1
0
mirror of https://github.com/immich-app/immich.git synced 2024-12-23 02:06:15 +02:00
immich/machine-learning/ann/ann.cpp

281 lines
9.6 KiB
C++
Raw Normal View History

#include <fstream>
#include <mutex>
#include <atomic>
#include "armnn/IRuntime.hpp"
#include "armnn/INetwork.hpp"
#include "armnn/Types.hpp"
#include "armnnDeserializer/IDeserializer.hpp"
#include "armnnTfLiteParser/ITfLiteParser.hpp"
#include "armnnOnnxParser/IOnnxParser.hpp"
using namespace armnn;
struct IOInfos
{
std::vector<BindingPointInfo> inputInfos;
std::vector<BindingPointInfo> outputInfos;
};
// from https://rigtorp.se/spinlock/
struct SpinLock
{
std::atomic<bool> lock_ = {false};
void lock()
{
for (;;)
{
if (!lock_.exchange(true, std::memory_order_acquire))
{
break;
}
while (lock_.load(std::memory_order_relaxed))
;
}
}
void unlock() { lock_.store(false, std::memory_order_release); }
};
class Ann
{
public:
int load(const char *modelPath,
bool fastMath,
bool fp16,
bool saveCachedNetwork,
const char *cachedNetworkPath)
{
INetworkPtr network = loadModel(modelPath);
IOptimizedNetworkPtr optNet = OptimizeNetwork(network.get(), fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
const IOInfos infos = getIOInfos(optNet.get());
NetworkId netId;
mutex.lock();
Status status = runtime->LoadNetwork(netId, std::move(optNet));
mutex.unlock();
if (status != Status::Success)
{
return -1;
}
spinLock.lock();
ioInfos[netId] = infos;
mutexes.emplace(netId, std::make_unique<std::mutex>());
spinLock.unlock();
return netId;
}
void execute(NetworkId netId, const void **inputData, void **outputData)
{
spinLock.lock();
const IOInfos *infos = &ioInfos[netId];
auto m = mutexes[netId].get();
spinLock.unlock();
InputTensors inputTensors;
inputTensors.reserve(infos->inputInfos.size());
size_t i = 0;
for (const BindingPointInfo &info : infos->inputInfos)
inputTensors.emplace_back(info.first, ConstTensor(info.second, inputData[i++]));
OutputTensors outputTensors;
outputTensors.reserve(infos->outputInfos.size());
i = 0;
for (const BindingPointInfo &info : infos->outputInfos)
outputTensors.emplace_back(info.first, Tensor(info.second, outputData[i++]));
m->lock();
runtime->EnqueueWorkload(netId, inputTensors, outputTensors);
m->unlock();
}
void unload(NetworkId netId)
{
mutex.lock();
runtime->UnloadNetwork(netId);
mutex.unlock();
}
int tensors(NetworkId netId, bool isInput = false)
{
spinLock.lock();
const IOInfos *infos = &ioInfos[netId];
spinLock.unlock();
return (int)(isInput ? infos->inputInfos.size() : infos->outputInfos.size());
}
unsigned long shape(NetworkId netId, bool isInput = false, int index = 0)
{
spinLock.lock();
const IOInfos *infos = &ioInfos[netId];
spinLock.unlock();
const TensorShape shape = (isInput ? infos->inputInfos : infos->outputInfos)[index].second.GetShape();
unsigned long s = 0;
for (unsigned int d = 0; d < shape.GetNumDimensions(); d++)
s |= ((unsigned long)shape[d]) << (d * 16); // stores up to 4 16-bit values in a 64-bit value
return s;
}
Ann(int tuningLevel, const char *tuningFile)
{
IRuntime::CreationOptions runtimeOptions;
BackendOptions backendOptions{"GpuAcc",
{
{"TuningLevel", tuningLevel},
{"MemoryOptimizerStrategy", "ConstantMemoryStrategy"}, // SingleAxisPriorityList or ConstantMemoryStrategy
}};
if (tuningFile)
backendOptions.AddOption({"TuningFile", tuningFile});
runtimeOptions.m_BackendOptions.emplace_back(backendOptions);
runtime = IRuntime::CreateRaw(runtimeOptions);
};
~Ann()
{
IRuntime::Destroy(runtime);
};
private:
INetworkPtr loadModel(const char *modelPath)
{
const auto path = std::string(modelPath);
if (path.rfind(".tflite") == path.length() - 7) // endsWith()
{
auto parser = armnnTfLiteParser::ITfLiteParser::CreateRaw();
return parser->CreateNetworkFromBinaryFile(modelPath);
}
else if (path.rfind(".onnx") == path.length() - 5) // endsWith()
{
auto parser = armnnOnnxParser::IOnnxParser::CreateRaw();
return parser->CreateNetworkFromBinaryFile(modelPath);
