ludwig ====== [Ludwig][1] is a toolbox that allows to train and test deep learning models without the need to write code. ## up and running ```bash $ mkdir -p data $ vim data/model.yaml $ wget http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW2/epinions.zip $ unzip epinions.zip $ mv epinions/epinions-1.csv data/train.csv $ mv epinions/epinions-2.csv data/predict.csv $ tree data ├── model.yaml ├── predict.csv └── train.csv $ docker-compose run --rm train $ docker-compose run --rm visualize $ docker-compose run --rm predict $ docker-compose up -d serve $ curl http://127.0.0.1:8000/predict -X POST -F 'text=taking photos and recording videos' { "class_predictions": "Camera", "class_probabilities_": 9.438252263072044e-11, "class_probabilities_Auto": 0.32920214533805847, "class_probabilities_Camera": 0.6707978248596191, "class_probability": 0.6707978248596191 } $ curl http://127.0.0.1:8000/predict -X POST -F 'text=looking to buy a new sports car' { "class_predictions": "Auto", "class_probabilities_": 1.900043131457165e-15, "class_probabilities_Auto": 0.9999126195907593, "class_probabilities_Camera": 8.738834003452212e-05, "class_probability": 0.9999126195907593 } $ tree -L 3 data ├── model.yaml ├── predict.csv ├── train.csv ├── results │   └── experiment_example │   ├── description.json │   ├── model │   └── training_statistics.json ├── results_0 │   ├── class_predictions.csv │   ├── class_predictions.npy │   ├── class_probabilities.csv │   ├── class_probabilities.npy │   ├── class_probability.csv │   └── class_probability.npy └── visualize ├── learning_curves_class_accuracy.png ├── learning_curves_class_hits_at_k.png ├── learning_curves_class_loss.png ├── learning_curves_combined_accuracy.png └── learning_curves_combined_loss.png ``` [1]: https://uber.github.io/ludwig/