client
|
||||
|
||||
# If you set web_server_url_prefix, do NOT forget to append it here, ex:
|
||||
# endpoint_url = http://localhost:8080/myroot
|
||||
# So api will look like: http://localhost:8080/myroot/api/experimental/...
|
||||
endpoint_url = http://localhost:8080
|
||||
|
||||
[api]
|
||||
# How to authenticate users of the API
|
||||
auth_backend = airflow.api.auth.backend.default
|
||||
|
||||
[lineage]
|
||||
# what lineage backend to use
|
||||
backend =
|
||||
|
||||
[atlas]
|
||||
sasl_enabled = False
|
||||
host =
|
||||
port = 21000
|
||||
username =
|
||||
password =
|
||||
|
||||
[operators]
|
||||
# The default owner assigned to each new operator, unless
|
||||
# provided explicitly or passed via `default_args`
|
||||
default_owner = airflow
|
||||
default_cpus = 1
|
||||
default_ram = 512
|
||||
default_disk = 512
|
||||
default_gpus = 0
|
||||
|
||||
[hive]
|
||||
# Default mapreduce queue for HiveOperator tasks
|
||||
default_hive_mapred_queue =
|
||||
# Template for mapred_job_name in HiveOperator, supports the following named parameters:
|
||||
# hostname, dag_id, task_id, execution_date
|
||||
mapred_job_name_template = Airflow HiveOperator task for {{hostname}}.{{dag_id}}.{{task_id}}.{{execution_date}}
|
||||
|
||||
[webserver]