}
else
{
std::ifstream ifs(path, std::ifstream::in | std::ifstream::binary);
auto parser = armnnDeserializer::IDeserializer::CreateRaw();
return parser->CreateNetworkFromBinary(ifs);
}
}
static BindingPointInfo getInputTensorInfo(LayerBindingId inputBindingId, TensorInfo info)
{
const auto newInfo = TensorInfo{info.GetShape(), info.GetDataType(),
info.GetQuantizationScale(),
info.GetQuantizationOffset(),
true};
return {inputBindingId, newInfo};
}
IOptimizedNetworkPtr OptimizeNetwork(INetwork *network, bool fastMath, bool fp16, bool saveCachedNetwork, const char *cachedNetworkPath)
{
const bool allowExpandedDims = false;
const ShapeInferenceMethod shapeInferenceMethod = ShapeInferenceMethod::ValidateOnly;
OptimizerOptionsOpaque options;
options.SetReduceFp32ToFp16(fp16);
options.SetShapeInferenceMethod(shapeInferenceMethod);
options.SetAllowExpandedDims(allowExpandedDims);
BackendOptions gpuAcc("GpuAcc", {{"FastMathEnabled", fastMath}});
if (cachedNetworkPath)
{
gpuAcc.AddOption({"SaveCachedNetwork", saveCachedNetwork});
gpuAcc.AddOption({"CachedNetworkFilePath", cachedNetworkPath});
}
options.AddModelOption(gpuAcc);
// No point in using ARMNN for CPU, use ONNX (quantized) instead.
// BackendOptions cpuAcc("CpuAcc",
// {
// {"FastMathEnabled", fastMath},
// {"NumberOfThreads", 0},
// });
// options.AddModelOption(cpuAcc);
BackendOptions allowExDimOpt("AllowExpandedDims",
{{"AllowExpandedDims", allowExpandedDims}});
options.AddModelOption(allowExDimOpt);
BackendOptions shapeInferOpt("ShapeInferenceMethod",
{{"InferAndValidate", shapeInferenceMethod == ShapeInferenceMethod::InferAndValidate}});
options.AddModelOption(shapeInferOpt);
std::vector<BackendId> backends = {
BackendId("GpuAcc"),
// BackendId("CpuAcc"),
// BackendId("CpuRef"),
};
return Optimize(*network, backends, runtime->GetDeviceSpec(), options);
}
IOInfos getIOInfos(IOptimizedNetwork *optNet)
{
struct InfoStrategy : IStrategy
{
void ExecuteStrategy(const IConnectableLayer *layer,
const BaseDescriptor &descriptor,
const std::vector<ConstTensor> &constants,
const char *name,
const LayerBindingId id = 0) override
{
IgnoreUnused(descriptor, constants, id);
const LayerType lt = layer->GetType();
if (lt == LayerType::Input)
ioInfos.inputInfos.push_back(getInputTensorInfo(id, layer->GetOutputSlot(0).GetTensorInfo()));
else if (lt == LayerType::Output)
ioInfos.outputInfos.push_back({id, layer->GetInputSlot(0).GetTensorInfo()});
}
IOInfos ioInfos;
};
InfoStrategy infoStrategy;
optNet->ExecuteStrategy(infoStrategy);
return infoStrategy.ioInfos;
}
IRuntime *runtime;
std::map<NetworkId, IOInfos> ioInfos;
std::map<NetworkId, std::unique_ptr<std::mutex>> mutexes; // mutex per network to not execute the same the same network concurrently
std::mutex mutex; // global mutex for load/unload calls to the runtime
SpinLock spinLock; // fast spin lock to guard access to the ioInfos and mutexes maps
};
extern "C" void *init(int logLevel, int tuningLevel, const char *tuningFile)
{
LogSeverity level = static_cast<LogSeverity>(logLevel);
ConfigureLogging(true, true, level);
Ann *ann = new Ann(tuningLevel, tuningFile);
return ann;
}
extern "C" void destroy(void *ann)
{
delete ((Ann *)ann);
}
extern "C" int load(void *ann,
const char *path,
bool fastMath,
bool fp16,
bool saveCachedNetwork,
const char *cachedNetworkPath)
{
return ((Ann *)ann)->load(path, fastMath, fp16, saveCachedNetwork, cachedNetworkPath);
}
extern "C" void unload(void *ann, NetworkId netId)
{
((Ann *)ann)->unload(netId);
}
extern "C" void execute(void *ann, NetworkId netId, const void **inputData, void **outputData)
{
((Ann *)ann)->execute(netId, inputData, outputData);
}
extern "C" unsigned long shape(void *ann, NetworkId netId, bool isInput, int index)
{
return ((Ann *)ann)->shape(netId, isInput, index);
}
extern "C" int tensors(void *ann, NetworkId netId, bool isInput)
{
return ((Ann *)ann)->tensors(netId, isInput);
}