mirror of
https://github.com/vimagick/dockerfiles.git
synced 2025-01-12 04:23:04 +02:00
b113da5d19
Using "--no-cache-dir" flag in pip install ,make sure dowloaded packages by pip don't cached on system . This is a best practise which make sure to fetch ftom repo instead of using local cached one . Further , in case of Docker Containers , by restricing caching , we can reduce image size. In term of stats , it depends upon the number of python packages multiplied by their respective size . e.g for heavy packages with a lot of dependencies it reduce a lot by don't caching pip packages. Further , more detail information can be found at https://medium.com/sciforce/strategies-of-docker-images-optimization-2ca9cc5719b6 Signed-off-by: Pratik Raj <rajpratik71@gmail.com> |
||
---|---|---|
.. | ||
data | ||
docker-compose.yml | ||
Dockerfile | ||
README.md |
ludwig
Ludwig is a toolbox that allows to train and test deep learning models without the need to write code.
up and running
$ mkdir -p data
$ vim data/model.yaml
$ wget http://boston.lti.cs.cmu.edu/classes/95-865-K/HW/HW2/epinions.zip
$ unzip epinions.zip
$ mv epinions/epinions-1.csv data/train.csv
$ mv epinions/epinions-2.csv data/predict.csv
$ tree data
├── model.yaml
├── predict.csv
└── train.csv
$ docker-compose run --rm train
$ docker-compose run --rm visualize
$ docker-compose run --rm predict
$ docker-compose up -d serve
$ curl http://127.0.0.1:8000/predict -X POST -F 'text=taking photos and recording videos'
{
"class_predictions": "Camera",
"class_probabilities_<UNK>": 9.438252263072044e-11,
"class_probabilities_Auto": 0.32920214533805847,
"class_probabilities_Camera": 0.6707978248596191,
"class_probability": 0.6707978248596191
}
$ curl http://127.0.0.1:8000/predict -X POST -F 'text=looking to buy a new sports car'
{
"class_predictions": "Auto",
"class_probabilities_<UNK>": 1.900043131457165e-15,
"class_probabilities_Auto": 0.9999126195907593,
"class_probabilities_Camera": 8.738834003452212e-05,
"class_probability": 0.9999126195907593
}
$ tree -L 3 data
├── model.yaml
├── predict.csv
├── train.csv
├── results
│ └── experiment_example
│ ├── description.json
│ ├── model
│ └── training_statistics.json
├── results_0
│ ├── class_predictions.csv
│ ├── class_predictions.npy
│ ├── class_probabilities.csv
│ ├── class_probabilities.npy
│ ├── class_probability.csv
│ └── class_probability.npy
└── visualize
├── learning_curves_class_accuracy.png
├── learning_curves_class_hits_at_k.png
├── learning_curves_class_loss.png
├── learning_curves_combined_accuracy.png
└── learning_curves_combined_loss.png