|
||||
# The base url of your website as airflow cannot guess what domain or
|
||||
# cname you are using. This is used in automated emails that
|
||||
# airflow sends to point links to the right web server
|
||||
base_url = http://localhost:8080
|
||||
|
||||
# The ip specified when starting the web server
|
||||
web_server_host = 0.0.0.0
|
||||
|
||||
# The port on which to run the web server
|
||||
web_server_port = 8080
|
||||
|
||||
# Paths to the SSL certificate and key for the web server. When both are
|
||||
# provided SSL will be enabled. This does not change the web server port.
|
||||
web_server_ssl_cert =
|
||||
web_server_ssl_key =
|
||||
|
||||
# Number of seconds the webserver waits before killing gunicorn master that doesn't respond
|
||||
web_server_master_timeout = 120
|
||||
|
||||
# Number of seconds the gunicorn webserver waits before timing out on a worker
|
||||
web_server_worker_timeout = 120
|
||||
|
||||
# Number of workers to refresh at a time. When set to 0, worker refresh is
|
||||
# disabled. When nonzero, airflow periodically refreshes webserver workers by
|
||||
# bringing up new ones and killing old ones.
|
||||
worker_refresh_batch_size = 1
|
||||
|
||||
# Number of seconds to wait before refreshing a batch of workers.
|
||||
worker_refresh_interval = 30
|
||||
|
||||
# Secret key used to run your flask app
|
||||
# It should be as random as possible
|
||||
secret_key = {SECRET_KEY}
|
||||
|
||||
# Number of workers to run the Gunicorn web server
|
||||
workers = 4
|
||||
|
||||
# The worker class gunicorn should use. Choices include
|
||||
# sync (default), eventlet, gevent
|
||||
worker_class = sync
|
||||
|
||||
# Log files for the gunicorn webserver. '-' means log to stderr.
|
||||
access_logfile = -
|
||||
error_logfile = -
|
||||
|
||||
# Expose the configuration file in the web server
|
||||
expose_config = False
|
||||
|
||||
# Default DAG view. Valid values are:
|
||||
# tree, graph, duration, gantt, landing_times
|
||||
dag_default_view = tree
|
||||
|
||||
# Default DAG orientation. Valid values are:
|
||||
# LR (Left->Right), TB (Top->Bottom), RL (Right->Left), BT (Bottom->Top)
|
||||
dag_orientation = LR
|
||||
|
||||
# Puts the webserver in demonstration mode; blurs the names of Operators for
|
||||
# privacy.
|
||||
demo_mode = False
|
||||
|
||||
# The amount of time (in secs) webserver will wait for initial handshake
|
||||
# while fetching logs from other worker machine
|
||||
log_fetch_timeout_sec = 5
|
||||
|
||||
# By default, the webserver shows paused DAGs. Flip this to hide paused
|
||||
# DAGs by default
|
||||
hide_paused_dags_by_default = False
|
||||
|
||||
# Consistent page size across all listing views in the UI
|
||||
page_size = 100
|
||||
|
||||
# Define the color of navigation bar
|
||||
navbar_color = #007A87
|
||||
|
||||
# Default dagrun to show in UI
|
||||
default_dag_run_display_number = 25
|
||||
|
||||
# Enable werkzeug `ProxyFix` middleware
|
||||
enable_proxy_fix = False
|
||||
|
||||
# Set secure flag on session cookie
|
||||
cookie_secure = False
|
||||
|
||||
# Set samesite policy on session cookie
|
||||
cookie_samesite =
|
||||
|
||||
# Default setting for wrap toggle on DAG code and TI log views.
|
||||
default_wrap = False
|
||||
|
||||
# Send anonymous user activity to your analytics tool
|
||||
# analytics_tool = # choose from google_analytics, segment, or metarouter
|
||||
# analytics_id = XXXXXXXXXXX
|
||||
|
||||
[email]
|
||||
email_backend = airflow.utils.email.send_email_smtp
|
||||
|
||||
|
||||
[smtp]
|
||||
# If you want airflow to send emails on retries, failure, and you want to use
|
||||
# the airflow.utils.email.send_email_smtp function, you have to configure an
|
||||
# smtp server here
|
||||
smtp_host = localhost
|
||||
smtp_starttls = True
|
||||
smtp_ssl = False
|
||||
# Uncomment and set the user/pass settings if you want to use SMTP AUTH
|
||||
# smtp_user = airflow
|
||||
# smtp_password = airflow
|
||||
smtp_port = 25
|
||||
smtp_mail_from = airflow@example.com
|
||||
|
||||
[sentry]
|
||||
# Sentry (https://docs.sentry.io) integration
|
||||
sentry_dsn =
|
||||
|
||||
|
||||
[celery]
