You've already forked immich
mirror of
https://github.com/immich-app/immich.git
synced 2025-08-08 23:07:06 +02:00
refactor: migrate person repository to kysely (#15242)
* refactor: migrate person repository to kysely * `asVector` begone * linting * fix metadata faces * update test --------- Co-authored-by: Alex <alex.tran1502@gmail.com> Co-authored-by: mertalev <101130780+mertalev@users.noreply.github.com>
This commit is contained in:
@ -10,7 +10,7 @@ from tokenizers import Encoding, Tokenizer
|
||||
|
||||
from app.config import log
|
||||
from app.models.base import InferenceModel
|
||||
from app.models.transforms import clean_text
|
||||
from app.models.transforms import clean_text, serialize_np_array
|
||||
from app.schemas import ModelSession, ModelTask, ModelType
|
||||
|
||||
|
||||
@ -18,9 +18,9 @@ class BaseCLIPTextualEncoder(InferenceModel):
|
||||
depends = []
|
||||
identity = (ModelType.TEXTUAL, ModelTask.SEARCH)
|
||||
|
||||
def _predict(self, inputs: str, **kwargs: Any) -> NDArray[np.float32]:
|
||||
def _predict(self, inputs: str, **kwargs: Any) -> str:
|
||||
res: NDArray[np.float32] = self.session.run(None, self.tokenize(inputs))[0][0]
|
||||
return res
|
||||
return serialize_np_array(res)
|
||||
|
||||
def _load(self) -> ModelSession:
|
||||
session = super()._load()
|
||||
|
@ -10,7 +10,15 @@ from PIL import Image
|
||||
|
||||
from app.config import log
|
||||
from app.models.base import InferenceModel
|
||||
from app.models.transforms import crop_pil, decode_pil, get_pil_resampling, normalize, resize_pil, to_numpy
|
||||
from app.models.transforms import (
|
||||
crop_pil,
|
||||
decode_pil,
|
||||
get_pil_resampling,
|
||||
normalize,
|
||||
resize_pil,
|
||||
serialize_np_array,
|
||||
to_numpy,
|
||||
)
|
||||
from app.schemas import ModelSession, ModelTask, ModelType
|
||||
|
||||
|
||||
@ -18,10 +26,10 @@ class BaseCLIPVisualEncoder(InferenceModel):
|
||||
depends = []
|
||||
identity = (ModelType.VISUAL, ModelTask.SEARCH)
|
||||
|
||||
def _predict(self, inputs: Image.Image | bytes, **kwargs: Any) -> NDArray[np.float32]:
|
||||
def _predict(self, inputs: Image.Image | bytes, **kwargs: Any) -> str:
|
||||
image = decode_pil(inputs)
|
||||
res: NDArray[np.float32] = self.session.run(None, self.transform(image))[0][0]
|
||||
return res
|
||||
return serialize_np_array(res)
|
||||
|
||||
@abstractmethod
|
||||
def transform(self, image: Image.Image) -> dict[str, NDArray[np.float32]]:
|
||||
|
@ -12,7 +12,7 @@ from PIL import Image
|
||||
|
||||
from app.config import log, settings
|
||||
from app.models.base import InferenceModel
|
||||
from app.models.transforms import decode_cv2
|
||||
from app.models.transforms import decode_cv2, serialize_np_array
|
||||
from app.schemas import FaceDetectionOutput, FacialRecognitionOutput, ModelFormat, ModelSession, ModelTask, ModelType
|
||||
|
||||
|
||||
@ -61,7 +61,7 @@ class FaceRecognizer(InferenceModel):
|
||||
return [
|
||||
{
|
||||
"boundingBox": {"x1": x1, "y1": y1, "x2": x2, "y2": y2},
|
||||
"embedding": embedding,
|
||||
"embedding": serialize_np_array(embedding),
|
||||
"score": score,
|
||||
}
|
||||
for (x1, y1, x2, y2), embedding, score in zip(faces["boxes"], embeddings, faces["scores"])
|
||||
|
@ -4,6 +4,7 @@ from typing import IO
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import orjson
|
||||
from numpy.typing import NDArray
|
||||
from PIL import Image
|
||||
|
||||
@ -69,3 +70,9 @@ def clean_text(text: str, canonicalize: bool = False) -> str:
|
||||
if canonicalize:
|
||||
text = text.translate(_PUNCTUATION_TRANS).lower()
|
||||
return text
|
||||
|
||||
|
||||
# this allows the client to use the array as a string without deserializing only to serialize back to a string
|
||||
# TODO: use this in a less invasive way
|
||||
def serialize_np_array(arr: NDArray[np.float32]) -> str:
|
||||
return orjson.dumps(arr, option=orjson.OPT_SERIALIZE_NUMPY).decode()
|
||||
|
Reference in New Issue
Block a user