|
||||
# This section only applies if you are using the CeleryExecutor in
|
||||
# [core] section above
|
||||
|
||||
# The app name that will be used by celery
|
||||
celery_app_name = airflow.executors.celery_executor
|
||||
|
||||
# The concurrency that will be used when starting workers with the
|
||||
# "airflow worker" command. This defines the number of task instances that
|
||||
# a worker will take, so size up your workers based on the resources on
|
||||
# your worker box and the nature of your tasks
|
||||
worker_concurrency = 16
|
||||
|
||||
# The maximum and minimum concurrency that will be used when starting workers with the
|
||||
# "airflow worker" command (always keep minimum processes, but grow to maximum if necessary).
|
||||
# Note the value should be "max_concurrency,min_concurrency"
|
||||
# Pick these numbers based on resources on worker box and the nature of the task.
|
||||
# If autoscale option is available, worker_concurrency will be ignored.
|
||||
# http://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html#cmdoption-celery-worker-autoscale
|
||||
# worker_autoscale = 16,12
|
||||
|
||||
# When you start an airflow worker, airflow starts a tiny web server
|
||||
# subprocess to serve the workers local log files to the airflow main
|
||||
# web server, who then builds pages and sends them to users. This defines
|
||||
# the port on which the logs are served. It needs to be unused, and open
|
||||
# visible from the main web server to connect into the workers.
|
||||
worker_log_server_port = 8793
|
||||
|
||||
# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
|
||||
# a sqlalchemy database. Refer to the Celery documentation for more
|
||||
# information.
|
||||
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#broker-settings
|
||||
broker_url = sqla+mysql://airflow:airflow@localhost:3306/airflow
|
||||
|
||||
# The Celery result_backend. When a job finishes, it needs to update the
|
||||
# metadata of the job. Therefore it will post a message on a message bus,
|
||||
# or insert it into a database (depending of the backend)
|
||||
# This status is used by the scheduler to update the state of the task
|
||||
# The use of a database is highly recommended
|
||||
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-result-backend-settings
|
||||
result_backend = db+mysql://airflow:airflow@localhost:3306/airflow
|
||||
|
||||
# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
|
||||
# it `airflow flower`. This defines the IP that Celery Flower runs on
|
||||
flower_host = 0.0.0.0
|
||||
|
||||
# The root URL for Flower
|
||||
# Ex: flower_url_prefix = /flower
|
||||
flower_url_prefix =
|
||||
|
||||
# This defines the port that Celery Flower runs on
|
||||
flower_port = 5555
|
||||
|
||||
# Securing Flower with Basic Authentication
|
||||
# Accepts user:password pairs separated by a comma
|
||||
# Example: flower_basic_auth = user1:password1,user2:password2
|
||||
flower_basic_auth =
|
||||
|
||||
# Default queue that tasks get assigned to and that worker listen on.
|
||||
default_queue = default
|
||||
|
||||
# How many processes CeleryExecutor uses to sync task state.
|
||||
# 0 means to use max(1, number of cores - 1) processes.
|
||||
sync_parallelism = 0
|
||||
|
||||
# Import path for celery configuration options
|
||||
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG
|
||||
|
||||
# In case of using SSL
|
||||
ssl_active = False
|
||||
ssl_key =
|
||||
ssl_cert =
|
||||
ssl_cacert =
|
||||
|
||||
# Celery Pool implementation.
|
||||
# Choices include: prefork (default), eventlet, gevent or solo.
|
||||
# See:
|
||||
# https://docs.celeryproject.org/en/latest/userguide/workers.html#concurrency
|
||||
# https://docs.celeryproject.org/en/latest/userguide/concurrency/eventlet.html
|
||||
pool = prefork
|
||||
|
||||
[celery_broker_transport_options]
|
||||
# This section is for specifying options which can be passed to the
|
||||
# underlying celery broker transport. See:
|
||||
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_transport_options
|
||||
|
||||
# The visibility timeout defines the number of seconds to wait for the worker
|
||||
# to acknowledge the task before the message is redelivered to another worker.
|
||||
# Make sure to increase the visibility timeout to match the time of the longest
|
||||
# ETA you're planning to use.
|
||||
#
|
||||
# visibility_timeout is only supported for Redis and SQS celery brokers.
|
||||
# See:
|
||||
# http://docs.celeryproject.org/en/master/userguide/configuration.html#std:setting-broker_transport_options
|
||||
#
|
||||
#visibility_timeout = 21600
|
||||
|
||||
[dask]
|
||||
# This section only applies if you are using the DaskExecutor in
|
||||
# [core] section above
|
||||
|
||||
# The IP address and port of the Dask cluster's scheduler.
|
||||
cluster_address = 127.0.0.1:8786
|
||||
# TLS/ SSL settings to access a secured Dask scheduler.
|
||||
tls_ca =
|
||||
tls_cert =
|
||||
tls_key =
|
||||
|
||||
|
||||
[scheduler]
|
||||
# Task instances listen for external kill signal (when you clear tasks
|
||||
# from the CLI or the UI), this defines the frequency at which they should
|
||||
# listen (in seconds).
|
||||
job_heartbeat_sec = 5
|
||||
|
||||
# The scheduler constantly tries to trigger new tasks (look at the
|
||||
# scheduler section in the docs for more information). This defines
|
||||
# how often the scheduler should run (in seconds).
|
||||
scheduler_heartbeat_sec = 5
|
||||
|
||||
# The number of times to try to schedule each DAG file
|
||||
# -1 indicates unlimited number
|
||||
num_runs = -1
|
||||
|
||||
# The number of seconds to wait between consecutive DAG file processing
|
||||
processor_poll_interval = 1
|
||||
|
||||
# after how much time (seconds) a new DAGs should be picked up from the filesystem
|
||||
min_file_process_interval = 0
|
||||
|
||||
# How often (in seconds) to scan the DAGs directory for new files. Default to 5 minutes.
|
||||
dag_dir_list_interval = 300
|
||||
|
||||
# How often should stats be printed to the logs
|
||||
print_stats_interval = 30
|
||||
|
||||
# If the last scheduler heartbeat happened more than scheduler_health_check_threshold ago (in seconds),
|
||||
# scheduler is considered unhealthy.
|
||||
# This is used by the health check in the "/health" endpoint
|
||||
scheduler_health_check_threshold = 30
|
||||
|
||||
child_process_log_directory = {AIRFLOW_HOME}/logs/scheduler
|
||||
|
||||
# Local task jobs periodically heartbeat to the DB. If the job has
|
||||
# not heartbeat in this many seconds, the scheduler will mark the
|
||||
# associated task instance as failed and will re-schedule the task.
|
||||
scheduler_zombie_task_threshold = 300
|
||||
|
||||
# Turn off scheduler catchup by setting this to False.
|
||||
# Default behavior is unchanged and
|
||||
# Command Line Backfills still work, but the scheduler
|
||||
# will not do scheduler catchup if this is False,
|
||||
# however it can be set on a per DAG basis in the
|
||||
# DAG definition (catchup)
|
||||
catchup_by_default = True
|
||||
|
||||
# This changes the batch size of queries in the scheduling main loop.
|
||||
# If this is too high, SQL query performance may be impacted by one
|
||||
# or more of the following:
|
||||
# - reversion to full table scan
|
||||
# - complexity of query predicate
|
||||
# - excessive locking
|
||||
#
|
||||
# Additionally, you may hit the maximum allowable query length for your db.
|
||||
#
|
||||
# Set this to 0 for no limit (not advised)
|
||||
max_tis_per_query = 512
|
||||
|
||||
# Statsd (https://github.com/etsy/statsd) integration settings
|
||||
statsd_on = False
|
||||
statsd_host = localhost
|
||||
statsd_port = 8125
|
||||
statsd_prefix = airflow
|
||||
|
||||
# If you want to avoid send all the available metrics to StatsD,
|
||||
# you can configure an allow list of prefixes to send only the metrics that
|
||||
# start with the elements of the list (e.g: scheduler,executor,dagrun)
|
||||
statsd_allow_list =
|
||||
|
||||
# The scheduler can run multiple threads in parallel to schedule dags.
|
||||
# This defines how many threads will run.
|
||||
max_threads = 2
|
||||
|
||||
authenticate = False
|
||||
|
||||
# Turn off scheduler use of cron intervals by setting this to False.
|
||||
# DAGs submitted manually in the web UI or with trigger_dag will still run.
|
||||
use_job_schedule = True
|
||||
|
||||
[ldap]
|
||||
# set this to ldaps://<your.ldap.server>:<port>
|
||||
uri =
|
||||
user_filter = objectClass=*
|
||||
user_name_attr = uid
|
||||
group_member_attr = memberOf
|
||||
superuser_filter =
|
||||
data_profiler_filter =
|
||||
bind_user = cn=Manager,dc=example,dc=com
|
||||
bind_password = insecure
|
||||
basedn = dc=example,dc=com
|
||||
cacert = /etc/ca/ldap_ca.crt
|
||||
search_scope = LEVEL
|
||||
|
||||
# This setting allows the use of LDAP servers that either return a
|
||||
# broken schema, or do not return a schema.
|
||||
ignore_malformed_schema = False
|
||||
|
||||
[kerberos]
|
||||
ccache = /tmp/airflow_krb5_ccache
|
||||
# gets augmented with fqdn
|
||||
principal = airflow
|
||||
reinit_frequency = 3600
|
||||
kinit_path = kinit
|
||||
keytab = airflow.keytab
|
||||
|
||||
|
||||
[github_enterprise]
|
||||
api_rev = v3
|
||||
|
||||
[admin]
|
||||
# UI to hide sensitive variable fields when set to True
|
||||
hide_sensitive_variable_fields = True
|
||||
|
||||
[elasticsearch]
|
||||
# Elasticsearch host
|
||||
host =
|
||||
# Format of the log_id, which is used to query for a given tasks logs
|
||||
log_id_template = {{dag_id}}-{{task_id}}-{{execution_date}}-{{try_number}}
|
||||
# Used to mark the end of a log stream for a task
|
||||
end_of_log_mark = end_of_log
|
||||
# Qualified URL for an elasticsearch frontend (like Kibana) with a template argument for log_id
|
||||
# Code will construct log_id using the log_id template from the argument above.
|
||||
# NOTE: The code will prefix the https:// automatically, don't include that here.
|
||||
frontend =
|
||||
# Write the task logs to the stdout of the worker, rather than the default files
|
||||
write_stdout = False
|
||||
# Instead of the default log formatter, write the log lines as JSON
|
||||
json_format = False
|
||||
# Log fields to also attach to the json output, if enabled
|
||||
json_fields = asctime, filename, lineno, levelname, message
|
||||
|
||||
[elasticsearch_configs]
|
||||
|
||||
use_ssl = False
|
||||
verify_certs = True
|
||||
|
||||
[kubernetes]
|
||||
# The repository, tag and imagePullPolicy of the Kubernetes Image for the Worker to Run
|
||||
worker_container_repository =
|
||||
worker_container_tag =
|
||||
worker_container_image_pull_policy = IfNotPresent
|
||||
|
||||
# If True (default), worker pods will be deleted upon termination
|
||||
delete_worker_pods = True
|
||||
|
||||
# Number of Kubernetes Worker Pod creation calls per scheduler loop
|
||||
worker_pods_creation_batch_size = 1
|
||||
|
||||
# The Kubernetes namespace where airflow workers should be created. Defaults to `default`
|
||||
namespace = default
|
||||
|
||||
# The name of the Kubernetes ConfigMap Containing the Airflow Configuration (this file)
|
||||
airflow_configmap =
|
||||
|
||||
# For docker image already contains DAGs, this is set to `True`, and the worker will search for dags in dags_folder,
|
||||
# otherwise use git sync or dags volume claim to mount DAGs
|
||||
dags_in_image = False
|
||||
|
||||
# For either git sync or volume mounted DAGs, the worker will look in this subpath for DAGs
|
||||
dags_volume_subpath =
|
||||
|
||||
# For DAGs mounted via a volume claim (mutually exclusive with git-sync and host path)
|
||||
dags_volume_claim =
|
||||
|
||||
# For volume mounted logs, the worker will look in this subpath for logs
|
||||
logs_volume_subpath =
|
||||
|
||||
# A shared volume claim for the logs
|
||||
logs_volume_claim =
|
||||
|
||||
# For DAGs mounted via a hostPath volume (mutually exclusive with volume claim and git-sync)
|
||||
# Useful in local environment, discouraged in production
|
||||
dags_volume_host =
|
||||
|
||||
# A hostPath volume for the logs
|
||||
# Useful in local environment, discouraged in production
|
||||
logs_volume_host =
|
||||
|
||||
# A list of configMapsRefs to envFrom. If more than one configMap is
|
||||
# specified, provide a comma separated list: configmap_a,configmap_b
|
||||
env_from_configmap_ref =
|
||||
|
||||
# A list of secretRefs to envFrom. If more than one secret is
|
||||
# specified, provide a comma separated list: secret_a,secret_b
|
||||
env_from_secret_ref =
|
||||
|
||||
# Git credentials and repository for DAGs mounted via Git (mutually exclusive with volume claim)
|
||||
git_repo =
|
||||
git_branch =
|
||||
git_subpath =
|
||||
# Use git_user and git_password for user authentication or git_ssh_key_secret_name and git_ssh_key_secret_key
|
||||
# for SSH authentication
|
||||
git_user =
|
||||
git_password =
|
||||
git_sync_root = /git
|
||||
git_sync_dest = repo
|
||||
# Mount point of the volume if git-sync is being used.
|
||||
# i.e. {AIRFLOW_HOME}/dags
|
||||
git_dags_folder_mount_point =
|
||||
|
||||
# To get Git-sync SSH authentication set up follow this format
|
||||
#
|
||||
# airflow-secrets.yaml:
|
||||
# ---
|
||||
# apiVersion: v1
|
||||
# kind: Secret
|
||||
# metadata:
|
||||
# name: airflow-secrets
|
||||
# data:
|
||||
# # key needs to be gitSshKey
|
||||
# gitSshKey: <base64_encoded_data>
|
||||
# ---
|
||||
# airflow-configmap.yaml:
|
||||
# apiVersion: v1
|
||||
# kind: ConfigMap
|
||||
# metadata:
|
||||
# name: airflow-configmap
|
||||
# data:
|
||||
# known_hosts: |
|
||||
# github.com ssh-rsa <...>
|
||||
# airflow.cfg: |
|
||||
# ...
|
||||
#
|
||||
# git_ssh_key_secret_name = airflow-secrets
|
||||
# git_ssh_known_hosts_configmap_name = airflow-configmap
|
||||
git_ssh_key_secret_name =
|
||||
git_ssh_known_hosts_configmap_name =
|
||||
|
||||
# To give the git_sync init container credentials via a secret, create a secret
|
||||
# with two fields: GIT_SYNC_USERNAME and GIT_SYNC_PASSWORD (example below) and
|
||||
# add `git_sync_credentials_secret = <secret_name>` to your airflow config under the kubernetes section
|
||||
#
|
||||
# Secret Example:
|
||||
# apiVersion: v1
|
||||
# kind: Secret
|
||||
# metadata:
|
||||
# name: git-credentials
|
||||
# data:
|
||||
# GIT_SYNC_USERNAME: <base64_encoded_git_username>
|
||||
# GIT_SYNC_PASSWORD: <base64_encoded_git_password>
|
||||
git_sync_credentials_secret =
|
||||
|
||||
# For cloning DAGs from git repositories into volumes: https://github.com/kubernetes/git-sync
|
||||
git_sync_container_repository = k8s.gcr.io/git-sync
|
||||
git_sync_container_tag = v3.1.1
|
||||
git_sync_init_container_name = git-sync-clone
|
||||
git_sync_run_as_user = 65533
|
||||
|
||||
# The name of the Kubernetes service account to be associated with airflow workers, if any.
|
||||
# Service accounts are required for workers that require access to secrets or cluster resources.
|
||||
# See the Kubernetes RBAC documentation for more:
|
||||
# https://kubernetes.io/docs/admin/authorization/rbac/
|
||||
worker_service_account_name =
|
||||
|
||||
# Any image pull secrets to be given to worker pods, If more than one secret is
|
||||
# required, provide a comma separated list: secret_a,secret_b
|
||||
image_pull_secrets =
|
||||
|
||||
# GCP Service Account Keys to be provided to tasks run on Kubernetes Executors
|
||||
# Should be supplied in the format: key-name-1:key-path-1,key-name-2:key-path-2
|
||||
gcp_service_account_keys =
|
||||
|
||||
# Use the service account kubernetes gives to pods to connect to kubernetes cluster.
|
||||
# It's intended for clients that expect to be running inside a pod running on kubernetes.
|
||||
# It will raise an exception if called from a process not running in a kubernetes environment.
|
||||
in_cluster = True
|
||||
|
||||
# When running with in_cluster=False change the default cluster_context or config_file
|
||||
# options to Kubernetes client. Leave blank these to use default behaviour like `kubectl` has.
|
||||
# cluster_context =
|
||||
# config_file =
|
||||
|
||||
|
||||
# Affinity configuration as a single line formatted JSON object.
|
||||
# See the affinity model for top-level key names (e.g. `nodeAffinity`, etc.):
|
||||
# https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.12/#affinity-v1-core
|
||||
affinity =
|
||||
|
||||
# A list of toleration objects as a single line formatted JSON array
|
||||
# See:
|
||||
# https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.12/#toleration-v1-core
|
||||
tolerations =
|
||||
|
||||
# **kwargs parameters to pass while calling a kubernetes client core_v1_api methods from Kubernetes Executor
|
||||
# provided as a single line formatted JSON dictionary string.
|
||||
# List of supported params in **kwargs are similar for all core_v1_apis, hence a single config variable for all apis
|
||||
# See:
|
||||
# https://raw.githubusercontent.com/kubernetes-client/python/master/kubernetes/client/apis/core_v1_api.py
|
||||
kube_client_request_args =
|
||||
|
||||
# Worker pods security context options
|
||||
# See:
|
||||
# https://kubernetes.io/docs/tasks/configure-pod-container/security-context/
|
||||
|
||||
# Specifies the uid to run the first process of the worker pods containers as
|
||||
run_as_user =
|
||||
|
||||
# Specifies a gid to associate with all containers in the worker pods
|
||||
# if using a git_ssh_key_secret_name use an fs_group
|
||||
# that allows for the key to be read, e.g. 65533
|
||||
fs_group =
|
||||
|
||||
# Annotations configuration as a single line formatted JSON object.
|
||||
# See the naming convention in:
|
||||
# https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
|
||||
worker_annotations =
|
||||
|
||||
|
||||
[kubernetes_node_selectors]
|
||||
# The Key-value pairs to be given to worker pods.
|
||||
# The worker pods will be scheduled to the nodes of the specified key-value pairs.
|
||||
# Should be supplied in the format: key = value
|
||||
|
||||
[kubernetes_environment_variables]
|
||||
# The scheduler sets the following environment variables into your workers. You may define as
|
||||
# many environment variables as needed and the kubernetes launcher will set them in the launched workers.
|
||||
# Environment variables in this section are defined as follows
|
||||
# <environment_variable_key> = <environment_variable_value>
|
||||
#
|
||||
# For example if you wanted to set an environment variable with value `prod` and key
|
||||
# `ENVIRONMENT` you would follow the following format:
|
||||
# ENVIRONMENT = prod
|
||||
#
|
||||
# Additionally you may override worker airflow settings with the AIRFLOW__<SECTION>__<KEY>
|
||||
# formatting as supported by airflow normally.
|
||||
|
||||
[kubernetes_secrets]
|
||||
# The scheduler mounts the following secrets into your workers as they are launched by the
|
||||
# scheduler. You may define as many secrets as needed and the kubernetes launcher will parse the
|
||||
# defined secrets and mount them as secret environment variables in the launched workers.
|
||||
# Secrets in this section are defined as follows
|
||||
# <environment_variable_mount> = <kubernetes_secret_object>=<kubernetes_secret_key>
|
||||
#
|
||||
# For example if you wanted to mount a kubernetes secret key named `postgres_password` from the
|
||||
# kubernetes secret object `airflow-secret` as the environment variable `POSTGRES_PASSWORD` into
|
||||
# your workers you would follow the following format:
|
||||
# POSTGRES_PASSWORD = airflow-secret=postgres_credentials
|
||||
#
|
||||
# Additionally you may override worker airflow settings with the AIRFLOW__<SECTION>__<KEY>
|
||||
# formatting as supported by airflow normally.
|
||||
|
||||
[kubernetes_labels]
|
||||
# The Key-value pairs to be given to worker pods.
|
||||
# The worker pods will be given these static labels, as well as some additional dynamic labels
|
||||
# to identify the task.
|
||||
# Should be supplied in the format: key = value
|
0
airflow/data/logs/.gitkeep
Normal file
0
airflow/data/logs/.gitkeep
Normal file
0
airflow/data/plugins/.gitkeep
Normal file
0
airflow/data/plugins/.gitkeep
Normal file
110
airflow/docker-stack.yaml
Normal file
110
airflow/docker-stack.yaml
Normal file
@ -0,0 +1,110 @@
|
||||
version: "3.7"
|
||||
|
||||
services:
|
||||
|
||||
redis:
|
||||
image: redis:alpine
|
||||
command: --save 900 1
|
||||
ports:
|
||||
- "6379:6379"
|
||||
volumes:
|
||||
- /data/redis:/data
|
||||
deploy:
|
||||
replicas: 1
|
||||
placement:
|
||||
constraints:
|
||||
- node.role == manager
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
|
||||
postgres:
|
||||
image: postgres:alpine
|
||||
ports:
|
||||
- "5432:5432"
|
||||
volumes:
|
||||
- /data/postgres:/var/lib/postgresql/data
|
||||
environment:
|
||||
- POSTGRES_USER=airflow
|
||||
- POSTGRES_PASSWORD=airflow
|
||||
- POSTGRES_DB=airflow
|
||||
deploy:
|
||||
replicas: 1
|
||||
placement:
|
||||
constraints:
|
||||
- node.role == manager
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
|
||||
webserver:
|
||||
image: vimagick/airflow
|
||||
command: webserver
|
||||
ports:
|
||||
- "8080:8080"
|
||||
volumes:
|
||||
- airflow_data:/opt/airflow
|
||||
deploy:
|
||||
replicas: 1
|
||||
placement:
|
||||
constraints:
|
||||
- node.role == manager
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
depends_on:
|
||||
- postgres
|
||||
- redis
|
||||
|
||||
scheduler:
|
||||
image: vimagick/airflow
|
||||
command: scheduler
|
||||
volumes:
|
||||
- airflow_data:/opt/airflow
|
||||
deploy:
|
||||
replicas: 1
|
||||
placement:
|
||||
constraints:
|
||||
- node.role == manager
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
depends_on:
|
||||
- webserver
|
||||
|
||||
flower:
|
||||
image: vimagick/airflow
|
||||
command: flower
|
||||
ports:
|
||||
- "5555:5555"
|
||||
volumes:
|
||||
- airflow_data:/opt/airflow
|
||||
deploy:
|
||||
replicas: 1
|
||||
placement:
|
||||
constraints:
|
||||
- node.role == manager
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
depends_on:
|
||||
- webserver
|
||||
|
||||
worker:
|
||||
image: vimagick/airflow
|
||||
command: worker
|
||||
volumes:
|
||||
- airflow_data:/opt/airflow
|
||||
deploy:
|
||||
replicas: 0
|
||||
placement:
|
||||
constraints:
|
||||
- node.role == worker
|
||||
restart_policy:
|
||||
condition: on-failure
|
||||
depends_on:
|
||||
- webserver
|
||||
|
||||
volumes:
|
||||
|
||||
airflow_data:
|
||||
driver: local
|
||||
driver_opts:
|
||||
type: nfs
|
||||
o: "addr=10.0.0.1,nolock,soft,rw"
|
||||
device: ":/export/airflow"
|
Loading…
Reference in New Issue
Block a user